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Abstract

This work is the third in a series of papers on the thermodynamically constrained

averaging theory (TCAT) approach to modeling flow and transport phenomena in

multiscale porous medium systems. Building upon the general TCAT framework and

the mathematical foundation presented in previous works in this series, we demon-

strate the TCAT approach for the case of single-fluid-phase flow. The formulated

model is based upon conservation equations for mass, momentum, and energy and

a general entropy inequality constraint, which is developed to guide model closure.

A specific example of a closed model is derived under limiting assumptions using

a linearization approach and these results are compared and contrasted with the

traditional single-phase-flow model. Potential extensions to this work are discussed.

Specific advancements in this work beyond previous averaging theory approaches to

single-phase flow include use of macroscale thermodynamics that is averaged from

the microscale, the use of derived equilibrium conditions to guide a flux-force pair

Preprint submitted to Elsevier Science 21 March 2006



approach to simplification, use of a general Lagrange multiplier approach to con-

nect conservation equation constraints to the entropy inequality, and a focus on

producing complete, closed models that are solvable.
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Notation

Roman letters

b external entropy source per unit volume

C Greens’ deformation tensor

ĉ compressibility parameter

d rate of strain tensor

E internal energy per unit volume

Ê Young’s modulus

ET total energy per unit volume

E the set of entities in the model

E conservation of energy equation

Ec connected set of entities

Êν variable grouping defined by eqn (114)

e solid-phase Eulerian strain tensor

es
zz macroscale solid-phase Eulerian strain tensor diagonal component

for the vertical direction

F thermodynamic force tensor

F thermodynamic force vector

F thermodynamic force scalar

F set of all thermodynamic forces

G geometric orientation tensor for an interface

g gravitational acceleration vector

g magnitude of gravitational acceleration

H hydraulic head

h heat source per unit volume
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I identity tensor

I′ surface identity tensor

I index set of entities

Ic index set of connected entities

Ip index set of phase entities

J thermodynamic flux tensor

J thermodynamic flux vector

J thermodynamic flux scalar

J set to all thermodynamic fluxes

j solid-phase Jacobian

K̂ hydraulic conductivity tensor

K̂q second-rank, symmetric, positive semi-definite heat conduction ten-

sor

KE kinetic energy per unit mass due to microscale velocity fluctuations

K̂S bulk modulus of the solid phase

K̂T bulk modulus of the skeleton

k unit Cartesian vector oriented vertically upward

k̂m non-negative interfacial mass transer parameter

k̂q non-negative interfacial heat transfer parameter

M conservation of mass equation
κ→ι

M transfer of mass from the κ to the ι entity
κ→ι

ME transfer of energy from the κ to the ι entity resulting from mass

transfer
κ→ι

Mv exchange of momentum from the κ to the ι entity resulting from

mass transfer
κ→ι

Mη exchange of entropy from the κ to the ι entity resulting from mass

transfer
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nι outward normal vector from entity ι

P conservation of momentum equation

Pi general microscale property

p fluid pressure
κ→ι

Q transfer of energy from the κ to the ι entity resulting from phase

change, interfacial stress, and heat transfer

q heat flux vector

R̂ symmetric, positive semi-definite second-rank momentum resistance

tensor

S entropy balance equation

Ŝs specific storage coefficient

T CIT-based thermodynamic equation for material derivative of inter-

nal energy
κ→ι

T transfer of momentum from the κ to the ι entity
κ→ι

Tv transfer of energy from the κ to the ι entity resulting from interfacial

stress

t stress tensor

t time

V the set of unknown variables requiring closure relations

v velocity vector

vι,s mass-averaged velocity of the ι entity relative to the mass-averaged

velocity of the s entity

w weighting function in averaging operator

X position vector in the solid phase initially

x position vector in the solid phase
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Greek letters

α̂ biot coefficient

β̂ compressibility parameter

Γ boundary of domain of interest

γ interfacial tension

ει specific measure of the ι entity

η entropy per unit volume

θ temperature

Λ entropy production per unit volume

λ vector of Lagrange multipliers

λ Lagrange multiplier

µ chemical potential

ν̂ Poisson’s ratio

ρ density

σ solid-phase Lagrangian stress tensor

τ effective solid-phase stress tensor
κ→ι

Φ transfer of entropy from the κ to the ι entity

ϕ entropy flux vector

ψ gravitational potential

Ω spatial domain

Ω̄ closed domain

Subscripts and superscripts

b bulk qualifier (superscript)

D material derivative equivalence qualifier (subscript)
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E energy equation qualifier (subscript)

i general index (subscript)

j general index (subscript)

k general index (subscript)

M mass equation qualifier (subscript)

P momentum equation qualifier (subscript)

r remainder qualifier for shorthand thermodynamic equation (sub-

script)

s solid-phase qualifier (subscript and superscript)

T total qualifier (superscript)

T thermodynamic equation qualifier (subscript)

w water-phase qualifier (subscript and superscript)

ws water-solid surface qualifier (subscript and superscript)

ι entity qualifier (subscript and superscript)

κ entity qualifier (subscript and superscript)

Abbreviations

AEI augmented entropy inequality

CEI constrained entropy inequality

CIT classical irreversible thermodynamics

EI entropy inequality

EPP entropy production postulate

REV representative elementary volume

SEI simplified entropy inequality

TCAT thermodynamically constrained averaging theory
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1 Introduction

This paper is the third in a series of efforts designed to yield complete, rig-

orous, closed models that describe transport phenomena in multiscale porous

medium systems using the thermodynamically constrained averaging theory

(TCAT) approach. Work to date has outlined a general TCAT approach that

can be used to generate such models [20] and laid a mathematical foundation

upon which these models can be constructed [25]. We will build on these results

in the current and subsequent papers to construct closed models for impor-

tant systems, to compare and contrast these models with conventional models

in use for similar purposes, and to compare these new models with highly re-

solved sub-scale simulations and experimental observations. The present paper

is focused on single-fluid-phase flow in porous media. This system has been

chosen because it provides a relatively simple setting in which to demonstrate

the application of the TCAT approach and to illustrate that putting even this

well-studied system on firm theoretical footing illuminates some important

intrinsic assumptions in conventional models.

The traditional model for single-phase flow is derived typically by (1) writing

an equation of mass conservation for a fluid phase; (2) using Darcy’s law as

an approximate momentum equation to remove the superficial velocity vector

from the conservation equation; (3) assuming a simple equation of state for

the fluid phase that relates its density and pressure; (4) assuming that spatial

gradients in density are small; and (5) approximating the compressibilities of

the fluid and solid phases in time using linear, reversible compressibility theory.

Derivation of the standard single-phase model for flow through porous media

along these lines is routine, and the resultant model is used nearly universally.
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Today, the physics of single-fluid-phase (hereinafter, simply single-phase) flow

through porous media is considered well-established [e.g. 3, 4, 11, 12, 14].

Popular, well-documented, and widely used numerical simulators that solve a

traditional model for single-phase flow for transient conditions in three spatial

dimensions have existed for 18 years [24].

Efforts have been undertaken to provide a more comprehensive and satisfying

theoretical basis for modeling single-phase flow than the traditional approach.

One way in which this has been accomplished is by deriving Darcy’s law from

first principles. Darcy [9, 10] performed a careful series of one-dimensional col-

umn experiments to measure head loss through homogeneous sand systems,

and Darcy’s law was inferred from these experiments; it has since been a cor-

nerstone principle for flow through porous materials. In recent years, a variety

of approaches have been advanced to derive Darcy’s law based on describing

flow through a porous medium at the microscale using the Stokes equations or

the Navier-Stokes equations and upscaling this description to the macroscale

[e.g. 2, 26–30]. Such efforts have provided a mathematical route to Darcy’s

law, but not a comprehensive, thermodynamically constrained theory yielding

flow equations appropriate for more complex situations, such as cases where

the Darcian linear proportionality between velocity and the potential gradi-

ent does not apply or single-phase flow through deformable, non-isothermal

porous media. Furthermore, inconsistencies related to the original form of

Darcy’s law and its common usage have recently been discussed even for very

simple systems [19]. In the 150 years since its formulation, Darcy’s law has

undergone a series of extensions such that it is now routinely applied in a

variety of settings not supported by the original set of experiments, including

anisotropic conditions and the flow of multiple fluid phases.
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Formal averaging approaches, which are a central component of this work,

have been developed over the last three decades and applied to formulate

models for both single-fluid-phase and multiple-fluid-phase systems. Formal

averaging methods provide a means to not only show conditions under which

Darcy’s law emerges as an approximation of a more general theory, but also

to examine a wide range of cases for which the traditional single-phase model

does not provide a description of sufficient accuracy. Previous work in this

series reviewed averaging theory methods and highlighted the limitations that

motivate the TCAT approach [20].

The overall goal of this work is to formulate a rigorous, first-principles-based

theory for single-phase flow in porous media for which the underlying assump-

tions are explicitly indicated. The specific objectives of this work are: (1) to

develop a general, thermodynamically consistent theory for single-phase flow

based upon well defined macroscale variables and a clear connection to the

microscale; (2) to provide an example of how a simple single-phase model can

be deduced based upon the general theory; (3) to compare the conventionally-

employed single-phase model with a model that emerges here from the general

theory; and (4) to suggest a new set of single-phase model extensions that may

be derived from the general theory.

This work differs from previous averaging theory work in several respects in-

cluding: (1) thermodynamic constraints are developed by averaging classical

irreversible thermoynamics from the microscale to the macroscale; (2) equilib-

rium conditions are summarized that provide firm guidance for model formula-

tion; (3) a flux-force pair approach is used to develop and simplify the entropy

inequality using the equilibrium conditions; (4) a general Lagrange multiplier

approach is used to connect macroscale conservation equations to the entropy
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inequality and solved in light of solvability constraints; (5) a clear separa-

tion between exact forms of the general model formulation and approximate

forms are noted; (6) a detailed set of assumptions are made and the details

of a complete, closed model formulation are presented; and (7) the general

results achieved provide a means to develop many alternative models based

upon other sets of assumptions and applying to more complicated cases than

the simple traditional single-phase flow model. The amount of work needed to

accomplish these tasks is not inconsequential. We therefore wish to stress that

this paper is a derivation of general conservation equations for single-phase

flow, not a narrowly targeted set of steps aimed at obtaining Darcy’s law.

The starting point for the upscaling is the general conservation equations for

the fluid and the solid along with an established thermodynamic theory. This

starting point, coupled with the systematic framework provided by the TCAT

approach allows us to gain new insights into the mechanisms of single-phase

flow systems and also sets the stage for analyses of more complex systems in

subsequent installments.

2 General approach

The macroscale system considered in this work is shown schematically in Fig.

1 and consists of a macroscale domain, Ω; a volume occupied by a solid phase,

Ωs; a volume occupied by the fluid phase, Ωw; and an interfacial region between

the solid and fluid phases, Ωws. The notion of writing specific conservation

equations for an interface is a point of departure from the development of the

traditional model, where conservation of mass equations are written only for

the phases. Interface equations are written to account for system properties,
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and their variation in time and space, at the region of transition from one

phase to another. Molecular interactions that occur at such interfaces lead

to a change in most physicochemical properties of concern over short length

scales in the vicinity of the surface. Inclusion of conservation equations for

interfaces allows deviations from the mean bulk behavior in the transition

regions to be properly modeled. An important result from this approach is

that evolution equations for interfacial areas follow from the general theory.

Fig. 1. Single-fluid-phase system.

A macroscale system is one whose length scale is sufficiently large that it

includes elements of all entities (i.e., phases and interfaces). The model is

formulated in terms of averages of microscale properties over a representative

elementary volume (REV) with this length scale, but such models do not

require detailed knowledge of the microscale pore structure. However, we do

seek a formulation that explicitly defines macroscale variables in terms of well-

defined quantities arising in a microscale description. Such an approach is

unambiguous and provides a means for connecting microscale and macroscale

descriptions. Conditions for which a well-defined REV does not exist occur

routinely in nature but are outside the scope of this investigation.

12



Rigorous macroscale models for single-phase systems can be developed based

upon the TCAT approach [20], which has the following steps:

(1) an entropy inequality (EI) expression for the entire system of concern is

generated;

(2) an appropriate set of mass, momentum, and energy conservation equa-

tions is formulated at the desired scale for all relevant entities (phase vol-

umes and interfaces) based upon clearly defined averages of microscale

quantities;

(3) an appropriate microscale thermodynamic theory is averaged up to the

desired scale, and differential forms of internal energy dependence for

spatial and temporal derivatives are generated;

(4) the EI is augmented using the product of Lagrange multipliers with

conservation equations and differential, consistent-scale thermodynamic

equations;

(5) the set of Lagrange multipliers is determined to select the combination

of conservation equations that describes the physics of interest and to

eliminate time derivatives from the augmented EI (AEI) producing the

constrained EI (CEI);

(6) geometric identities and approximations are applied to the CEI to elim-

inate additional remaining time derivatives as needed to produce the

simplified EI (SEI);

(7) the resultant SEI is used to guide the formulation of general forms of clo-

sure approximations consistent with the second law of thermodynamics;

and

(8) microscale and macroscale modeling and experimentation are used to

advance appropriate forms of closure relations.
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Within this general approach, notions related to the scales of concern and

fundamental definitions upon which this general theory is based, which we

term the standard averaging definitions, are detailed in Miller and Gray [25].

The general TCAT approach, which can be applied across a wide range of space

and time scales, is detailed in Gray and Miller [20]. The specific macroscopic,

single-phase flow application of concern in this work is an example application

of this general theory. The following sections correspond to the general TCAT

approach summary given above and detail the development of a complete

closed single-phase model.

3 Entropy Inequality

In recent work, macroscale conservation equations for mass, momentum, en-

ergy, and entropy for phase volumes, interfaces, common curves, and common

points that can exist within a multiphase system have been developed [17] and

employed to obtain models for two-phase flow [15, 22]. We refer to the various

regions (phase volumes, interfaces, common curves, and common points) as

entities. Membership in the set of entities depends upon the system under

consideration. For the single-fluid system of primary concern here, the set of

entities in an REV, and assumed to be at this scale, is given by

E = {Ωι|ι ∈ I} = {Ωw,Ωs,Ωws} (1)

where the index set of entity qualifiers is given by

I = {w, s,ws} (2)
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where w represents the water phase, s the solid phase, and ws the water-solid

interface.

We also introduce the notion of a connected entity set, which we define for

entity Eι as

Ecι = {Ωκ|(Ω̄ι ∩ Ω̄κ 6= ∅) ∧ (Ω̄ι 6= Ω̄κ),∀Ωκ ∈ E} (3)

where the closure of the entities is defined as Ω̄ι = Ωι ∪ Γι, Γι is the boundary

of Ωι, and Icι is the index set corresponding to Ecι so Ecι = {Ωκ|κ ∈ Icι}. The

connected entity set for entity ι is thus the set of entities with which it has

direct contact. The three instances of connected entity sets relevant for the

single-phase flow problem of concern in this work are

Ecw = {Ωws} (4)

Ecs = {Ωws} (5)

Ecws = {Ωw,Ωs} (6)

where Icw, Ics, and Icws are the connected index sets that correspond to the

respective connected entity sets, e.g., Icw = {ws}. The use of set notation

for entities, connected entities, and index sets provides a means to develop a

general, compact notation that will prove useful for generating TCAT models

for a variety of systems.

A general balance equation is needed for entropy associated with the ι entity at

the macroscale. This equation can be derived by averaging from the microscale

to the macroscale or by using a localization approach to obtain

Dιηι

Dt
+ ηιI:dι −∇·

(
ειϕι

)
− ειbι −

∑

κ∈Icι

(
κ→ι

Mη +
κ→ι

Φ
)

= Λι, for ι ∈ I (7)

Quantities in this equation have been obtained by making use of the averaging
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operator [25]:

〈Pi〉Ωj ,Ωk ,w =

∫
Ωj

wPi dr

∫
Ωk

w dr
(8)

where Pi is a general property to be averaged; and w is a weighting function.

When w = 1, w is omitted as a subscript on the left side of eqn (8). The terms

in eqn (7) are defined in terms of the averaging operator as

ηι = 〈ηι〉Ωι,Ω
(9)

vι = 〈vι〉Ωι,Ωι,ρι
(10)

dι =
1

2

[
∇vι +

(
∇vι

)T
]

(11)

ϕι = 〈ϕι〉Ωι,Ωι
−
〈
ηι

(
vι − vι

)〉
Ωι,Ωι

(12)

bι = 〈bι〉Ωι,Ωι
(13)

Λι = 〈Λι〉Ωι,Ω
(14)

and the material derivative is defined as

Dι

Dt
=

∂

∂t
+ vι·∇ (15)

where subscripted quantities are microscale quantities, superscripted quanti-

ties are macroscale quantities, ηι is the entropy of entity ι per unit REV; t

is time; I is the identity tensor; dι is the rate of strain tensor; vι is a mass

averaged intrinsic velocity; ει is the specific entity measure for the ι entity,

which is a volume fraction for phase entities or a specific interfacial area for

the interface entity; ϕι is an entropy flux vector; bι is an entropy source per

unit volume;
κ→ι

Mη accounts for entropy exchange from the κ entity to the ι

entity accompanying mass transfer between these entities;
κ→ι

Φ represents an

entropy flux from the κ entity to the ι entity; and Λι accounts for entropy

production per unit volume due to irreversible processes within the ι entity.

Note that the use of the overbars with superscripts is employed to differentiate

among types of macroscale quantities that appear. For example, superscript
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ι indicates the quantity is an average over the entity of interest (as in eqn

(13)); superscript ι indicates the quantity is a mass weighted average over the

entity of interest (as in eqn (10)); and the superscript ι designates that the

macroscale quantity has been obtained as some other kind of average and/or

combination of terms that has been specifically listed in defining the quantity

[as in eqns (9), (11), and (12)].

The terms expressing the transfer of a quantity between a phase and an in-

terface can be explained more thoroughly. The macroscale entropy balance

equation for an entity in a single-phase flow system has exchange terms of the

form

ws→ι

Mη +
ws→ι

Φ =
ηι

ειρι

ws→ι

M +
ws→ι

Φ = 〈nι · [ϕι + ηι (vws − vι)]〉Ωws,Ω (16)

where
ws→ι

M = 〈nι · [ρι (vws − vι)]〉Ωws,Ω (17)

ws→ι

Φ =

〈
nι ·


ϕι +


ηι

ρι
− ηι

ειρι


 ρι (vws − vι)



〉

Ωws,Ω

(18)

ι ∈ Ip = {w, s}; nι is a normal vector pointing outward from phase ι; and vws

is the microscale velocity of the ws interface.

Also note that we adopt the convention

ι→ws

Mη +
ι→ws

Φ = −
ws→ι

Mη −
ws→ι

Φ =− ηι

ειρι

ws→ι

M −
ws→ι

Φ

=−〈nι · [ϕι + ηι (vws − vι)]〉Ωws,Ω (19)

Thus the native definitions for exchange terms involve averaging operators

specified in terms of the higher dimensional entity evaluated at the boundary

with the lower dimensional entity. This is a common notion that generalizes

naturally to the conservation equations and more complex systems. Use of this
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notation for exchange terms along with set notation will allow the formulation

of a complete model to be expressed relatively compactly.

Summing the entropy entity balance equation over all entities yields a system

entropy inequality equation of the form

∑

ι∈I

S ι =
∑

ι∈I


Dιηι

Dt
+ ηιI:dι −∇·

(
ειϕι

)
− ειbι


 = Λ ≥ 0 (20)

Eqn (20) is the key inequality used to guide the development of thermody-

namically constrained closure relations, where the inequality portion of this

relation follows from the second law of thermodynamics. Note that when en-

tropy is summed over all entities, the entity exchange terms cancel, giving the

simplified expression noted above. To exploit the system entropy inequality re-

lation, we must express entropy as a function of dependent variables appearing

in the conservation equations for mass, momentum, and energy.

4 Conservation Equations

The set of conservation equations of relevance for the single-phase flow problem

includes balances for mass, momentum, and energy for each entity in the index

set I. This results in a total of 15 scalar conservations equations. Because

our goal is to formulate a model at the macroscale, the macroscale EI will

be constrained by the macroscale conservation equations. To be clear, other

choices for the type of problem (e.g., multiple-fluid-phase flow, fluid flow and

species transport) or the specification of any different scale of concern would

influence the final set of conservation equations used to constrain the EI. Other

potential choices of scales are detailed in other works in this series [25].
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After selection of the set of conservation equations needed and the scale of

the problem, the conservation equations may be derived at that scale in a

variety of ways. If such derivations have already been accomplished for use

in other work, the final resultant forms may be used directly. General con-

servation equations at the required scale can be derived by averaging from

the microscale to the macroscale or through a localization approach whereby

macroscale equations are written directly in terms of averaged microscale vari-

ables. General macroscale conservation equations can then be used to provide

specific conservation equations for mass, momentum, and energy. We summa-

rize these macroscale equations without derivation since detailed derivations

are available elsewhere [17].

A general equation for mass conservation of the ι entity is

Mι =
Dι (ειρι)

Dt
+ ειριI:dι −

∑

κ∈Icι

κ→ι

M = 0, for ι ∈ I (21)

where, following our convention for all boundary exchange terms, mass transfer

from the ws interface to the κ phase is

ws→κ

M = −
κ→ws

M = 〈ρκnκ · (vws − vκ)〉Ωws,Ω, for κ ∈ Ip (22)

A general equation for momentum conservation of the ι entity is

P ι =
Dι
(
ειριvι

)

Dt
+ ειριvιI:dι −∇·

(
ειtι

)
− ειριgι

−
∑

κ∈Icι

(
κ→ι

Mv +
κ→ι

T
)

= 0, for ι ∈ I (23)

where the macroscale stress tensor is

tι =
〈
tι − ρι

(
vι − vι

)(
vι − vι

)〉
Ωι,Ωι

(24)

momentum transfer due to mass exchange from the ws interface to the κ phase
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is
ws→κ

Mv = −
κ→ws

Mv = vκ
ws→κ

M , for κ ∈ Ip (25)

and the momentum exchange vector from the ws interface to the κ phase due

to stress at the boundary is

ws→κ

T = −
κ→ws

T =
〈
nκ ·

[
tκ + ρκ (vws − vκ)

(
vκ − vκ

)]〉
Ωws,Ω

, for κ ∈ Ip

(26)

t is the stress tensor, and g is the gravitational acceleration vector.

A general equation for total energy conservation of the ι entity is

E ι =
Dι
[
Eι + ειρι

(
1
2
vι·vι +K ι

E + ψι
)]

Dt

+
[
Eι + ειρι

(
1

2
vι·vι +K ι

E + ψι
)]

I:dι −∇·
(
ειtι·vι + ειqι

)

−ειhι −
∑

κ∈Icι

(
κ→ι

ME +
κ→ι

Tv +
κ→ι

Q
)

= 0, for ι ∈ I (27)

or

E ι =
DιEι

T

Dt
+ Eι

T I:dι −∇·
(
ειtι·vι + ειqι

)
− ειhι

−
∑

κ∈Icι

(
κ→ι

ME +
κ→ι

Tv +
κ→ι

Q
)

= 0, for ι ∈ I (28)

where

Eι = 〈Eι〉Ωι,Ω
(29)

ειριK ι
E =

〈
ρι

2

(
vι − vι

)
·
(
vι − vι

)〉

Ωι,Ω
(30)

Eι
T =Eι + ειρι

(
1

2
vι·vι +K ι

E + ψι
)

(31)

ειqι =

〈
qι +


Eι

ρι
− Eι

ειρι
+

1

2

(
vι − vι

)
·
(
vι − vι

)

 ρι

(
vι − vι

)〉

Ωι,Ω

+
〈(

−K ι
E + ψι − ψι

)
ρι

(
vι − vι

)
+ tι·

(
vι − vι

)〉
Ωι,Ω

(32)

ws→κ

ME =−
κ→ws

ME =
Eκ

T

εκρκ

ws→κ

M , for κ ∈ Ip (33)
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ws→κ

Tv =−
κ→ws

Tv =
ws→κ

T ·vκ, for κ ∈ Ip (34)
ws→κ

Q =−
κ→ws

Q =
〈
nκ ·qκ + nκ · tκ·

(
vκ − vκ

)〉
Ωws,Ω

+

〈
Eκ

ρκ

− Eκ

εκρκ


 ρκ (vws − vκ) ·nκ

〉

Ωws,Ω

+
〈

1

2

(
vκ − vκ

)
·
(
vκ − vκ

)
ρκ (vws − vκ) ·nκ

〉

Ωws,Ω

+
〈(
ψκ − ψκ −Kκ

E

)
ρκ (vws − vκ) ·nκ

〉
Ωws,Ω

,

for κ ∈ Ip (35)

and Eι
T is the total energy; K ι

E is the kinetic energy due to microscale velocity

fluctuations; ψι is the gravitational potential; qι is the heat flux vector; hι

is a heat source,
ws→κ

ME ,
ws→κ

Tv , and
ws→κ

Q express the transfer of energy from

the ws interface to the κ phase due to interfacial stress, phase change, and

heat transfer. The K ι
E terms have traditionally been neglected or lumped

in with other macroscale quantities, such as the internal energy. When they

contribute negligibly to the energy of the porous media system, as is typically

the case, such an approach is acceptable. For completeness, we carry these

terms explicitly.

Thus we have three conservation equations for mass, nine for momentum, and

three for energy, making a total of 15 conservation equations. These equations

are not solvable as written, because the set of unknown variables includes 64

unknown quantities

V =
{
ει, ρι,vι,

ws→κ

M , tι,
ws→κ

T , Eι,K ι
E, ψ

ι,qι, hι,
ws→κ

Q
}

(36)

for ι ∈ I and κ ∈ Ip and with tι symmetric. Specification of single-phase

models therefore requires some combination of simplifying assumptions and

additional relations such that for a particular problem of interest the number

of unknown quantities is equivalent to the number of equations. We refer to
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finding conditions that make the number of unknowns equal to the number of

equations as the closure problem, and the specification of thermodynamically

constrained and closed models is a focus of this work.

5 Thermodynamics

Three aspects of thermodynamics are important in the development of TCAT

models: (1) averaged macroscale expressions that relate material derivatives

of internal energy to material derivatives of entropy, mass, and geometric

measures for near equilibrium conditions; (2) a set of macroscale equalities

that must hold at equilibrium; and (3) considerations involving the production,

flux, and source of entropy. We summarize these three classes of macroscale

thermodynamic results in turn below.

5.1 Material Derivatives of Internal Energy

Eqn (20) contains terms accounting for entropy, non-advective entropy fluxes,

and entropy source terms that do not appear in any of the conservation equa-

tions used to produce an AEI. To link the entropy to other terms appearing

in the AEI, we rely upon macroscale thermodynamics to provide relations

between entropy and other quantities appearing in conservation equations.

As previously discussed [20], multiple approaches exist for positing the ther-

modynamics needed to provide the necessary link between entropy and the

set of conserved quantities. Further, issues of scale arise in developing these

thermodynamic expressions. In this work, we collect previously derived results

based upon averaging a classical irreversible thermodynamic (CIT) approach
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at the microscale to the macroscale. CIT is based upon an assumption that a

system may be subdivided into discrete spatial and temporal regions with equi-

librium thermodynamics applied locally in those regions. This view of system

behavior is termed the local equilibrium assumption, and it is a distinguishing

feature of CIT compared to classical equilibrium thermodynamics [20]. CIT is

thus a convenient theory upon which to build porous medium models, but it

is not the only, or perhaps even the best, choice available. We utilize results

from this approach here because it is a reasonable starting point in our quest

to develop consistent, TCAT-based models that are closed and specific.

Because of differences in the thermodynamic functional forms among the enti-

ties, we consider each entity in turn. The forms desired are expressions involv-

ing the material derivatives of internal energy for each entity in the system

that equate to zero. Based on Gray [16], the material derivative form involving

Ew is

T w =
DwEw

Dt
− θw Dwηw

Dt
− µw Dw (εwρw)

Dt
+ pw Dwεw

Dt

+

〈
ηw

Dw
(
θw − θw

)

Dt
+ ρw

Dw
(
µw − µw

)

Dt
− Dw (pw − pw)

Dt

〉

Ωw ,Ω

= 0 (37)

where θw is the temperature, pw is the fluid pressure, and µw is the chemical

potential. Note that each of the time derivatives of a difference between a

macroscale quantity and its microscale precursor is contained in an integral

over Ωw. Thus if the system is spatially homogeneous at the microscale in

one of these properties, the corresponding integral term will vanish. Even if

the system is not microscopically spatially homogeneous, the integral terms

involving the time derivatives may vanish. In general however, these integral

terms are not zero, but in many practical cases they may be small. The pres-

ence of these extra terms represents a difference between formulations based
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upon averaged microscale thermodynamics and formulations based upon ther-

modynamics posited directly at the macroscale.

Averaging the CIT from the microscale to the macroscale for a solid phase

gives [21]

T s =
DsEs

Dt
−θs D

sηs

Dt
−µs D

s (εsρs)

Dt
+

〈
ηs

Ds
(
θs − θs

)

Dt
+ ρs

Ds
(
µs − µs

)

Dt

〉

Ωs,Ω

−
〈(

Cs

js
:σs

)
(vws − vs) ·ns

〉

Ωws,Ω

−
〈
ns ·

[
2

js
σs: (∇Xx∇Xx) ·

(
vs − vs

)]〉

Ωws,Ω

+

〈{
∇·
[

2

js
σs: (∇Xx∇Xx)

]
−∇σs:

Cs

js

}
·
(
vs − vs

)〉

Ωs,Ω

+εsσs:
Cs

js
I:ds −

〈
2

js
σs: (∇Xx∇Xx)

〉

Ωs,Ω

:ds

−∇·
〈[

2

js
σs: (∇Xx∇Xx) − σs:

Cs

js
I

]
·
(
vs − vs

)〉

Ωs ,Ω

= 0 (38)

where σs is the Lagrangian stress tensor, Cs is the Greens’ deformation ten-

sor, js = |∂xi/∂Xj | is the solid-phase Jacobian, x represents the position in

the solid phase, X represents the initial position in the solid phase, ∇Xx is

the gradient of a spatial location vector relative to its initial location, and

subscripts denote microscale quantities while superscripts denote macroscale

quantities.

Averaging the CIT expression for the ws interface from the microscale to the

macroscale gives [16]

T ws =
DwsEws

Dt
− θws Dwsηws

Dt
− µws Dws (εwsρws)

Dt
− γws D

wsεws

Dt

+

〈
ηws

D′ws
(
θws − θws

)

Dt
+ ρws

D′ws
(
µws − µws

)

Dt

〉

Ωws,Ω

+

〈
D′ws (γws − γws)

Dt

〉

Ωws,Ω

−∇θws·
〈
nwnw ·

(
vws − vws

)
ηws

〉
Ωws,Ω
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−∇µws·
〈
nwnw ·

(
vws − vws

)
ρws

〉
Ωws,Ω

−∇γws·
〈
nwnw ·

(
vws − vws

)〉
Ωws,Ω

(39)

for

D′ws

Dt
=
∂′

∂t
+ vws·∇′ (40)

∂′

∂t
=

∂

∂t
+ vws·nwnw ·∇ (41)

∇′ = ∇− nwnw ·∇ (42)

and

D′ws

Dt
=

Dws

Dt
+
(
vws − vws

)
·nwnw ·∇ (43)

where γ is the interfacial tension. The thermodynamics of interfaces at the

macroscale require restriction of microscale quantities to the interface and

averaging of these quantities to the macroscale. Because of this, the material

derivatives within the averaging operators are restricted to the interface at the

microscale.

These equations provide explicit links between entropy and other macroscale

variables that appear in the conservation equations that we wish to close.

These links are essential to the formulation of closed models.

5.2 Equilibrium Conditions

In order to exploit the system EI to guide the formulation of appropriate

closure relations, it is beneficial to arrange the EI into products of indepen-

dent variables and groupings of terms known to vanish at equilibrium. The

development of such equilibrium conditions for microscale properties can be

accomplished using variational methods [1, 6, 7]. Then, averaging of the mi-

croscale equilibrium conditions provides the macroscale constraints. We will
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not detail these methods in this work, rather we will summarize results that

will be of use in guiding manipulations of the EI, which were derived using

variational methods [21]. At equilibrium, all velocities are constant and equal

such that

vw = vs = vws = constant (44)

and as a consequence of this condition

dw = ds = dws = 0 (45)

The macroscale temperatures are also constant and equal for all entities with

θw = θs = θws = constant (46)

and as a consequence of this condition

∇θw = ∇θs = ∇θws = 0 (47)

At equilibrium, the sum of chemical and gravitational potentials are related

as follows

µw + ψw = µws + ψws =

µs + ψs +

〈
σs:

Cs

ρsjs

〉

Ωs,Ωs

− 1

ρs

〈
ts:I

3

〉

Ωs,Ωs

= constant (48)

and as a consequence of this condition

∇
(
µw + ψw

)
= ∇


µs + ψs +

〈
σs:

Cs

ρsjs

〉

Ωs,Ωs

− 1

ρs

〈
ts:I

3

〉

Ωs,Ωs


 =

∇
(
µws + ψws

)
= 0 (49)

where

ts =
2

js
σs:(∇Xx∇Xx) (50)
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The macroscale geometric variables are constant at equilibrium so

Dwεw

Dt
=

Dsεs

Dt
=

Dwsεws

Dt
= 0 (51)

Within the solid phase the equilibrium condition is

〈
ρs∇

(
ts:I

3ρs

)
−∇·ts

〉

Ωs,Ωs

= 0 (52)

Eqn (48) and eqn (52) can be used along with the Gibbs-Duhem equation to

deduce the equilibrium condition

〈
∇·ts −∇σs:

Cs

js

〉

Ωs,Ωs

= 0 (53)

The expression for the balance of normal stress at the fluid-solid interface is

〈pw + ns · ts·ns + γws∇′·ns − ρwsgws·ns〉Ωws,Ωws
= 0 (54)

while the lateral stress at the solid surface obeys the equilibrium condition

〈ns · ts·I′〉Ωws,Ωws
= 0 (55)

where I′ = I − nsns is the surface identity tensor.

5.3 Production, Flux, and Source of Entropy

Within the CIT framework, entropy production is a result of heat conduction,

the flow of matter, mechanical dissipation, chemical reactions, and electrical

currents leading to irreversible processes [23]. It is a standard procedure to

seek a form that represents these entropy producing processes as the product
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of a set of thermodynamic fluxes and thermodynamic forces such that

Λ =
∑

i

JiFi +
∑

j

Jj ·Fj +
∑

k

Jk:Fk (56)

where Ji, Jj, and Jk are thermodynamic fluxes corresponding to scalar, vec-

tor, and tensor types, respectively; and Fi, Fj, and Fk are thermodynamic

forces of the scalar, vector, and tensor types, respectively.

An important property of these products is that each factor in all products

must be zero at equilibrium—the state of minimum energy, maximum entropy,

and no entropy production. Another property is that each member of the set

of fluxes is independent of all other fluxes, and each member of the set of

forces is independent of all other forces, which collectively we will refer to

as the flux-force independence condition. Because of the symmetry required

by the flux-force independence condition, Jou et al. [23] comment that the

identification of each factor in the products given in eqn (56) as a “force” or

“flux” is arbitrary as long as the independence condition is met.

Although the thermodynamic flux-force approach is common in the CIT liter-

ature for microscale systems, care is needed when extending these notions to

the macroscale systems of concern in this work. We are not aware of any avail-

able approach to generate a complete list of the set of fluxes and forces a priori.

We do have two sources of information to provide some guidance: (1) prece-

dent and knowledge based upon microscale systems, and (2) the equilibrium

conditions summarized in §5.2. We will use both of these sources to propose a

set of forces that is consistent with eqns (44)–(51) that is also constrained by

the independence condition. The conjugate set of fluxes are unknown a priori,

but it is known that once deduced these fluxes must be zero at equilibrium and

meet the independence condition. These notions are consistent with Postulate
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1.

Postulate 1 (Entropy Production Postulate, EPP) The production of

entropy, Λ, may be expressed as a sum of inner products of members of a set

of fluxes J and conjugate members of a companion set of forces F with both

J and F comprised of members that are zero at equilibrium and independent

of all other members in the respective set but which can depend upon one or

more members of the companion set.

The EPP is valuable because it provides guidance for the development of a

form of the EI that will be of most use in developing closure relations, and it

leads to linearized approximations for a set of fluxes in terms of members of

a set of mutually independent forces in the near-equilibrium regime. It is also

important to understand that although the forces are typically clearly zero at

equilibrium (e.g., a rate of strain), we are only able to infer that the fluxes

are zero on the basis of the EPP, in most cases. In all cases however, confir-

mation that the fluxes vanish at equilibrium will be verifiable based upon the

derived equilibrium conditions and microscale analysis. Therefore, it is impor-

tant that the forces that we identify as “independent” indeed be independent.

We are guided in this pursuit by insight into the system summarized by the

equilibrium conditions given in §5.2.

6 Augmented Entropy Inequality

In the TCAT approach, the system EI is augmented with the conservation

equations and thermodynamic equalities that express the relations between

the material derivatives of macroscale internal energy of system entities and
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expressions that appear in the macroscale EI and conservation equations. This

augmented EI (AEI) can be interpreted as a statement of the second-law of

thermodynamics constrained to ensure that it satisfies the conservation equa-

tions and thermodynamic identities evolving from the chosen thermodynamic

theory. The AEI may be written as

∑

ι∈I

(S ι + λι
MMι + λι

P·P ι + λι
EE ι + λι

T T ι) = Λ ≥ 0 (57)

where the sub- and superscripted λ’s are Lagrange multipliers of the corre-

sponding conservation equations S ι, Mι, P ι, and E ι given in eqns (20), (21),

(23), and (27), respectively, and the thermodynamic expressions T ι given in

eqns (37)–(39).

In subsequent manipulations to solve for the Lagrange multipliers, our atten-

tion will be focused on the material derivatives. We will therefore introduce a

shorthand notation for all the terms in the conservation and thermodynamic

equations that do not contain material derivatives. Thus entropy eqn (20) is

expressed
∑

ι∈I

S ι =
∑

ι∈I


Dιηι

Dt
+ S ι

D


 = Λ ≥ 0 (58)

Mass conservation eqn (21) is written

Mι =
Dι (ειρι)

Dt
+ Mι

D = 0, for ι ∈ I (59)

Conservation of momentum as expressed by eqn (23) is

P ι =
Dι
(
ειριvι

)

Dt
+ P ι

D = 0, for ι ∈ I (60)

The material derivatives in energy conservation eqn (27) are expanded out

using the product rule so that this equation becomes

E ι =
DιEι

Dt
+ vι·

Dι
(
ειριvι

)

Dt
+

(
K ι

E − vι·vι

2
+ ψι

)
Dι (ειρι)

Dt
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+ειρι
Dι
(
K ι

E + ψι
)

Dt
+ E ι

D = 0, for ι ∈ I (61)

The thermodynamic forms of eqns (37)–(39) for the w, s, and ws entities are

written, respectively, as

T w =
DwEw

Dt
− θw Dwηw

Dt
− µw Dw (εwρw)

Dt
+ pw Dwεw

Dt
+ T w

r = 0 (62)

T s =
DsEs

Dt
− θs Dsηs

Dt
− µs D

s (εsρs)

Dt
+ T s

r = 0 (63)

and

T ws =
DwsEws

Dt
− θws D

wsηws

Dt
− µws Dws (εwsρws)

Dt
− γws Dwsεws

Dt
+ T ws

r = 0

(64)

The introduction of notation to account for collections of terms not involv-

ing material derivatives is a convenience for use in the next section to facili-

tate selection of the Lagrange multipliers strictly on the basis of the material

derivatives and the physical processes to be modeled.

7 Constrained Entropy Inequality

Expanding upon previously introduced Lagrange multiplier approaches for

constraining the entropy inequality [e.g. 20, 22], we show explicitly the limits of

the simplifications to material derivative expressions possible with any choice

of Lagrange multipliers. After the conservation and thermodynamic equations

are substituted into eqn (57), a total of 23 distinct material derivatives exist in

this inequality, including three components for each entity-momentum term.

Additionally, we note that the equation contains 18 scalar Lagrange multipli-

ers. Correspondingly, the vector of all Lagrange multipliers λ is of dimension
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18. Examination of eqn (57) in light of basic considerations of solvability re-

veals that material derivatives of kinetic energy plus gravitational potential

and of entity measures for the w and ws entities cannot be eliminated for any

set of non-zero Lagrange multipliers. Elimination of these five material deriva-

tives from consideration yields a linear system of 18 equations in 18 unknown

Lagrange multipliers, which can be written as




1 0
(
K ι

E + ψι − (vι·vι)
2

)
−µι

0 1 vι 0

0 0 1 1

0 0 0 −θι








λι
M

λι
P

λι
E

λι
T





=





0

0

0

−1





(65)

where the rows of the matrix are formed, in order, by collecting coefficients of

the material derivatives of mass density, momentum density, internal energy

density, and entropy. We have compressed the three momentum terms and the

set of entities for each quantity to a single line, noting that these equations

are of a similar form.

In light of the upper triangular form of the coefficient matrix in eqn (65), this

equation may be readily solved for the Lagrange multipliers to obtain





λι
M

λι
P

λι
E

λι
T





=
1

θι





(
K ι

E + µι + ψι − (vι·vι)
2

)

vι

−1

1





, for ι ∈ I (66)

Substitution of these results into eqn (57), yields a constrained entropy in-

equality (CEI) of the form
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∑

ι∈I


S ι

D +
1

θι


K ι

E + µι + ψι −

(
vι·vι

)

2


Mι

D




+
∑

ι∈I


vι

θι
·P ι

D − 1

θι


ειρι

Dι
(
K ι

E + ψι
)

Dt
+ E ι

D






+
1

θw

(
pw Dwεw

Dt
+ T w

r

)
+

T s
r

θs
− 1

θws

(
γws Dwsεws

Dt
− T ws

r

)
= Λ ≥ 0 (67)

Five macroscale material derivatives remain in this expression as well as several

material derivatives within averaging operators associated with the expres-

sions for the averaged thermodynamics. These remaining material derivatives

and the velocities are all referenced to a common frame to lead to a form

that will satisfy the continuum mechanical axiom of objectivity. We select the

macroscale, mass-averaged solid-phase velocity, vs, as the reference velocity.

Stating the equation in terms of objective quantities, applying averaging the-

orems [18, 25], and algebraic rearrangement to group in flux-force pairs as

described in §5.3 yields

−∇·


εw


ϕw − qw

θw




−∇·


εws


ϕws − qws

θws






−∇·



ε

sϕs − 1

θs


εsqs −

〈(
ts − σs:

Cs

js
I

)
·
(
vs − vs

)〉

Ωs,Ω







−
∑

ι∈Ip



ε

ιbι − 1

θι


ειhι +

〈
ηι

Ds
(
θι − θι

)

Dt

〉

Ωι,Ω




− 1

θι

〈
ρι

Ds
(
µι + ψι − µι −K ι

E − ψι
)

Dt

〉

Ωι,Ω





−εwsbws +
1

θws


εwshws +

〈
ηws

D′s
(
θws − θws

)

Dt

〉

Ωws,Ω




+
1

θws

〈
ρws

D′s
(
µws + ψws − µws −Kws

E − ψws
)

Dt

〉

Ωws,Ω

+
εw

θw

(
tw + pwI

)
:dw +

εs

θs

(
ts − ts

)
:ds
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+
εws

θws

(
tws − γwsI

)
:dws +

εwqw

(
θw
)2 ·∇θw +

εwsqws

(
θws

)2 ·∇θws

+
1

(
θs
)2


εsqs −

〈(
ts − σs:

Cs

js
I

)
·
(
vs − vs

)〉

Ωs,Ω


 ·∇θs

−
∑

ι∈Ip

ws→ι

M
1

θws

[(
µι +K ι

E + ψι
)
−
(
µws +Kws

E + ψws
)]

− 1

θs

〈[
ns · ts·ns − σs:

Cs

js

]
ns · (vs − vws)

〉

Ωws,Ω

+
∑

ι∈Ip





ws→ι

Q +


 Eι

ειρι
− µι


 ws→ι

M

+vι,s·
[

ws→ι

T +

(
vι,s − vws,s

2

)
ws→ι

M

]


(
1

θι
− 1

θws

)

− 1

θw





ws→w

T +

(
vw,s − vws,s

2

)
ws→w

M + εwρwgw

+εwρw∇
(
ψw + µw +Kw

E

)
−∇ (εwpw) + ηw∇θw



·vw,s

+
1

θws




∑

ι∈Ip

[
ws→ι

T +

(
vι,s − vws,s

2

)
ws→ι

M

]
− εwsρwsgws

−εwsρws∇
(
µws +Kws

E + ψws
)
− ηws∇θws −∇ (εwsγws)



·vws,s

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωws,Ω

+
1

θs
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∇·ts −∇σs:

Cs

js

]
·
(
vs − vs

)〉

Ωs,Ω

− 1

θws

〈
[pw + ns · ts·ns + γws∇′·ns − ρwsgws·ns]

(
vws − vs

)
·ns

〉
Ωws,Ω

−
〈
pw

(
vws − vs

)
·ns

〉
Ωws,Ω

(
1

θw
− 1

θws

)

−
〈
ns · ts·ns

(
vws − vs

)
·ns

〉
Ωws,Ω

(
1

θs
− 1

θws

)

+
1

θws

[
∇·
〈
nsns ·

(
vws − vs

)
γws

〉
Ωws,Ω

+ 〈nsnsγws〉Ωws,Ω:ds
]

+
1

θws
∇θws·

〈
nwnw ·

(
vws − vs

)
ηws

〉
Ωws,Ω

+
1

θws
∇
(
µws +Kws

E + ψws
)
·
〈
nwnw ·

(
vws − vs

)
ρws

〉
Ωws,Ω

= Λ ≥ 0

(68)
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Eqn (68) is the form of the CEI that we obtain by rearranging terms in an

effort to obtain groupings that correspond to the form of eqn (56). Although

many of the terms are in the needed form of a product for which each factor

is zero at equilibrium, some of the terms must be rearranged further. The

form of eqn (68) is impacted by the choice of the microscale thermodynamic

functional dependence, a choice which is reasonable but not unique. No math-

ematical approximations have been employed in obtaining this equation from

eqn (57). This is an important equation, because it provides a starting point

for the formulation of a range of complete closed models for single-phase flow.

The steps taken from here to obtain those models require approximations ap-

propriate for the physical system under consideration and may take different

forms depending on the approximations employed.

8 Simplified Entropy Inequality

Our goal is to produce a simplified EI (SEI) from the CEI that can be used to

guide the formulation of closed models. We emphasize that the steps needed to

derive the SEI from the CEI are approximate in nature. If better approxima-

tions become available, or should an exact relation be derived for a particular

system, alternatives to the approximations used here may be employed to

produce the SEI.

Although many of the terms in eqn (68) are grouped into force-flux pairs, some

terms are not yet in this form. The first three groups in the equation require

special attention and will be dealt with in due course. Of particular note in

obtaining an equation with force-flux pairs are the terms in the averaging

operators that involve integrals of nwnw. Since these terms are related to
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the orientation of the ws interface, we refer to them collectively as geometric

terms.

We define the geometric tensor for the ws interface, Gws, as

εwsGws = 〈Gws〉Ωws,Ω = 〈nwnw〉Ωws,Ω (69)

For a single-phase system, Gws is a descriptor of the orientation of the solid

grains. When the orientation of the surface of the solid grains is random, Gws =

I/3. When the principal directions of solid grain orientation are aligned with

the coordinate system, Gws is a diagonal tensor. The trace of the geometric

tensor, denoted Tr(Gws), is equal to 1 and is an invariant of Gws. Knowledge

of the microscale is sufficient to compute Gws without error and thereby test

the macroscale models derived from this theory.

In general, Gws appears within averaging operators as a product involving

other terms. As a first approximation, we will assume that these product

terms are independent, such that the orientation of the interface does not

depend upon interfacial tension or velocities. Applying these approximations

and similar product-splitting integral approximations, and relating changes in

εs to changes in εws, we reduce the CEI to an SEI of the form

−∇·

εw


ϕw − qw

θw




−∇·


εws
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θws




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−∇·


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·
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





−
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

ε

ιbι − 1

θι


ειhι +

〈
ηι

Ds
(
θι − θι

)

Dt

〉

Ωι,Ω




− 1

θι

〈
ρι

Ds
(
µι + ψι − µι −K ι

E − ψι
)

Dt

〉

Ωι,Ω





36



−εwsbws +
1

θws


εwshws +

〈
ηws

D′s
(
θws − θws

)

Dt

〉

Ωws,Ω




+
1

θws

〈
ρws

D′s
(
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)

Dt

〉

Ωws,Ω

+
εw

θw

(
tw + pwI

)
:dw +

εs
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(
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)
:ds
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εws

θws

[
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]
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(
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)2 ·∇θw +
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(
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+
1
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js
I

)
·
(
vs − vs

)〉

Ωs,Ω


 ·∇θs
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

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− 1
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



ws→w

T +

(
vw,s − vws,s

2

)
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M + εwρwgw

+εwρw∇
(
ψw + µw +Kw

E

)
−∇ (εwpw) + ηw∇θw



·vw,s

+
1

θws




∑

ι∈Ip

[
ws→ι

T +

(
vι,s − vws,s

2

)
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M

]
− εwsρwsgws

−εwsρws (I − Gws) ·∇
(
µws +Kws

E + ψws
)

−ηws (I − Gws) ·∇θws −∇· [εwsγws (I − Gws)]



·vws,s

− 1

θws
〈pw + ns · ts·ns + γws∇′·ns − ρwsgws·ns〉Ωws,Ωws

Dsεs

Dt

+





ws→w

Q +


 Ew

εwρw
− µw


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M + vw,s·
[
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T +

(
vw,s − vws,s

2

)
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M

]

−〈pw〉Ωws,Ωws

Dsεs

Dt





(
1

θw
− 1

θws

)

+





ws→s

Q +


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εsρs
− µs


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Dsεs
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−
〈

σs

ρs
:
Cs

js
− 1

ρs
ns · ts·ns

〉

Ωws,Ωws

ws→s

M





(
1

θs
− 1

θws

)

− 1

θs

〈
ns · ts·I′·

(
vs − vs

)〉
Ωws,Ω

+
1

θs

〈(
∇·ts −∇σs:

Cs

js

)
·
(
vs − vs

)〉

Ωs,Ω

= Λ ≥ 0 (70)

When we developed the EI, we noted the importance of obtaining a relation

between the entropy and other variables that appear in conservation equations.

Additionally, the entropy equation has a non-advective flux and a source term

that also need to be related to other variables that appear in the conservation

equations. In particular, the non-advective energy and heat fluxes need to be

related as do the entropy and energy source terms. To make this connection,

the systems of concern in this work are considered to be macroscopically sim-

ple, which we define as systems in which the relation between the entropy

and heat fluxes can be written without introduction of any new constitutive

variables and, similarly, the relation between the entropy and energy source

terms can be written without additional constitutive forms. The conditions

employed are based on eqn (70) but are also consistent with the identification

of simple systems at the microscale [e.g., 8, 13]. For macroscopically simple

systems, the entropy and heat fluxes are related by

ειϕι − 1

θι
ειqι = 0, for ι ∈ {w,ws} (71a)

and

εsϕs − 1

θs


εsqs −

〈(
ts − σs:

Cs

js
I

)
·
(
vs − vs

)〉

Ωs,Ω


 = 0 (71b)

If a more complex relationship is found necessary, the right side of these expres-

sions can be set to some non-zero constitutive function of the force variables

in the SEI.
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Similarly, we relate the energy and entropy source terms in consideration of

eqn (70) according to

ειbι− 1

θι


ειhι +

〈
ηι

Ds
(
θι − θι

)

Dt
+ ρι

Ds
(
µι + ψι − µι −K ι

E − ψι
)

Dt

〉

Ωι,Ω


 = 0

for ι ∈ Ip (72a)

and

εwsbws − 1

θws


εwshws +

〈
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D′s
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)

Dt

〉

Ωws,Ω

+

〈
ρws

D′s
(
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E − ψws
)

Dt

〉

Ωws,Ω


 = 0 (72b)

We now make a final set of approximations to simplify eqn (70). The last two

terms on the left side involve averages of products of microscale quantities for

which the factors are all zero at equilibrium. These terms all involve the solid

phase. We will assume that the solid-phase deformation is slow enough that

these expressions involve products of small terms that may be considered to

satisfy quasi-equilibrium conditions and be neglected even away from equi-

librium. With these conditions applied, the SEI takes the still rather general

form

εw
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:dw +
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= Λ ≥ 0 (73)

This equation has been arranged such that it is a sum of products of fluxes and

forces with the forces being the second term in each product. Knowledge that

the forces are zero at equilibrium comes from the definition of thermodynamic

equilibrium conditions summarized in eqns (44)–(51). The fluxes correspond-

ing to the forces are taken to be zero at equilibrium in this work; a detailed

analysis to confirm these conclusions could be undertaken, but we have not

done so.
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9 Closure Relation Approximations

The surviving terms in eqn (73) consist of products of thermodynamic fluxes

and forces that satisfy the conditions summarized in Postulate 1. Because all

forces and fluxes vanish at equilibrium, the non-negative property of Λ may

be exploited to obtain closed form approximations for the fluxes. The closure

relations are obtained by expressing the flux terms as functions of the forces.

Such approximations must yield non-negative quantities for the product of a

flux and its conjugate force, but the forms are not unique. They must, however,

be appropriate for the system under consideration and describe the physics of

interest and importance. For example, the zero-order approximation is that a

flux is identically zero at all locations in space and at all times. The simplest

linear approximation expresses a flux as a linear function of its conjugate

force. So-called cross-coupled flux approximations express the flux as a linear

function of all of the forces in the system. Higher order approximations are

necessary in some cases. Because the objective of this work is to demonstrate

the TCAT approach and lay an operational foundation upon which future

work can be built, we will assume a relatively simple form for the closure

relations—zero or first-order approximations for each flux as a function of only

its conjugate force with the approximation order relating to the phenomena

we wish to describe.

The flux-force combinations consisting of products of fluxes involving stress

tensors with rate of strain tensors dι as the conjugate forces are approximated

using a zero-order approximation. The fluxes are considered to be independent

of dι and therefore, to ensure that eqn (73) is satisfied for all independent

variations, these forces must be zero and the constitutive forms obtained are
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tw + pwI = 0 (74)

ts − ts = 0 (75)

tws − γws (I − Gws) = 0 (76)

These approximate closure relations amount to an assumption of macroscopi-

cally inviscid flow or flow where the rate of strain is negligible. In either case,

the flux-force combinations involving the rate of strain tensor do not produce

any entropy. This is assured because the terms multiplying the rate of strain

tensors are zero at all spatial locations and times. Relaxing this assumption,

such that the force vanishes only at equilibrium but may be non-zero away

from equilibrium, leads to an alternative constitutive form of the stress tensor

that will involve entropy production when the rate of strain is non-zero (i.e.,

away from equilibrium). In the simplest extension, the stress tensors could be

expressed as linear functions of the corresponding rates of strain. For some

systems, such an alternative formulation might be appropriate; but in most

instances, the stress tensor forms of eqns (74)–(76) describe the system well.

Next consider the terms involving qι, the heat flux vectors. At equilibrium

both this flux and its conjugate force must vanish for the inequality to hold.

A linear approximation for the closure relation of the flux is

qι = K̂
ι

q·∇θι, for ι ∈ {w,ws} (77a)

and for the solid phase

εsqs −
〈(

ts − σs:
Cs

js
I

)
·
(
vs − vs

)〉

Ωs,Ω

= εsK̂
s

q·∇θs (77b)

where the coefficients K̂
ι

q in these equations are second-rank, symmetric, posi-

tive semi-definite heat conduction tensors. The hat notation is used to denote

all model parameters. If an entity is isotropic, its heat conduction tensor is a
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scalar multiplying a unit tensor.

Closure approximations can be written for the mass exchange terms by ap-

proximating each mass exchange flux as linearly dependent upon its conjugate

force in the flux-force pair. This approximation yields

ws→w

M = k̂w
m

[(
µws +Kws

E + ψws
)
−
(
µw +Kw

E + ψw
)]

(78a)

and
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m



(
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)

−

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:
Cs

js
−
〈

1

ρs
ns · ts·ns

〉
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


 (78b)

where k̂w
m and k̂s

m are non-negative interfacial mass transfer parameters.

Next, consider the flux-force pair involving momentum transfer of the w phase

to the ws interface in the flux and vw,s as the force. The linearized force

expression is

ws→w

T +

(
vw,s − vws,s

2

)
ws→w

M + εwρwgw + εwρw∇
(
ψw + µw +Kw

E

)

−∇ (εwpw) + ηw∇θw = −R̂
w
·vw,s (79)

For momentum transfer to the ws entity a linear approximation can be for-

mulated from the flux that multiplies the force vws,s

∑

ι∈Ip

[
ws→ι

T +

(
vι,s − vws,s

2

)
ws→ι

M

]
− εwsρwsgws

−εwsρws (I − Gws) ·∇
(
µws +Kws

E + ψws
)

−ηws (I − Gws) ·∇θws −∇· [εwsγws (I − Gws)] = R̂
ws

·vws,s (80)

In these equations, R̂
w

and R̂
ws

are symmetric, positive semi-definite second-

rank momentum resistance tensors that simplify to scaled unit tensors under
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conditions of entity isotropy.

The material derivative of the solid-phase volume fraction is considered a force

term for a corresponding flux term that was shown to vanish at equilibrium.

Thus both terms vanish at equilibrium, and the linearized force is expressed

as

−〈pw + ns · ts·ns + γws∇′·ns − ρwsgws·ns〉Ωws,Ωws
= ĉ

Dsεs

Dt
(81)

where ĉ is a non-negative compressibility parameter.

Next we consider the energy exchange terms from the interface to each phase

involving forces multiplied by inverse temperature differences. The two energy

exchange expressions my be linearized in terms of their conjugate forces to

obtain

ws→w

Q +


 Ew

εwρw
− µw


 ws→w

M + vw,s·
[

ws→w

T +

(
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2

)
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M

]

−〈pw〉Ωws,Ωws

Dsεs
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q

(
1

θw
− 1

θws

)
(82)

and

ws→s

Q +


 Es

εsρs
− µs


 ws→s

M − 〈ns · ts·ns〉Ωws,Ωws

Dsεs

Dt

−
〈
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q

(
1

θs
− 1
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)
(83)

where k̂w
q and k̂s

q are non-negative interfacial heat transfer parameters.

10 Closed Model

The conservation equations given in §4 can be combined with the closure

relations given in §9 and some additional assumptions to derive closed models
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for single-phase flow. In the interest of clarity, we will note all assumptions

needed to arrive at the closed model in the present study. The model we

will derive is a simplified single-phase flow model that we will compare and

contrast with the traditional model used to describe such systems.

10.1 Model Assumptions

Assumptions in addition to those made previously in the derivation are re-

quired to obtain a closed, solvable model that describes macroscale transport

phenomena in a porous medium system. The forms and appropriateness of

these assumptions will depend upon the physical system of interest. All of the

assumptions are subject to revision if the model derived proves inadequate for

a particular system whose behavior is not consistent with the assumptions.

We summarize the assumptions made to this point and the assumptions we

will make going forward to derive the specific model of concern in this paper.

Assumption 1 (Deterministic Macroscale Averaging) A discrete macro-

scopic length scale exists such that all macroscale quantities of concern are well

defined and insensitive to the size of a single representative elementary volume

that applies for the deterministic models derived.

Assumption 1 is a standard assumption needed to produced deterministic

macroscale models based upon a clear separation of length scales. If a clear

separation of length scales does not exist, the fundamental averaging operators

and theorems relied upon in this work would need to be revisited.

Assumption 2 (Classical Irreversible Thermodynamics) Classical irre-

versible thermodynamics is applicable to the porous medium systems of interest
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in this work at the microscale.

Assumption 2 fulfills the need within the TCAT approach to choose a thermo-

dynamic approach. We believe the selection of CIT is reasonable. Additionally,

the assumption is made at the microscale, and the consequences of this choice

are rigorously established by averaging to the macroscale.

Assumption 3 (Simplified Entropy Inequality) The four approximations

used to produce the SEI are: (1) the geometric tensor is independent of entity

measures, densities, velocities, interfacial tension, and entropy, such that inte-

grals of products of these quantities may be split into products of integrals; (2)

changes in entity measures are not independent and can be approximated us-

ing averaging theorems; (3) the systems of concern are macroscopically simple;

and (4) terms involving products of microscale quantities where both factors

vanish at equilibrium are negligible if both factors are related to solid-phase

deformation.

Assumption 3 summarizes a set of conditions imposed to produce the SEI

upon which the closure relations are based. We believe this assumption is

a reasonable first approximation, and it is testable based upon microscale

simulations.

Assumption 4 (Conjugate, First-Order Closure) Valid closure relations

for fluxes can be derived from flux-force pairs in the SEI considering only con-

jugate forces and limiting the approximations to at most first-order Taylor

series approximations.

Assumption 4 is a statement of the approach used to develop approximate

closure relations used here to produce a closed model. Less restrictive alter-
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natives to this assumption exist and can be employed, as needed, to describe

certain systems (e.g., high velocity flow, systems in which coupled processes

are important).

Assumption 5 (Isothermal, Linear Compressibility) The system of con-

cern: is isothermal; has negligible interfacial effects; is void of mass exchange

between entities; is described by standard equations of state relating mass

densities to fluid pressures; has mass densities that have small spatial gra-

dients; has insignificant local and advective acceleration of momentum at the

macroscopic scale; contains a solid phase that is linearly compressible, elas-

tic, isotropic, only slightly deformed and solely as a result of a normal stress,

and primarily deformed in the vertical direction with small spatial gradients

in such deformations; has identical water phase pressures for both volume and

area averages; and has integral material derivative fluctuation terms relating

microscale and macroscale quantities and arising in the Gibbs-Duhem equation

that can be neglected.

Assumption 5 specifies a specific isothermal system for which a model is de-

sired. Several of the specific aspects of this assumption are related to the

behavior of the solid phase, and these aspects will be used to arrive at an ex-

pression for the solid phase stress tensor that supplements the closure relations

derived in §9.

10.2 Model Formulation

The purpose of this section is to produce a complete, closed, and solvable

model in terms of measurable parameters and macroscopic variables. The
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model is based upon the conservation equations given in §4, the closure rela-

tions given in §9, and the assumptions summarized in §10.1. The target model

can be viewed as a parallel to the traditional, isothermal single-phase flow

model that is standard in groundwater hydrology [e.g. 4, 11, 12, 14].

The steps involved in producing the target model include (1) specifying the

appropriate set of conservation equations, (2) substituting in the closure re-

lations previously developed, (3) applying Assumption 5, (4) determining the

additional closure relations needed, and (5) assembling the individual compo-

nents into a closed model. We detail these steps below.

Based upon this approach, the two conservation of mass equations for the

phase entities are of the form

Dι (ειρι)

Dt
= −ειρι∇·vι, for ι ∈ Ip (84)

The conservation of momentum equation for the w entity is

Dι
(
εwρwvw

)

Dt
= −εwρwvw∇·vw − R̂

w·vw,s − εwρw∇
(
ψw + µw

)
(85)

and for the s entity is

Dι
(
εsρsvs

)

Dt
= −εsρsvs∇·vs + ∇·

(
εsts

)
+ εsρsgs + εwρwgw

+εwρw∇
(
ψw + µw

)
−∇ (εwpw) + R̂

w·vw,s (86)

The mass and momentum equations for the ws interface are ignored as a result

of Assumption 5. Also as a result of this assumption, the local and advective

acceleration terms in the momentum equation can be ignored giving

R̂
w
·vw,s = −εwρw∇

(
ψw + µw

)
(87)
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and the solid-phase momentum equation

∇·
(
εsts

)
= −εsρsgs − εwρwgw

−εwρw∇
(
ψw + µw

)
+ ∇ (εwpw) − R̂

w·vw,s (88)

or

∇·
(
εsts

)
= −εsρsgs − εwρwgw + ∇ (εwpw) (89)

which can be written in terms of the total stress tensor

∇·tT = ∇·
(
εwtw + εsts

)
= −

(
εwρwgw + εsρsgs

)
(90)

Because the system is assumed to be isothermal, specification and closure of

the energy equations is not required. Model parameters will still depend upon

temperature, but the temperature will be assumed to be specified and constant

in space and time and identical for all entities.

At this point, the model consists of eight conservation equations, two for mass

and six for momentum, that must be solved for the 18 unknowns remaining in

the formulation: εw, εs, ρw, ρs,vw,vs, µw, pw and ts. The closure of this model

will be accomplished by: (1) using a constraint on the sum of volume fractions,

(2) relating mass densities to the fluid pressure through equations of state, (3)

using an approximation based upon the Gibbs-Duhem equation to relate the

fluid pressure to the chemical potential, and (4) approximating the solid-phase

stress tensor, which will be used to compute the solid-phase velocity. These

steps are summarized in turn.

The volume fraction constraint is

εw + εs = 1 (91)
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Eqn (84) for the w and s entities can be written using eqn (91) as

εw

ρw

∂ρw

∂t
+
∂εw

∂t
= −∇·

(
εwvw

)
− εw

ρw
vw·∇ρw (92)

and

(1 − εw)

ρs

∂ρs

∂t
− ∂εw

∂t
= −∇·vs + ∇·

(
εwvs

)
− (1 − εw)

ρs
vs·∇ρs (93)

Summation of these expansions and dropping the spatial gradients of density

as specified in Assumption 5 yields

εw

ρw

∂ρw

∂t
+

(1 − εw)

ρs

∂ρs

∂t
= −∇·

(
εwvw,s

)
−∇·vs (94)

Since the system being considered is isothermal and of uniform composition,

equations of state for density can be approximated as

1

ρw

∂ρs

∂pw
= β̂w (95)

and

− 1

ρs

∂ρs

∂
(
〈ns · ts·ns〉Ωws,Ωws

) = β̂s (96)

where β̂w and β̂s are compressibility parameters.

Combining eqns (94)–(96) and assuming deformation results from the normal

stress alone, we obtain:

[
εwβ̂w + (1 − εw) β̂s

] ∂pw

∂t
= −∇·

(
εwvw,s

)
−∇·vs (97)

Substitution of eqn (87) into eqn (97) gives

[
εwβ̂w + (1 − εw) β̂s

] ∂pw

∂t
= ∇·

[
ρwK̂·∇

(
ψw + µw

)]
−∇·vs (98)

where the hydraulic conductivity tensor is defined as

K̂ = (εw)
2
(
R̂

w)−1
(99)
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Application of the Gibbs-Duhem equation while ignoring the fluctuation inte-

gral terms arising from averaging from the microscale to the macroscale gives

[
εwβ̂w + (1 − εw) β̂s

] ∂pw

∂t
= ∇·

[
K̂·
(
∇pw + ρw∇ψw

)]
−∇·vs (100)

where the term inside the divergence operator is a consistent averaged form

of Darcy’s law [19]. Eqn (100) is nearly a result that can be compared with

the traditional model, except some additional information is needed regarding

∇·vs. Derivation of such an expression requires consideration of solid mechan-

ics.

Decompose the solid phase stress tensor into component parts

εsts = −εspsI + εsτ s (101)

where ps is a solid-phase pressure and τ s is an effective solid-phase stress

tensor.

Define the total pressure as

pT = εsps + εwpw (102)

and note that taking the Tr(tT) leads to

tT:I

3
= −pT +

εsτ s:I

3
(103)

Normalizing eqn (103) by
〈
ns · ts·ns

〉
Ωws,Ωws

yields

tT:I

3
〈
ns · ts·ns

〉
Ωws,Ωws

= − pT

〈
ns · ts·ns

〉
Ωws,Ωws

+
εsτ s:I

3
〈
ns · ts·ns

〉
Ωws,Ωws

(104)

The left hand side of this equation amounts to a ratio of forces. For the case

of small, slow deformations this ratio is 1 to a good approximation. The first
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term on the right hand side of eqn (104) is defined as the Biot coefficient, α̂,

giving

1 = α̂ +
εsτ s:I

3
〈
ns · ts·ns

〉
Ωws,Ωws

(105)

From Assumption 5 the solid is linear, elastic, and isotropic and subject to

small, slow deformations, which allows the effective solid phase stress tensor

to be written as

εsτ s =
ν̂ Ê

(1 − 2ν̂ ) (1 + ν̂ )
es:II +

Ê

1 + ν̂
es (106)

where es is an Eulerian strain tensor, ν̂ is Poisson’s ratio, and Ê is Young’s

modulus.

The trace of eqn (106) is

εsτ s:I =
Ê

(1 − 2ν̂)
es:I = 3K̂Tes:I (107)

which allows for

α̂ = 1 − K̂Tes:I

〈ns · ts·ns〉Ωws,Ωws

= 1 − K̂T

K̂S

(108)

where K̂T is the bulk modulus of the skeleton and K̂S is the bulk modulus of

the solid phase. The solid phase bulk modulus is equal to the inverse of the

solid compressibility such that

α̂ = 1 − K̂T

K̂S

= 1 − β̂sK̂T (109)

Combining results, we obtain the total stress tensor

tT = α̂〈ns · ts·ns〉Ωws,Ωws
I + εsτ s (110)

Since interfacial tension effects are negligible, changes in porosity are slow, and

the volume averaged pressure is assumed equal to the average of the pressure
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over the interfacial area then

tT = −α̂pwI +
ν̂ Ê

(1 − 2ν̂ ) (1 + ν̂ )
es:II +

Ê

1 + ν̂
es (111)

From Assumption 5, deformation is assumed to primarily occur in the vertical

dimension; and horizontal spatial gradients of this deformation are assumed

to be negligible. This allows for further simplification of the total stress tensor

to

tT = −α̂pwI +
ν̂ Ê

(1 − 2ν̂ ) (1 + ν̂ )
es

zzI +
Ê

1 + ν̂
es

zzkk (112)

Since deformation is primarily in the vertical dimension, eqn (112) can be

differentiated with respect to z and equated with the vertical component of

eqn (90) giving

∂(α̂pw)

∂z
−
∂
(
Êνe

s
zz

)

∂z
= −ρbg (113)

where

Êν =
(1 − ν̂) Ê

(1 − 2ν̂) (1 + ν̂)
= 3K̂T

1 − ν̂

1 + ν̂
(114)

the bulk density is

ρb = εwρw + εsρs (115)

and g is the magnitude of the gravitational acceleration, which acts in the −k

direction.

Integration of eqn (113) with respect to the vertical dimension, assuming ρb

is a constant, and differentiation of this expression with respect to time yields

∂es
zz

∂t
=

α̂

Êν

∂pw

∂t
(116)

We need to relate the time rate of change of the strain given by eqn (116) to

the divergence of solid-phase velocity to complete the closure of the model.
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Because of the small deformation assumption, the distinction between the

Eulerian and Lagrangian strains disappears [13]. With the assumption that the

spin tensor is small because of deformation primarily in the vertical direction,

then 〈
∂es

∂t

〉

Ωs,Ω

= 〈ds〉Ωs,Ω (117)

Application of the averaging theorems [18] to eqn (117) to convert the averages

of integrals to the integrals of averages gives

∂(εses)

∂t
−〈esvws·ns〉Ωws,Ω−

1

2

{
∇
(
εsvs

)
+
[
∇
(
εsvs

)]T}
=

1

2
〈nsvs + vsns〉Ωs,Ω

(118)

Dotting eqn (118) with I allows for

εs
∂es:I

∂t
− εs∇·vs = −es:I

∂εs

∂t
+ vs·∇εs + 〈[(es:I)vws + vs] ·ns〉Ωws,Ω (119)

Because of Assumption 5, including slow deformations with negligible spatial

gradients and interfacial effects, the terms on the right-hand-side of eqn (119)

are negligible. Also, since the dominant strain tensor term is in the vertical

dimension, we can write eqn (119) as

∂es
zz

∂t
−∇·vs = 0 (120)

Combining eqns (116) and (120) we obtain

α̂

Êν

∂pw

∂t
−∇·vs = 0 (121)

which may be used along with eqn (100) to yield a closed model for single-

phase flow

[
εwβ̂w + (1 − εw) β̂s +

α̂

Êν

]
∂pw

∂t
= ∇·

[
K̂·
(
∇pw + ρw∇ψw

)]
(122)

54



For the case in which the change in εw with time is neglected, this equation is a

closed model. It is also interesting to note that application of the Gibbs-Duhem

equation while recalling the stipulation that spatial gradients of density can

be neglected allows eqn (122) to be written as

[
εwβ̂w + (1 − εw) β̂s +

α̂

Êν

]
∂µw

∂t
= ∇·

[
K̂·∇

(
µw + ψw

)]
(123)

10.3 Model Comparison

The traditional single-phase groundwater flow model is [e.g. 4, 11, 12, 14]

Ŝs
∂H

∂t
= ∇·

(
K̂·∇H

)
(124)

where Ŝs is the specific storage parameter and H is the hydraulic head.

Eqn (122) can be transformed into an identical form as eqn (124) by express-

ing the combination of pressure head and gravitational potential as hydraulic

head and approximating the left hand side as the product of a single lumped

coefficient and temporal derivative of hydraulic head. Some additional ap-

proximations are involved in such a transformation, but these are part of the

derivation of the traditional model and the errors in these further approxima-

tions have been noted and bounded [11]. The direct correspondence between

eqn (123) and eqn (124) is also apparent when ψw is independent of time.

Under the conditions where the transformation applies, the specific storage

parameter relates to the parameters in equation eqn (122) as

Ŝs = ρwg

[
εwβ̂w + (1 − εw) β̂s +

α̂

Êν

]
(125)

Typically, the deformation of the solid grains is considered small relative to
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the deformation of the solid skeleton so that the Biot coefficient, α̂, is equal

to 1. In general α̂/Êν may be identified as the compressibility of the porous

medium. When α̂ = 1, the result here is consistent with standard formulations

[5].

It is comforting to arrive at a single-phase-flow model that is consistent with

the traditional model, since the traditional model has proven to be of sig-

nificant utility for solving many practical problems. However, eqn (122) does

have some advantages compared to the traditional model. First, eqn (122)

is expressed in terms of precisely defined variables that have been rigorously

connected to the microscale. Second, the many assumptions needed to arrive

at this model have been clearly expressed. Third, the foundation has been

laid to relax these assumptions and produce alternative models, which will be

needed to describe systems for which the assumptions made do not result in

sufficiently accurate models.

Consider the case of precisely described variables. Lacking such a definition,

it is impossible to rigorously couple microscale simulations or theory to the

macroscale or to design or interpret macroscale measurements that one can

be assured do not include an implicit source of error. As an example, it is

standard practice to average the traditional model over the vertical dimension.

If such averaging is not done with care in terms of rigorously defined quantities,

paradoxes can arise, as was shown in a recent analysis of Darcy’s law by [19].

Careful and complete specification of assumptions needed to arrive at a model

are an important prerequisite to appropriate application of that model. Since

models are simplifications of reality, it is crucial to understand the nature of

these simplifications in detail so that conditions for which the assumptions
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made are not applicable can be identified, hopefully a priori.

Having a foundation in place to relax assumptions and produce alternative

models is important as well. Such a foundation forms the basis for evaluating

errors made when assumptions are not met and provides a means to produce

more reliable descriptions of situations in which assumptions associated with

the traditional model are not appropriate.

11 Discussion

Three items warrant a brief discussion: (1) the general nature of the approach

developed and illustrated through this work, (2) specific extensions to this

work on modeling single-phase flow that are possible, and (3) some specific

considerations involved with the extension of this general approach to other

sorts of systems. We comment on each of these items in turn.

While the general steps involved in the TCAT approach were presented in

the first paper in this series [20], a primary objective of this work was to

detail the TCAT approach for a specific application. We chose a relatively

simple example for this demonstration so that the steps involved could be

clearly presented without getting lost in details. Aspects of this work that

are novel, and we believe important, include the selection of a microscale

thermodynamic theory and averaging of this theory to the macroscale; the

formulation of equilibrium conditions; the use of equilibrium conditions to

inform the EPP; the Lagrange multiplier approach used to constrain the EI;

the separation of the exact form of the CEI, given the thermodynamic basis

chosen, from the approximate form of the SEI; the resultant flux-force form
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of the SEI that corresponds to the equilibrium conditions and the EPP; and

the approach for producing a closed and solvable model. The general TCAT

approach, as well as the specific aspects of the application of this approach

shown in this work, can be extended to many other types of systems. Such

extensions include systems in which the composition of the phases is subject to

changes and multiple fluid phase systems, both with and without composition

effects. Future work in this series will focus on producing hierarchies of models

for these other classes of applications.

The class of problems considered, single-phase flow, is relatively simple and

the specific closed model developed is an especially simple instance of a model

from this class. A strength of the TCAT approach is that a complete, explicit

list of assumptions needed to produce this model instance is available and as

are the means to produce alternative models based upon a different or relaxed

set of assumptions. Even within this relatively simple class of models, many

other model instances are possible. Rather than attempt to detail a long list

of such model instances, we will consider the explicit assumptions made in

arriving at the specific closed model formulated in this work and comment on

the consequences arising from alternative choices that could me made for each

of these assumptions.

Assumption 1 requires a clear separation of length scales that may not ex-

ist for many natural systems. The models derived based upon this assump-

tion are deterministic in form. Many would view this as a reasonable starting

point for fundamental work of this sort. The extension of these models to a

stochastic form follows naturally from the resultant deterministic models by

allowing for macroscale parameters and auxiliary conditions to be stochastic

in nature while the model form is consistent with the deterministic form; this
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is a commonly used approach. However as an alternative to this, the single

REV assumption could be relaxed to include REV’s that vary as a function of

quantity being considered or even to the stochastic case where averaging from

the microscale is considered in a stochastic sense. Both of these approaches

warrant additional consideration.

Assumption 2 was needed to connect the conservation equations to the en-

tropy inequality. The approach taken in this work represents the first example

of macroscale model formulation and closure based upon microscale thermo-

dynamics that was averaged to the macroscale. A result of this approach is

explicit expressions for fluctuation quantities neglected in standard models

such that the importance of these terms can be assessed. Alternative ther-

modynamic approaches exist, and some of these approaches were reviewed

previously [20]. For cases in which CIT must be extended such that ther-

modynamics are consistent with observations, that extended thermodynamic

approach can be incorporated into the present framework at the microscale

and then averaged to the macroscale. The averaging of such a framework to

the macroscale would follow a similar approach to that used here.

Assumption 3 was made to simplify the geometric aspects of the SEI and

ultimately influenced the form of the closure relations. Because interfacial

effects were later neglected, this assumption is of minimal importance for the

specific model produced in this work. If one wished to advance models that

included interfacial effects, a closer examination of this assumption would be

warranted. Geometric assumptions are expected to occur for more complex

systems as well and to be of relatively greater importance in multiple fluid

phases cases especially when interface dynamics influence system behavior.

This assumption also included the macroscale simple system requirement. If
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this turns out to be an invalid assumption in certain situations, then closure

approximations could be developed using approaches similar to those used

for the force-flux pairs. Finally, cases in which large deformations of the solid

phase occur would require reexamination of the assumption that the solid

phase is in a quasi-equlibrium state, which allowed us to drop the higher

order product terms associated with solid deformation.

Assumption 4 is known to be an approximation that does not hold in general.

For example, fluxes are well-known to depend on forces in addition to their

conjugate forces. This dependence can be observed explicitly from the SEI

that was derived. The assumption of a low-order approximation is also well-

known to be overly restrictive in certain cases. For example, the literature is

replete with observations of flows that are not well described by Darcy’s law,

and alternative models have been developed and evaluated using experimental

and microscale simulation approaches. Many unresolved issues remain for both

of these extensions to the uncoupled, low-order theory used in this work.

Assumption 5 is an explicit statement of a very simple single-phase-flow case,

yet it is consistent with a model traditionally used in practice. Relaxing some

of these assumptions would be necessary to describe systems for which signifi-

cant consolidation occurs. Further, fluid flow in non-isothermal porous medium

systems is an area of active research with many unresolved questions. Both

consolidation and non-isothermal systems warrant further consideration and

the approach developed in this work provides a framework for obtaining im-

proved descriptions of these processes.

Finally, the TCAT approach can be used to formulate models that are signifi-

cantly more complicated than the single-phase-flow model. These models may
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include not only the extensions noted above, but also cases in which multiple

fluid phases are considered. For such cases, the role of interfaces will become in-

creasingly important and these entities will need to be considered to represent

most systems of concern. More complex systems will also lead to a need for

nonlinear closure relations. Development of these relations at the macroscale

can be aided by microscale analyses that is averaged to the macroscale. The

explicit relations between microscale and macroscale variables makes TCAT a

useful framework for interrelating microscale and macroscale experiments and

theory.

12 Conclusions

This work details the elements of the TCAT approach for constructing models

of multiphase porous medium systems. Novel aspects of this work include the

rigorous treatment of thermodynamics, the development and use of equilib-

rium conditions to guide the formulation of a simplified entropy inequality,

and the use of a concise Lagrange multiplier approach to connect the conser-

vation equations to the entropy inequality. A clear separation of exact results

from approximations, which are both needed to produced closed models and

explicitly annotated, is included.

The TCAT approach is combined with a set of assumptions needed to produce

a model that is similar to the traditional single-phase-flow model. However,

the resultant model is defined in terms of precise quantities that are firmly

connected to the microscale. The path forward from this simple model to more

complex cases is discussed and arises directly from the formulation. Potential

single-phase-flow extensions that could be considered are detailed and include
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systems for which consolidation is important, non-isothermal systems, and

systems for which cross-coupling and non-Darcy flow regimes are of interest.

The TCAT approach can be applied to more complicated systems involving

multiple fluid phases and multiple species. While the general TCAT approach

will be similar for these systems, some important differences are noted. Specif-

ically, interfacial effects will be important and a reliance will be made on mi-

croscale analysis to produce the specific form of closure relations needed to

yield closed, solvable models.
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