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Outline

Topic Main application

1. Ordinary differential equations (ODE) Reaction dynamics

2. Elliptic Partial differential equations (PDE) Steady state

single phase flow

or diffusive equilibrium

3. Parabolic Partial differential equations Tracer diffusion

4. Hyperbolic Partial differential equations Tracer transport



III. Parabolic Partial differential equations

(for tracer diffusion and unsteady single phase flow)



The Heat Equation

Recall the general conservation equation

ξt + ∇ · (ξv) = q,

and make the modeling assumption of Fickian diffusion, i.e., that

v = −(D/φ)∇c,

where

c(x, t) is the concentration of an immiscible tracer fluid in a bulk fluid

(mass/volume);

v(x, t) is the diffusive velocity of the tracer particles (length/time);

q(x, t) is an external source or sink of fluid (mass/volume/time);

φ(x, t) is the porosity of the medium, so ξ = φc;

D(x) is the diffusion coefficient (area/time).

Then we have the heat equation, which also models the diffusion of

tracer particles in a bulk fluid:

(φc)t −∇ · (D∇c) = q.

We call this a second order parabolic partial differential equation.



Boundary and Initial Conditions

We need to specify boundary and initial conditions (BC’s and IC’s).

The problem is to find concentration c such that







(φc)t −∇ · (D∇c) = q(x, t), in Ω, t > 0,

c(x, t) = cD(x, t), on ΓD, t > 0,

−(D∇c) · ν = f(x, t), on ΓN , t > 0,

c(x,0) = c0(x), on Ω.

Theorem. If D ≥ D∗ > 0 and φ ≥ φ∗ > 0 for some D∗ and φ∗, then this

initial-boundary value problem has a unique solution c for any

(reasonable) domain Ω, ΓD, and ΓN = ∂Ω \ ΓD, diffusion coefficient

D(x), and for any reasonable data q(x, t), cD(x, t), f(x, t), and c0(x).

Moreover, the solution depends continuously on the data. If we change

the data q, cD, f , and c0 and also D and φ a little, then the solution

changes only a little.



Steady State

Suppose that q, cD, f , and φ depend only on space (i.e., they do not

change with time). Then as time goes on, we should expect that the

system settles down to a steady state.

Theorem. If q, cD, and f depend only on space, then

ct −→ 0 and c(x, t) −→ c∞(x) as t −→ ∞,

where






−∇ · (D∇c∞) = q(x), in Ω,

c∞(x) = cD(x), on ΓD,

−(D∇c∞) · ν = f(x), on ΓN ,

provided that in the pure Neumann case, we satisfy the compatibility

condition.

Remark. Note that we get the same steady state for any φ and c0. In

particular, the initial concentration does not matter.



Separation of Variables—1

• Assume that the domain Ω is rectangular. For simplicity, take

Ω = (0, `) ⊂ R1 (i.e., 1-D in space).

• Assume that D and φ are constant.

We solve by separation of variables the problem with homogeneous

Dirichlet BC’s but a nontrivial IC:






φct −Dcxx = 0, 0 < x < `, t > 0,

c(0, t) = c(`, t) = 0, t > 0,

c(x,0) = c0(x), 0 < x < `.

Step 1, separate the variables. We look for solutions of the form

c(x, t) = X(x)T(t) =⇒
φ

D

T ′

T
=
X ′′

X
= −λ2

=⇒ X ′′ + λ2X = 0 and T ′ − λ2(D/φ)T = 0.

Step 2, solve for X. Note that X has two homogeneous BC’s:

X(0) = X(`) = 0 =⇒ X(x) = sin(λn), λn =
nπ

`
, n = 1,2,3, ....

Step 3, solve for T . T(t) = e−λ
2
nDt/φ.



Separation of Variables—2

Step 4, use superposition. We have derived infinitely many solutions,
which we sum

c(x, t) =
∞∑

n=1

cne
−λ2

nDt/φ sin(λnx), where λn =
nπ

`
.

Step 5, set the IC.

c0(x) =
∞∑

n=1

cn sin(λnx) =⇒ cn =
2

`

∫ `

0
c0(x) sin(nπx/`) dx.

Remark. The highly oscillatory sine waves (large n) decay away quickly,
leaving only the smoother components. For a given mode n, we have

• space scale 1/λn = O(1/n) (to resolve space, we need h = O(1/n),
• time scale φ/λ2

nD = O(1/n2) (to resolve time, we need ∆t = O(1/n2).

That is, the space and time scales are interrelated, and we need

∆t = O(h2),

Question: What does this say about the stability of explicit numerical
methods?



A Fundamental Solution

If D and φ are constant and Ω = Rd is all of space, then a fundamental

solution κ(x, t) for
{

φct −D∆c = q(x, t),

c(x,0) = c0(x),
solves

{

φκt −D∆κ = 0,

κ(x,0) = δ0(x).

The solution is the Gauss kernel

κ(x, y, z, t) =

(

φ

4Dπt

)d/2

e−(x2+y2+z2)φ/4Dt

(omit z in 2-D, y and z in 1-D).

The solution to the original problem is the sum of two convolutions

c(x, y, z, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
c0(X, Y,Z)κ(x−X, y − Y, z − Z, t) dX dY dZ

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ t

0
q(X, Y, Z, s)κ(x−X, y − Y, z − Z, t− s) ds dX dY dZ.

Question: Can you show that c indeed solves the problem?



Meaning of this Fundamental Solution

In spherical coordinates, r2 = x2 + y2 + z2 and

κ(r, t) =

(

φ

4Dπt

)d/2

e−φr
2/4Dt,

which is the evolution of a unit mass at the origin c0 = δ0.

-

6

r

c
+∞

t = 0

-

6

r

c

t > 0

M =
(

φ/4Dπt
)d/2

R

1
2M

• We see infinite speed of propagation, since the concentration is

positive everywhere in space for t > 0. (Bad!)

• The spreading is R(t):

Me−φR
2/4Dt = 1

2M =⇒ R(t) =
√

4 log2Dt/φ,

so the spreading in time is O
(√

Dt/φ
)

. This is a characteristic of the

Fickian diffusion model. (Good or bad?)



The Green’s Function

For general D, φ = φ(x, y, z) only, and Ω ⊂ Rd, the Green’s function for






φct −∇ ·D∇c = q(x, t), in Ω, t > 0,

c = 0, on ∂Ω, t > 0,

c(x,0) = c0(x), on Ω,

is G(x, y, z, X, Y, Z, t), the response of the system at (x, y, z) to an initial

unit mass at (X, Y, Z).

With all space derivatives taken in (x, y, z), G solves






φGt −∇ ·D∇G = 0, in Ω, t > 0,

G = 0, on ∂Ω, t > 0,

G(x, y, z, X, Y, Z, 0) = δX,Y,Z(x, y, z), on Ω.

Then the solution is

c(x, y, z, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
c0(X, Y, Z)G(x, y, z, X, Y, Z, t) dX dY dZ

+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ t

0
q(X, Y,Z, s)G(x, y, z, X, Y, Z, t− s) ds dX dY dZ.



Numerical Approximation



Basic Strategy

Treat time and space separately.

• Use finite differences in time for the time derivative. Let

0 = t0 < t1 < t2 < · · · ,

and, for simplicity, take uniform time steps ∆t = tn+1 − tn > 0.

• Use finite differences or finite elements in space for the space

derivatives as for the elliptic problem. Let h be the maximal grid

spacing.

• Approximate

c(xi, yj, zk, tn) ≈ cni,j,k.

For simplicity, we proceed using only 1 space dimension, a uniform grid,

constant φ and D, and we solve
{

φct −Dcxx = q, 0 < x < `, t > 0,

c(x,0) = c0(x), 0 < x < `,

where we have ignored BC’s, since they are handled at each time level

as in the elliptic case described before.



Forward Euler

We use forward Euler in time and finite differences in space for

simplicity. Then we have

φ
cn+1
i − cni

∆t
−D

cni+1 − 2cni + cni−1

h2
= qni = q(xi, t

n).

This is a simple explicit method,

cn+1
i =

(

1 − 2
D∆t

φh2

)

cni +
D∆t

φh2

(

cni+1 + cni−1

)

+
∆t

φ
qni ,

and the error is O(∆t+ h2).

Stability. Errors will grow unless we satisfy a stability constraint. We

must require that

D∆t

φh2
≤

1

2
⇐⇒ ∆t ≤

φh2

2D
.

We saw earlier the constraint ∆t = O(h2) was needed to resolve space

and time scales.

Remark. Since h is very small, ∆t must be incredibly small! In practice,

we almost always would need too many time steps to use this method

efficiently. We thus consider only implicit methods.



Semidiscrete Backward Euler

It is convenient to discuss discretization in time first, and then

discretization in space. An equation approximated in time, but not in

space, is said to be semidiscrete.

Backward Euler. We approximate the time derivative as

φ
cn − cn−1

∆t
−Dcnxx = qn.

Rearranging, we see that

φcn − ∆tDcnxx = φcn−1 + ∆tqn.

To solve, we march along in time, so we have computed cn−1 at this

stage, and it remains to compute cn. Note that cn is the solution to an

elliptic equation (with an extra term on the right involving no

derivatives).

We can apply any available technique for approximating this elliptic

equation, such as finite differences or finite elements.



Fully Discrete Backward Euler

Backward Euler and Vertex Finite Differences.

φ
cni − cn−1

i

∆t
−D

cni+1 − 2cni + cni−1

h2
= qni .

Backward Euler and Cell Centered Finite Differences.

Zni+1/2 = −D
cni+1 − cni

h
,

φ
cni − cn−1

i

∆t
+
Zni+1/2 − Zni−1/2

h
= qni .

Backward Euler and Finite Elements.

cn(x) =
∑

j

αnjϕj(x),

∫ `

0
φ
cn(x) − cn−1(x)

∆t
ϕi(x) dx+

∫ `

0
D
dcn(x)

dx

dϕi(x)

dx
dx

=

∫ `

0
qn(x)ϕi(x) dx.

Theorem. These methods reduce to solving a linear system, and they

are unconditionally stable and accurate to O(∆t+ h2).



The Theta Method—1

We have the single semidiscrete expression

φ
cn+1 − cn

∆t
−Dcn+θ

xx = qn+θ.

• If θ = 0, we have the explicit method Forward Euler.

• If θ = 1, we have the implicit method Backward Euler.

Idea. Interpret θ as a parameter, 0 ≤ θ ≤ 1, which represents the time

tn+θ = θ tn+1 + (1 − θ) tn

at which diffusion and q are evaluated.

We do not have c at this time, but Taylor’s theorem gives that

c(tn) = c(tn+θ) − c′(tn+θ) θ∆t + O(∆t2),

c(tn+1) = c(tn+θ) + c′(tn+θ) (1 − θ)∆t+ O(∆t2),

so

cn+θ = θcn + (1 − θ)cn−1 + c′(tn+θ) [(1 − θ)2 − θ2]∆t+ O(∆t2).

This is O(∆t) accurate, unless [(1 − θ)2 − θ2] = 0, i.e., θ = 1/2, which is

O(∆t2) accurate.



The Theta Method—2

The semidiscrete theta method. For 0 ≤ θ ≤ 1,

φ
cn+1 − cn

∆t
−D

[

θcn+1
xx + (1 − θ)cnxx

]

= qn+θ.

We can then apply finite differences or finite elements to the space

derivatives.

Theorem. The fully discrete theta method has accuracy O(∆t+ h2) for

θ 6= 1/2, but acuracy O(∆t2 + h2) for θ = 1/2. Moreover, the method is

unconditionally stable if θ ≥ 1/2, but for θ < 1/2, stability requires

∆t ≤
φh2

2(1 − 2θ)D
.

The optimal choice appears to be θ = 1/2, which we call the

Crank-Nicolson method.

Caution. Crank-Nicolson is accurate and stable for linear problems, but

only critically so, since θ = 1/2 divides O(∆t2) from O(∆t) accuracy,

and stable from unstable. Thus, it is not so effective for nonlinear

problems.



Crank-Nicolson

Crank-Nicolson and Vertex Finite Differences.

φ
cn+1
i − cni

∆t
−D

[

θ
cn+1
i+1 − 2cn+1

i + cn+1
i−1

h2
+(1− θ)

cni+1 − 2cni + cni−1

h2

]

= qn+θ
i .

Crank-Nicolson and Cell Centered Finite Differences.

Zn+1
i+1/2

= −D
cn+1
i+1 − cn+1

i

h
and Zni+1/2 = −D

cni+1 − cni

h
,

φ
cn+1
i − cni

∆t
+ θ

Zn+1
i+1/2

− Zn+1
i−1/2

h
+ (1 − θ)

Zni+1/2 − Zni−1/2

h
= qn+θ

i .

Crank-Nicolson and Finite Elements.

cn+1(x) =
∑

j

αn+1
j ϕj(x) and cn(x) =

∑

j

αnjϕj(x),

∫ `

0
φ
cn+1(x) − cn(x)

∆t
ϕi(x) dx+ θ

∫ `

0
D
dcn+1(x)

dx

dϕi(x)

dx
dx

+ (1 − θ)
∫ `

0
D
dcn(x)

dx

dϕi(x)

dx
dx =

∫ `

0
qn+θ(x)ϕi(x) dx.



IV. Hyperbolic Partial differential equations

(for tracer transport)



The Conservation Law

Recall the general conservation equation

ξt + ∇ · (ξv) = q,

where

C(x, t) is the concentration of a conservative tracer (mass/volume);

φ(x, t) is the porosity of the medium, so c = ξ = φC;

v(x, t) is the velocity of the tracer particles (length/time);

q(x, t) is an external source or sink of fluid (mass/volume/time).

In the absence of sources and sinks, we have the conservation Law for

the transport of tracer particles

ct + ∇ · (cv) = 0.

We call this a first order hyperbolic partial differential equation for c.,

given v. This is a complex equation, so we consider only 1-D in space:

ct + (cv)x = 0.



The Case of Constant Velocity

If v is constant, with an IC, we have

ct + vcx = 0, −∞ < x < ∞, t > 0,

c(x,0) = c0(x),

which is solved by

c(x, t) = c0(x− vt).

Question: Can you show this using the chain rule?

If v > 0, we have a wave traveling to the right, of fixed shape.

-

6

x

c

c0 c(x, t)
-t

-t

-t

Particles simply translate to the right with velocity v. We could have a

jump in the IC, which propagates as a contact discontinuity.



Inflow Boundary Conditions

On a domain 0 < x < `, we have only one BC. If v > 0 is constant, we

need to specify c on the inflow side x = 0, but not on the outflow side

x = `. That is,

ct + vcx = 0, 0 < x < `, t > 0,

c(0, t) = cI(t),

c(x,0) = c0(x),

which is solved by

c(x, t) =







c0(x− vt), x− vt ≥ 0,

cI(t− x/v), x− vt < 0.

Question: Can you show this?

0 `

-

6

x

c

c0

c(x, t)
-x

-x

-x

×

×

-x
“cI”

Particle enters

domain at x = 0

and some t > 0

and then

transports in

time.

Particles leave

the domain.



Characteristics

In a perfect world, tracer particles would simply travel along paths called

the characteristics of the equation. Given a starting position x, the path

would be (ξ(t), t), where

dξ

dt
= v(ξ(t), t), t > 0,

ξ(0) = x.

-

t

6

ξ(t)x
Space

Time

If there are no sources and sinks (i.e., ∇ · v = 0 or vx = 0 in 1-D), then

the concentration is constant along these space-time paths, since

dc(ξ(t), t)

dt
= ct + cxξt = ct + vcx = ct + (vc)x = 0.

If we know where the particle starts, we can simply follow it in time

along the characteristics.

Question: Is this correct? Could anything go wrong?



Characteristics for Constant Velocity

If v is constant, then






dξ

dt
= v, t > 0,

ξ(0) = x.
=⇒ ξ = x+ vt,

which are straight lines.

-

6
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Conclusion. If you know c0 and cI, you know the solution for all time.

We saw that in fact

c(x, t) =







c0(x− vt), x− vt ≥ 0,

cI(t− x/v), x− vt < 0.

Remark. Similar results hold in 3-D for v(x, t) (with ∇ · v = 0), though

the characteristic ξ may need to be approximated numerically.



The Nonlinear Burgers’ Equation

In practice, often v depends on c. For example, we have the Burgers’

equation

ct + c cx = 0 ⇐⇒ ct + (f(c))x = 0, where f(c) = 1
2 c

2.

Note that the velocity v(c) = c/2 increases as c increases.



The Riemann Problem

We consider the Riemann Problem

ct + (f(c))x = 0

c(x,0) =







cL, x < 0,

cR, x > 0,

for which the IC has just two values or states.

Burgers’ Equation. Since v = c/2, we have the characteristics

ξ(t) =







x+ cLt/2, x < 0,

x+ cRt/2, x > 0.



Rarefactions

Consider uL = 0 and uR = 1. Then the characteristics are

ξ(t) =







x, x < 0,

x+ t/2, x > 0.

-
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Space

Time

Question: What happens between the two sets of characteristics? Does
a vaccuum open up?

The solution will form a rarefaction wave, i.e., a spreading of the
solution to smooth out the mass distribution. It has the form

c(x, t) =







cL, x < f ′(cL) t,

γ(x/t), f ′(cL) t < x < f ′(cR) t,

cR, f ′(cR) t < x,

where f ′(γ(s)) = s. For Burgers’ equation, f ′(s) = s, so γ(x/t) = x/t.

-

6

x

c



Shocks and the Rankin-Hugoniot Speed

Consider uL = 1 and uR = 0. Then the characteristics are

ξ(t) =







x+ t/2, x < 0,

x, x > 0.

-
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Space

Time

Question: Does mass build up where the two sets of characteristics

collide?

The solution develops a shock wave, i.e., a discontinuity to maintain

mass conservation. The shock travels at the Rankin-Hugoniot speed σ:

σ =
f(cL) − f(cR)

cL − cR
and c(x, t) =







cL, x < s t,

cR, s t < x.

For Burgers’ equation, σ = 1/2.

-

6

x

c



Summary

Conservation laws (without diffusion) exhibit:

• Transport along the flow characteristic curves;

• Smooth spreading or rarefaction waves where characteristics diverge;

• Discontinuities that

• simply transport with the flow (a contact discontinuity),

• or form as shocks where characteristics collide.

Remark. If diffusion is present, discontinuities cannot form, but the

solution can be nearly discontinuous (i.e., they have steep or sharp

fronts).



Changes to the Concentration Variable—1

Burgers’ equation is

ct +
(
1
2 c

2
)

x
= 0,

Multiply through by 2c and set ξ = c2, to obtain that

2cct + 2 c
(
1
2 c

2
)

x
= 0 =⇒

(

c2
)

t
+
(
2
3 c

3
)

x
= 0

=⇒ ξt +
(
2
3 ξ

3/2
)

x
= 0.

This is a conservation law for ξ.

Question: Are these two equations essentially the same?



Changes to the Concentration Variable—2

Suppose a shock forms. With what speed does it travel?

σc =
1
2c

2
L − 1

2c
2
R

cL − cR
and σξ =

2
3ξ

3
L − 2

3ξ
3
R

ξL − ξR
= 1

2(cL + cR) = 2
3(ξ

2
L + ξL ξR + ξ2R)

= 2
3(c

4
L + c2L c

2
R + c4R).

We are conserving the wrong quantity, so it travels at the wrong speed!

Theorem. There are infinetly many solutions to a hyperbolic

conservation law. The physically relevant solution is the entropy

solution, which is

c = lim
ε→0

cε where cε,t + (fcε)x−εcxx︸ ︷︷ ︸
= 0.

diffusion

That is, the entropy solution is the one that is stable with respect to

random diffusive processes.

Remark. We always have some physical diffusion. However, it may be

very small and unresolved by a numerical method. Thus, the numerical

method must respect the complexity of the nearly hyperbolic equation.



Numerical Methods



Conservative Methods

We generally use a cell centered grid

- x
xi−2 xi−1 xi+1

x x x

xi
x

xi−1/2 xi+1/2

× ×
xi−5/2 xi−3/2 xi+3/2

× × ×

A locally conservative method for

ct + (f(c))x = 0

is a method such that

cn+1
i − cni

∆t
+
Fi+1/2 − Fi−1/2

h
= 0,

where the numerical flux Fi±1/2 ≈ f(c) at xi±1/2 needs to be defined.

A simple choice. The following implicit method is unstable!

cn+1
i − cni

∆t
+
f
(
1
2(c

n+1
i+1 + cn+1

i )
)

− f
(
1
2(c

n+1
i + cn+1

i−1 )
)

h
= 0.

Question: If v = f ′(c) > 0, which direction is the fluid going? Across the

point xi+1/2, what is the usual value of c?



Upstream Weighted Finite Differences

A simple stable and implicit finite difference approximation to

ct + (f(c))x = ct + f ′(c)cx = 0

is

cn+1
i − cni

∆t
+
f
(

cn+1
up,i+1/2

)

− f
(

cn+1
up,i−1/2

)

h
= 0,

wherein the concentration is upstream weighted, meaning that

cup,i+1/2 =







ci if vi+1/2 = f ′ > 0,

ci+1 if vi+1/2 = f ′ < 0.

xi
x

xi−1/2 xi+1/2

× ×

This is well defined unless f ′ is particularly nasty.

Theorem. The method is O(∆t+ h) accurate.

This is not a very accurate method, and we need to use small ∆t and h.

Question: Should we simply use explicit methods, then?



Numerical Diffusion

The upstream weighted finite difference method suffers from excessive

numerical diffusion. That is, it is stable because it smears sharp features

in the solution, so it does not achieve high resolution.

Example. A shock will be approximated like

- x

6c

True shock

Approximation



Godunov’s Method

Approximate c as a piecewise constant

6c

- x
xi−2 xi−1 xi xi+1

x x x x

x

x

x

x

xi−5/2 xi−3/2 xi−1/2 xi+1/2 xi+3/2

× × × × ×

Godunov’s method is explicit. One advances the solution by solving the

Riemann problem for left and right states at each grid line xi+1/2.

CFL stability constraint. We do not allow the characteristics from two

grid lines to interact, so we must limit the time step size. This

limitation is the Courant-Friedrichs-Lewy (CFL) constraint:

∆t ≤
h

max |v|
.

Theorem. If the CFL constraint is satisfied, then Godunov’s method is

well defined, stable, and has error O(∆t+ h). Moreover, it has minimal

numerical diffusion (it is the best of the locally conservative explicit

methods).



A Final Remark



Complex PDE’s are combinations of the Simple PDE’s

Convection-diffusion equation.

(φc)t
︸ ︷︷ ︸

+∇ · (cu)
︸ ︷︷ ︸

−∇ ·D∇c)
︸ ︷︷ ︸

= q.

Accumulation Transport Diffusion

• This equation is technically parabolic (accumulation plus diffusion).

• Normally D ≈ 0, so this equation is almost hyperbolic (accumulation

plus transport).

Richards’ equation.

θ(ψ)t
︸ ︷︷ ︸

−∇ ·K(ψ)∇ψ)
︸ ︷︷ ︸

+K(ψ)z
︸ ︷︷ ︸

= q.

Accumulation Diffusion Gravitational

“transport”

• This equation is parabolic when θ′ > 0 (unsaturated vadose zone).

• This equation is elliptic when θ′ = 0 (saturated zone).

• We say that this equation changes type from elliptic to parabolic at

the water table (interface between vadose and saturated zones).

• It happens that K(ψ) = 0 at the top of the vadose zone, where the

soil dries out completely, so we have degenerate diffusion.


