Introduction to Percolation
N Giordano -- Purdue University

• What is percolation?
• The percolation threshold - connection with phase transitions and critical phenomena
• Fractals and fractal scaling
 ➤ upscaling from small to large scales
• Properties
 ➤ conductivity
 ➤ fluid flow
 ➤ strength
• Open issues

[Recommended reference: Introduction to Percolation Theory, by Stauffer and Aharoni]
What is Percolation?

- Consider percolation on a lattice

 - Behavior depends on dimensionality (a lot) and lattice type (a little)
 - Can also consider continuum percolation (more realistic for us, but not covered in these lectures)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>square (2D)</td>
<td>honeycomb (2D)</td>
</tr>
</tbody>
</table>

July, 2006

Random media summer school
What is Percolation?

• Start with an empty lattice - then occupy sites at random

• Connected occupied sites form clusters

• Percolation is about the properties of these clusters -- size, connectivity, etc.
Consider connectivity across the lattice

- Connectivity depends on concentration of occupied sites $= \rho$
- Connectivity changes at $\rho_c \approx 0.59$ for site percolation on a square lattice

\[\rho = 0.40 \quad \rho = 0.60 \quad \rho = 0.80 \]
p_c is the “critical” concentration for percolation

- A “connectivity” phase transition occurs at $p_c \sim 0.59$
- A spanning cluster first appears at p_c
- Many properties are singular at p_c

$p = 0.40$ $p = 0.60$ $p = 0.80$
p_c depends on lattice type

- p_c is also different for site versus bond percolation

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Site</th>
<th>Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeycomb</td>
<td>0.6962</td>
<td>0.65271</td>
</tr>
<tr>
<td>Square</td>
<td>0.592746</td>
<td>0.50000</td>
</tr>
<tr>
<td>Triangular</td>
<td>0.50000</td>
<td>0.34729</td>
</tr>
<tr>
<td>Diamond</td>
<td>0.43</td>
<td>0.388</td>
</tr>
<tr>
<td>Simple cubic</td>
<td>0.3116</td>
<td>0.2488</td>
</tr>
<tr>
<td>BCC</td>
<td>0.246</td>
<td>0.1803</td>
</tr>
<tr>
<td>FCC</td>
<td>0.198</td>
<td>0.119</td>
</tr>
<tr>
<td>$d=4$ hypercubic</td>
<td>0.197</td>
<td>0.1601</td>
</tr>
<tr>
<td>$d=5$ hypercubic</td>
<td>0.141</td>
<td>0.1182</td>
</tr>
<tr>
<td>$d=6$ hypercubic</td>
<td>0.107</td>
<td>0.0942</td>
</tr>
<tr>
<td>$d=7$ hypercubic</td>
<td>0.089</td>
<td>0.0787</td>
</tr>
</tbody>
</table>
Why is p_c special?

• Consider the forest fire problem
• Each occupied site is a tree
• Start a fire at one site or on one edge
• How long does it take for a fire to burn out?
• How many trees are burned?

$p \approx p_c$
The burn-out time diverges at ρ_c!

- An example of singular behavior at the percolation transition
- Singularity is due to the connectivity of the infinite cluster at ρ_c
The spanning cluster is very tenuously connected

- The spanning cluster can be spoiled by removing only a few (1!) sites

\[p \approx p_c \]
Strange properties at ρ_c

- The spanning cluster is infinite (since it spans the system) but contains a vanishing fraction of the occupied sites!
- Forms a fractal
Focus on just the spanning (critical) cluster at ρ_c

- Remove all sites that are not part of the infinite cluster
- The spanning cluster contains large holes
- Need a way to describe the geometry of this cluster
Define the effective (fractal) dimensionality of a cluster

• Consider how the mass varies with r
• m varies as a power law:

$$m(r) \sim r^{d_f}$$

• $d \sim r^2$ for a "regular 2-D cluster"
• $d_f < 2$ for the spanning cluster at p_c
• \Rightarrow fractal cluster
fractal scaling

• mass (m) of largest cluster as a function of lattice size (L)

\[m \sim r^{d_f} \]

• \[d_f = \frac{91}{48} \approx 1.90 \]
What makes a fractal cluster different?

• Just having holes and cracks is not enough
• Presence of “holes” and “cracks” on all length scales

$p = 0.60$
Can construct regular fractals using recursive algorithms

- Called Sierpinski “gaskets”
- Useful for analytic theory
- For cluster (a) exact $d_f = \log 8 / \log 3 = 1.893$
Consider properties

- Size of largest connected cluster
 - relevant to oil extraction
- Conductivity near p_c
 - most theory for electrical conductivity
 - can also consider fluid “conductivity”
- Mechanical properties
 - rigidity (Young’s modulus)
 - sound propagation
Properties of infinite cluster above p_c

- fraction of sites in largest cluster
 \[F \sim (p - p_c)^\beta \quad \beta \sim 5/36 \text{ (2D)}, \, 0.41 \text{ (3D)} \]

- size of largest cluster
 \[s \sim (p - p_c)^\xi \]
 \[\xi \sim 4/3 \text{ (2D)}, \, 0.88 \text{ (3D)} \]
Conductivity vanishes at p_c

- Near p_c the conductivity vanishes as a power law

 \[\sigma \sim (p - p_c)^\mu \rightarrow 0 \text{ at } p_c \]

- $\mu = 1.30 \ (2D) \ 2.0 \ (3D)$
- different behavior than cluster properties

\[p_c \]
Scaling of the electrical conductivity with system size at p_c

$$\sigma \sim (L - L_c)^{\mu/\nu} \rightarrow 0 \text{ at } p_c$$

- Exponents are not independent
Elastic properties

- System can be “floppy” (shear modulus = 0) even above p_c

- “Rigidity” threshold can be above p_c!
- Bonding bending forces move transition back to p_c but behavior is still complicated
Behavior of elastic moduli above p_c

- with purely central forces (no bond bending) elastic constants go to zero above p_c
- with bond bending get crossover behavior
“First order”-like behavior

- $f =$ fraction of floppy modes
- in some cases f' is discontinuous -- a first order transition
Open issues

• Properties away from p_c may be of greatest interest
 ➤ we shouldn’t focus only on p_c

• Real systems may not be truly random
 ➤ must consider how they are made
 ➤ etching or erosion of a solid will have a different p_c than a randomly occupied system
 ➤ cracks “propagate” and spread
Summary

• Percolation is a type of phase transition
• Singular behavior at p_c
 ➢ characterized by critical exponents
 ➢ exponents depend on property and dimensionality
• Elastic properties very interesting
 ➢ can affect elastic moduli and sound propagation
• Real percolative media can be more complicated
 ➢ how system is produced affects geometry
References

• General reference:

• Rigidity percolation: