Carbon dioxide in clay hydrates from classical molecular simulations

A. Botan¹, B. Rotenberg², V. Marry², P. Turq² and B. Noetinger³

¹Dep.t of Civ.and Env.Eng., MIT, Cambridge, Massachusetts, USA ² PECSA, CNRS and UPMC, Paris, France ³ IFP-Energies Nouvelles, Rueil-Malmaison, France

ABSTRACT: Underground storage of carbon dioxide (CO₂) in aquifers is one of the options for reducing the CO₂ emission to the atmosphere and the greenhouse effect. This assumes that CO₂ "disappears" as it is gradually absorbed by water. However, complete dissolution of CO₂ in water is a long-term process. At the beginning cap rock of aquifer plays role of a barrier to upwards CO₂ migration [1]. Clay-rich formation looks a suitable candidate for this purpose as a low permeability medium. The goal of this study is to understand how the presence of CO₂ can change the permeability capacity of clay. For this purpose, we consider the interaction between CO₂ and hydrated clays on the micro and nanoscale. We first investigated the thermodynamic properties related to swelling and the structure of CO₂ and H₂O. We then used molecular dynamics to determine the diffusion coefficients for equilibrated configurations. The second part of this work is devoted to equilibrium thermodynamic and structural properties of the H₂O/CO₂ mixture in clay mesopores as a function of P/T conditions, pore size, chemical composition of clay.

 B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. Meyer (2005) *IPCC special report* on carbon dioxide capture and storage. Cambridge University Press, Cambridge
A. Botan, B. Rotenberg, V. Marry, P. Turq and B. Noetinger (2010) *Carbon Dioxide in Montmorillonite Clay Hydrates: Thermodynamics, Structure, and Transport from Molecular Simulation. J. Phys. Chem. C*, 114, pp 14962–14969