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Outline

Topic Main application

1. Ordinary differential equations (ODE) Reaction dynamics

2. Elliptic Partial differential equations (PDE) Steady state

single phase flow

or diffusive equilibrium

3. Parabolic Partial differential equations Tracer diffusion

4. Hyperbolic Partial differential equations Tracer transport



I. Ordinary Differential Equations (ODEs)

(for Reaction dynamics)



An Ordinary Differential Equation (ODE)

The problem is to find a function u(t) of a single independent variable t,

which we will call “time,” such that
{

u′ = f(u, t), t ≥ 0, (the equation)

u(0) = u0. (the initial condition)

The unknown function u and the data u0, and f could be vectors in R
d.

Then we have a system of first order equations







u′
1 = f1(u1, ...ud, t), t ≥ 0,

...

u′
d = fd(u1, ...ud, t),




u1(0) = u0,1,
...

ud(0) = u0,d.



Meaning

The time rate of change of u depends on the time t and the present

value of u, i.e., u(t), but not on the past history, nor on the future.

Graphically: For d = 1,
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slope = u′(τ) = f(u(τ), τ)

As an integral: For d = 1,

u(t) = u0 +

∫ t

0
f(u(τ), τ) dτ.



Examples



Example: Radionuclide Decay

Let u be the mass of a radioactive substance.

Modeling assumption: The rate of change of the mass is proportional to

the amount present. That is, for some λ > 0,

u′ = −λu.

Question: Why the negative sign?



Example: Radionuclide Decay Chains

Suppose we have the decay chain

Uranium-238 −→ Thorium-234

Let u1 be the amount of Uranium-238, decaying with constant λ1,

u2 be the amount of Thorium-234, decaying with constant λ2.

Then
{

u′
1 = −λ1u1,

u′
2 = λ1u1 − λ2u2,

or u′ = f(u),

where

u =

(
u1
u2

)
and f(u) =

(
−λ1u1

λ1u1 − λ2u2

)
= −

(
λ1 0
−λ1 λ2

)(
u1
u2

)
.

Question: Where does the Uranium-328 go?



Example: A Chemical Reaction

Suppose that

X is microbial biomass concentration,

C is a substrate concentration (food).

Single Monod kinetics:

dC

dt
= −kX

C

K + C
.

Note that the slope is negative, so C → 0 as t → ∞.

1. If C is large, then

dC

dt
≈ −kX.

and C decreases proportional to the number of microbes eating it.

2. If C is small, then

dC

dt
≈ −(k/K)XC,

and the decrease of C is inhibited because microbes cannot find it.

Question: Is the system complete? What is missing?



Linear Equations



Solution of a Single Linear Equation

If f(u) = −λu is linear, then the equation is called linear. Now

u′ = −λu,

or

u′

u
= −λ =⇒ d

dt
log |u| = −λ =⇒ log |u| = log |u0| − λt.

Thus, after exponentiating,

u(t) = u0e−λt.

Note that λ tells you how fast u decreases (or grows, if λ < 0).



Solution of Multiple Linear Equations

Now f(u) = −Au, where A is a d × d matrix, so

u′ = Au.

Suppose that A is diagonalizable. That is, there is a change of variables

v = Cu so that

CAC−1 = D =




λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 · · · 0 λd


 .

Then the λ’s are the eigenvalues of A, and

Cu′ = CAu =⇒ Cu′ = CAC−1Cu =⇒ v′ = Dv,

which breaks into

v′i = λivi =⇒ vi = v0,i eλit,

where v0 = Cu0. Thus

u(t) = C−1v.



Application to Radionuclide Decay—1

Uranium-238 −→ Thorium-234

f(u) = Au and A =

(
−λ1 0
λ1 −λ2

)
.

The eigenvalues of A are −λ1 and −λ2. For our change of variables

v = Cu, the eigenvectors of A form the columns of C−1:

C−1 =

(
λ2 − λ1 0

λ1 1

)
=⇒ C =

1

λ2 − λ1

(
1 0

−λ1 λ2 − λ1

)
.

Therefore

D = CAC−1 =

(
−λ1 0
0 −λ2

)
,

so

v1 = v0,1e−λ1t,

v2 = v0,2e−λ2t.



Application to Radionuclide Decay—2

Now the initial v is

v0 = Cu0 =
1

λ2 − λ1

(
u0,1

−λ1u0,1 + (λ2 − λ1)u0,2

)
,

so

v1 =
1

λ2 − λ1
u0,1e−λ1t,

v2 =
1

λ2 − λ1

(
− λ1u0,1 + (λ2 − λ1)u0,2

)
e−λ2t,

and, since u = C−1v,

u1 = u0,1e−λ1t,

u2 = u0,2e−λ2t +
λ1u0,1

λ2 − λ1

(
e−λ1t − e−λ2t

)

=
λ1u0,1

λ2 − λ1
e−λ1t +

(
u0,2 − λ1u0,1

λ2 − λ1

)
e−λ2t.

Time scales. Note that there are two time scales 1/λ1 and 1/λ2,

corresponding to the two eigenvalues of the matrix A.



Application to Radionuclide Decay—3

Half-life. The half-life is the time until half the substance decays away.

Thus

1/2 = e−λτ =⇒ τ = log(2)/λ.

For us
Uranium-238 Thorium-234

τ 4.5 × 109 years 24.5days

λ 1.54 × 10−9/ year 10.3/ year

1/λ 6.49 × 109 year 0.097 year

Thorium decay is almost instantaneous compared to Uranium! Thus

u2 ≈ λ1u0,1

λ2 − λ1
e−λ1t.



A General Nonlinear System

u′ = f(u)

Question: How do we deal with nonlinear functions?

Answer: We linearize using Taylor’s theorem!

u′ ≈ f(u0) + J(u − u0) =
(
f(u0) − Ju0

)
+ Ju,

where J is the Jacobian matrix (evaluated at u0),

Jij =
∂fi

∂uj
.

Rewriting in terms of v = u − u0 + J−1f(u0), this is

v′ ≈ Jv,

and the behavior is determined by the eigenvalues of J.

Remark. Now the eigenvalues change with time,

λi = λi(u, t),

so we only talk about the behavior for “a little while into the future.”



Some Theory



Lipschitz Continuity

Definition. The function f is said to be Lipschitz continuous if there is

some constant L ≥ 0 such that

‖f(u) − f(v)‖ ≤ L‖u − v‖
for all u,v ∈ Rd.

Lemma. If

∣∣∣∣∣
∂fi

∂uj

∣∣∣∣∣ ≤ C for all i and j, then f is Lipschitz.

For a single equation, we have

f(u) = f(v) + f ′(ξ)(u − v)

=⇒ |f(u) − f(v)| = |f ′(ξ)||u − v| ≤ max
ξ

|f ′(ξ)||u − v|,

so

L = max
ξ

|f ′(ξ)|.

Remark: Lipschitx continuous functions are continuous and have

bounded derivatives. However, we can have a few points where there is

no derivative, such as f(u) = |u|.



Existence and Uniqueness Theory

Theorem. If f is continuous in u and t, and Lipschitz in u, then the

system
{

u′ = f(u, t), t ≥ 0, (the equation)

u(0) = u0, (the initial condition)

has a unique solution.

Question: Is this enough? Do you want to know more about the ODE?



Integral Curves for a Single Equation

Plot the solution of u′ = f(u, t) for variuos u0:
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u(t)

A stable example. If u0 varies,

u(t) does not change too much.
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u(t)

An unstable example. If u0

varies, u(t) may change a lot!

Question: Why might u0 be in error?



Stability

Definition. The problem is stable, or has continuous dependence on the

data u0 and f , if there is some constant C ≥ 0 such that for any small

enough perturbations max
t

‖δ(t)‖ ≤ ε and ‖δ0‖ ≤ ε, the solution to

{
v′ = f(v, t) + δ(t), t ≥ 0,

v(0) = u0 + δ0,

satisfies

max
t

‖u(t) − v(t)‖ ≤ Cε.

That is, the magnitude of the difference between the solutions is

bounded by a (fixed) multiple of the magnitude of the differences of the

initial conditions and the slope functions.

More simply, if the data does not change much,

then neither does the solution.

Remark. Note that this is a critical property for numerical

approximation! This is also an important property for physical systems.

If this fails, we have chaos.



Autonomous Systems



Stationary Points

Definition. If f(u, t) = f(u) depends on u only (not on t explicitly, only

on t implicitly through u(t)), then the system is autonomous. Moreover,

if f(u0) = 0, then u0 is a stationary point (or a critical point) for the

autonomous system.

Lemma. If u0 is a stationary point, then u(t) = u0.

Question: Can you show this fact?

Definition. A stationary point v0 is stable if whenever u0 ≈ v0, then

u(t) ≈ v0 for all t > 0. More precisely, given ε > 0, there is δ > 0 such

that whenever ‖u0 − v0‖ < ε, max
t

‖u(t) − v0‖ < δ. A stationary point v0

is asymptotically stable if whenever u(t) − v0 is sufficiently small, then

lim
t→∞

u(t) = v0.

Remark. Unstable includes the case where some u0 stay close to v0 and

some do not (a “saddle-point” instability).



Example: Preditor-Prey—1

R is the number of prey (“rabbits”)

F is the number of preditors (“foxes”)

a is the net reproduction rate of R

b is the death rate of R per encounter with F

c is the net reproduction of F per R eaten (c < b)

d is the death rate of F in the absence of food (R)

The equations are

R′ = aR − bRF = R(a − bF),

F ′ = cRF − dF = F(cR − d).

The stationary points are

F = R = 0 and R = d/c, F = a/b.

Question: What does the case F = R = 0 mean?

Thus, in steady state, we would expect R = d/c and F = a/b. But is this

case stable? That is, how resilient is this natural system to

perturbations?



Linear Stability Analysis—1

For the linear problem u′ = Au, stationary points are those for which

Au = 0, such as u = 0.

Suppose that we have an eigenvector v0 such that the eigenvalue

λ0 = a + ib has positive real part a > 0. Then Av0 = λ0v0, so

v′ = Av and v(0) = εv0

is solved by

v(t) = εeλ0tv0,

since

v′ = εeλ0tλ0v0 = εeλ0tAv0 = A(εeλ0tv0) = Av.

No matter how small ε 6= 0 is, the solution grows with time, since

eλ0t = e(a+ib)t = eat(cos bt + i sin bt) −→ ∞.

Theorem. If A is invertible (so 0 is the only stationary point), then:

0 is a stable stationary point ⇐⇒ all eigenvalues have real part a ≤ 0,

0 is asymptotically stable ⇐⇒ all eigenvalues have real part a < 0.



Linear Stability Analysis—2

For the nonlinear problem u′ = f(u) with stationary point u0, we use

Taylor’s theorem

u′ ≈ f(u0) + J(u − u0) = J(u − u0),

Rewriting in terms of v = u − u0, this is

v′ ≈ Jv,

and the linear stability behavior is determined by the eigenvalues of the

Jacobian matrix J (evaluated at u0), where

Jij =
∂fi

∂uj
.

Remark. We call this linear stability analysis, since it is not quite the

same as analyzing the full stability of the nonlinear system. That is, the

higher order terms from the Taylor approximation can sometimes turn a

stationary point that looks stable into an unstable point.



Example: Preditor-Prey—2

R′ = aR − bRF = R(a − bF),

F ′ = cRF − dF = F(cR − d),

with stationary point R = d/c, F = a/b.

Linear stability analysis requires the Jacobian

J =
∂fi

∂uj
=




∂R(a − bF)

∂R

∂R(a − bF)

∂F
∂F(cR − d)

∂R

∂F(cR − d)

∂F


 =

(
a − bF −bR

cF cR − d

)
=

(
0 −bd

c
ac
b 0

)
.

The eigenvalues satisfy

λ2 + ad = 0 =⇒ λ = ±i
√

ad.

Hence the stationary point is stable (real part is 0), but not

asymptotically so.

Conclusion: The R and F populations oscillate around the stationary

configuration, never straying too far from it, but not converging to it.



Example: Preditor-Prey—3

The solution is periodic and looks something like
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F

R



Example: Preditor-Prey—4

R′ = aR − bRF = R(a − bF),

F ′ = cRF − dF = F(cR − d),

with stationary point R = 0, F = 0.

Now the Jacobian is

J =

(
a − bF −bR

cF cR − d

)
=

(
a 0
0 −d

)
.

The eigenvalues are a > 0 and −d < 0, so the stationary point is

unstable.

Conclusion: If R and F populations are very small but positive, the

populations may grow (i.e., they will not become extinct) in some cases.

Remark: In fact, if F = 0, R → ∞, and if R = 0, F → 0.

Question: Why is this obvious?



Numerical Approximation



The Euler Method
{

u′ = f(u, t), t ≥ 0,

u(0) = u0.

We discretize the time axis into small time steps

0 = t0 < t1 < t2 < · · ·
and appromimate

u(tn) ≈ un.

Taylor’s theorem implies

u(tn+1) = u(tn) + u′(tn)(tn+1 − tn) + Rn

= u(tn) + f(u(tn), tn) (tn+1 − tn) + Rn.

Dropping the remainder, we have

un+1 = un + f(un, tn) (tn+1 − tn), n = 0,1,2, ...,

where u0 is known. This is called Euler’s method.

Question: Why can we drop the remainder?



A Simple Variant of Euler’s Method

Without using vectors, Euler’s Method is




u1,n+1 = u1,n + f1(u1,n, u2,n, ..., ud,n, tn)(tn+1 − tn),

u2,n+1 = u2,n + f2(u1,n, u2,n, ..., ud,n, tn)(tn+1 − tn),
...

ud,n+1 = ud,n + fd(u1,n, u2,n, ..., ud,n, tn)(tn+1 − tn).

Note that we compute all new ui,n+1 using only the ui,n.

A “Gauss-Seidel” version of Euler’s Method is




u1,n+1 = u1,n + f1(u1,n, u2,n, ..., ud,n, tn)(tn+1 − tn),

u2,n+1 = u2,n + f2(u1,n+1, u2,n, ..., ud,n, tn)(tn+1 − tn),
...

ud,n+1 = ud,n + fd(u1,n+1, u2,n+1, ..., ud,n, tn)(tn+1 − tn).

We use the new values as soon as we have computed them.



Convergence and Big Oh Notation

Theorem. For Euler’s Method, if

∆t = max
n

(tn+1 − tn),

then there is C ≥ 0, depending on f , such that

max
n

‖u(tn) − un‖ ≤ C∆t.

Definition. We say that a function f(x) is big oh of x as x tends to 0

and write

f(x) = O(x)

if there is C ≥ 0 such that

lim
x→0

|f(x)|
|x| ≤ C.

Remark. Essentially, f(x) ≤ Cx. Thus Eulers method has error

max
n

‖u(tn) − un‖ = O(∆t),

which is first order accurate, meaning the power of ∆t is 1.

Question: Why would it be better if the power had been 2 or more?



Graphical View of Euler’s Method for a Single Equation

Consider a stable differential equation.
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Euler’s method is

un+1 = un + f(un, tn)(tn+1 − tn),

where f is the slope of u(t) (i.e.,

u′ = f). So we have

u1 = u0 + f0 (t1 − t0),

u2 = u1 + f1 (t2 − t1),

u3 = u2 + f2 (t3 − t2),
...

Question: Do you see why we need a stable differential equation?

Euler moves along the known slope each time step. We move off the

true trajectory (integral curve), but nearby trajectories are like the

correct one, so we maintain accuracy.



Euler’s Method for a Single Linear Equation

For the single linear equation

u′ = f(u) = λu,

we have the solution

u(t) = u0eλt.

This equation is stable only for λ ≤ 0 (so we assume this).

Suppose we use equal time steps ∆t = (tn+1 − tn). Then Euler becomes

un+1 = un + (λun)∆t

= (1 + λ∆t)un

= (1 + λ∆t)2un−1
...

= (1 + λ∆t)n+1u0.

That is, shifting the index n,

un = (1 + λ∆t)nu0.



Sources of Error in Euler’s Method

We have three sources of error:

1. discretization error (the error ≈ C∆t and ∆t 6= 0);

2. inaccurate data;

3. numerical rounding error (finite number of digits).

We saw 1 was OK (using exact data and no rounding error). But 2 and

3 can be serious!

Example: Suppose we have error only in u0. We get

vn = (1 + λ∆t)n(u0 + δ0) = un + (1 + λ∆t)nδ0.

The error

|(1 + λ∆t)nδ0| −→ ∞
grows if, and only if,

|(1 + λ∆t)n| > 1.

To be precise, let u0 = 0, δ0 = 10−12, λ = −10 and ∆t = 0.5. Then

u = 0 and un = (1 − 10 × 0.5)n × 10−12 = (−4)n × 10−12.

Note that 420 = 1.1 × 1012, so u20 = 1.1 6≈ 0, and u40 = 1.2 × 1012(!).

Thus the error completely hides the true solution u = 0 as n → ∞.



Linear Stability of Euler’s Method

Definition. A numerical method is stable if small errors in the data and

small rounding errors do not lead to large changes in the numerical

approximation.

Definition. We say that a numerical scheme for our single ODE is

linearly stable if it is stable for the equation u′ = λu, with λ < 0.

Theorem. For a single equation, Euler’s method is (linearly) stable if,

and only if, |(1 + λ∆t)| ≤ 1. That is,

−1 ≤ 1 + λ∆t ≤ 1 =⇒ 0 < ∆t ≤ 2

|λ|.

For multiple equations, we consider the linearized equation. We require

that all eigenvalues λi of the Jacobian matrix be negative, and require

that ∆t satisfy

0 < ∆t ≤ min
i

2

|λi|
=

2

maxi |λi|
.

So it is the maximal eigenvalue (i.e., shortest time scale) that

determines the choice of ∆t.



Example: Radionuclide Decay Chains Revisited

For the decay chain

u1 = Uranium-238 −→ u2 = Thorium-234

we have
{

u′
1 = −λ1u1,

u′
2 = λ1u1 − λ2u2,

or u′ = f(u),

where λ1 = 1.54 × 10−9/ year and λ2 = 10.3/ year.

Uranium only. To stably compute u1, we need

∆t ≤ 2

1.54 × 10−9
= 1.3 × 109 year.

The coupled system. To stably compute both, we need to find the

eigenvalues, which are −λ1 and −λ2. Thus we need

∆t ≤ 2

10.3
= 0.19 year!

Question: Can we compute this for millions of years? How many steps is

this?



The Backward Euler Method
{

u′ = f(u, t), t ≥ 0,

u(0) = u0.

Taylor’s theorem implies

u(tn) = u(tn+1) − u′(tn+1)(tn+1 − tn) + Rn+1)

= u(tn+1) − f(u(tn+1), tn+1) (tn+1 − tn) + Rn+1.

Dropping the remainder, we have the Backward Euler method.

(Forward) Euler:

un+1 = un + f(un, tn) (tn+1 − tn), n = 0,1,2, ....

This method is explicit, since we simply compute un+1.

Backward Euler:

un+1 = un + f(un+1, tn+1) (tn+1 − tn), n = 0,1,2, ....

This method is implicit, since we do not have a simple formula for un+1.

Question: How do we find un+1?



Solution of Backward Euler

Given un, tn, and tn+1, we need to find v = un+1 such that

F(v) = v − un − f(v, tn+1) (tn+1 − tn) = 0.

This is a root finding problem (to be discussed later). Basically, you find

the solution by iterating:

• You guess the solution v0 (v0 = un, perhaps);

• You use v0 to define a better guess v1;

• You use v1 to define a better guess v2;

• etcetera.

After some time vN−1 ≈ vN , so you stop and set vN ≈ un+1.

Backward Euler is computationally more expensive than forward Euler!

Theorem. For backward Euler, if

∆t = max
n

(tn+1 − tn),

then there is C ≥ 0, depending on f , such that

max
n

‖u(tn) − un‖ ≤ C∆t.

Note that backward Euler is not more accurate than forward Euler.

Question: So, why would anyone use backward Euler?



Backward Euler for a Single Linear Equation

For the single linear equation (recall stability requires that λ < 0)

u′ = f(u) = λu,

and equal time steps ∆t = (tn+1 − tn), backward Euler becomes

un+1 = un + (λun+1)∆t =⇒ (1 − λ∆t)un+1 = un

=⇒ un+1 =
1

1 − λ∆t
un,

so

un+1 =
1

1 − λ∆t
un

=
1

(1 − λ∆t)2
un−1

...

=
1

(1 − λ∆t)n+1
u0.

That is,

un =
1

(1 − λ∆t)n
u0.



Linear Stability of Backward Euler

Example: Suppose we have error only in u0. We get

vn =
1

(1 − λ∆t)n
(u0 + δ0) = un +

1

(1 − λ∆t)n
δ0.

Since λ < 0, the error
∣∣∣∣∣

1

(1 − λ∆t)n
δ0

∣∣∣∣∣ −→ 0

no matter what!

Theorem. Backward Euler is unconditionally (linearly) stable (i.e., it is

stable for any choice of ∆t).

Conclusions.

1. Forward Euler is easy to use and each time step is quick to compute,

but the method can suffer from stability problems (roundoff and

data errors can destroy the calculation) unless ∆t is small enough,

so we have to take lots of time steps.

2. Backward Euler is harder to use and more expensive per step, but it

does not have stability problems.

3. Thus, we would probably use forward Euler if we can afford to take

the very small ∆t required, and backward Euler otherwise.



Improved Accuracy via Smaller Time Steps

Both forward and backward Euler are first order accurate:

Error ≤ C∆t.

You can improve the accuracy of the computed solution by solving the

problem using, say, time step ∆t/c, where c is the “cut” factor.

First order accuracy. Assuming that Error ≈ C∆t, we have

Error∆t ≈ C∆t and Error∆t/c ≈ C∆t/c = (Error∆t)/c

That is, if we cut ∆t by c, the error is cut by c as well.

• If c = 2 (cut time step in half), then the error is also cut in half.

• To get one more decimal point (i.e., cut the error by c = 10), you use

step size ∆t/10, and take 10 times as many steps. So the

computation is about 10 times slower!



Improved Accuracy via Higher Order Methods

Higher order accuracy. Suppose that instead Error ≤ Cp∆tp. Then

p ∆t Error ∆t Error

1 1/2 C1/2 0.1 C1/10

2 1/2 C2/4 0.1 C2/100

3 1/2 C3/8 0.1 C3/1000

4 1/2 C4/16 0.1 C4/10000

If C1 ≈ C2 ≈ C3 ≈ C4, the errors improve as p increases (Cp may grow!).

Higher order accuracy and time step reduction. For a fixed p,

Error∆t ≈ Cp∆tp and Error∆t/c ≈ Cp(∆t/c)p = (Error∆t)/cp

So whatever Cp is, if we cut ∆t by c, the error is cut by cp:

p c New Extra c New Extra

Error Work Error Work

1 2 1/2 2 10 1/10 10

2 2 1/4 2
√

10 = 3.2 1/10 3.2

3 2 1/8 2 101/3 = 2.2 1/10 2.2

4 2 1/16 2 101/4 = 1.8 1/10 1.8

Conclusion. Higher order methods are more efficient.



Stiff ODE’s

Caution. The constant Cp in the error estimate

Error ≤ Cp∆tp

depends on the size of the pth order derivatives of the solution u:

Error ≤ C

{∫ T

0
‖u(p)‖2 dt

}1/2

∆tp.

Thus, it is useless to use a higher order method if

• u does not have a pth order derivative;

• or, the pth order derivative of u is very large.

Definition. A differential equation whose solution has large derivatives is

called stiff.

A stiff ODE requires a small ∆t to solve accurately, so it may be better

to use a lower order method for this type of ODE.



Runge-Kutta Methods

Euler’s Method is

un+1 = un + f(un, tn)∆t = (current solution) + (slope) × (time step)

We should try to improve the slope, by “sampling” more points. A class

of such methods are called Runge-Kutta Methods.

A popular method is called RK4.

Theorem. For RK4, if

∆t = max
n

(tn+1 − tn),

then there is C ≥ 0, depending on f , such that

max
n

‖u(tn) − un‖ ≤ C∆t4.

Moreover, the method is only conditionally stable (i.e., for ∆t

sufficiently small).

Question: Why do I not bother to state the stability condition precisely?

Remark. There is an implicit version of RK4 which is stable.



Standard Runge-Kutta 4 (RK4)
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tn+1/2 = (tn + tn+1)/2

Note how accurate this is!

y
un

y

ũn+1/2

y
ûn+1/2

yǔn+1

For RK4, we sample (slope)×∆t four times

k1 = f(un, tn)∆t ũn+1/2 = un + 1
2k1 (Euler to tn+1/2)

k2 = f(ũn+1/2, tn+1/2)∆t ûn+1/2 = un + 1
2k2 (Euler-like to tn+1/2)

k3 = f(ûn+1/2, tn+1/2)∆t ǔn+1 = un + k3 (Euler-like to tn+1)

k4 = f(ǔn+1, tn+1)∆t

and then set un+1 =
1

6

[
k1 + 2k2 + 2k3 + k4

]
.



Higher Order Ordinary Differential Equations



Conversion to a First Order System

Sometimes we have an rth order ODE like




y(r) = f
(
y, y′, y′′, ..., y(r−1), t

)
,

y(0) = y0, y′(0) = y1, ... , y(r−1)(0) = yr−1.

We can solve this by rewriting it as a system of first order equations

(and using the previous methods).

Let

u1 = y,

and define u2, u3, ... , ur by




u′
1 = u2 (u2 = y′),

u′
2 = u3 (u3 = y′′),

...

u′
r−1 = ur (ur = yr−1),

u′
r = f

(
u1,u2, u3, ..., ur−1, t

)
,

where the last equation is the ODE itself, and set initial conditions

u1(0) = y0, u2(0) = y1, ..., ur−1(0) = yr−1.



Software



Matlab ODE Solvers

Some ODE solvers from the matlab manual.

Problem Order of
Solver Type Accuracy When to Use

ode45 Nonstiff Medium Most of the time. This should be
the first solver you try.

ode23 Nonstiff Low For problems with crude error
tolerances or for solving
moderately stiff problems.

ode113 Nonstiff Low to
high

For problems with stringent error
tolerances or for solving
computationally intensive problems.

ode15s Stiff Low to
medium

If ode45 is slow because the
problem is stiff.

ode23t Moderately
Stiff

Low For moderately stiff problems if
you need a solution without
numerical damping.

Remark. Solver ode45 uses RK4 and RK5 to estimate the error and

adjust the time step to achieve a desired accuracy. Solver ode23 is

similar but uses RK2/RK3.



II. Elliptic Partial differential equations (PDE)

(for steady state single phase flow

or diffusive equilibrium)



Conservation of Continuous Fluids



The Divergence Theorem—1

Consider a vector field v in a rectangular region R of space.

R

x
y

x + ∆x

y + ∆y
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v

- v · ν = v1

6v · τ = v2

ν is the outer unit

normal vector to ∂R

The total flow through the boundary ∂R is

∫

∂R
v · ν dS =

∫ y+∆y

y

(
v1(x + ∆x, s) − v1(x, s)

)
ds

+

∫ x+∆x

x

(
v2(r, y + ∆y) − v2(r, y)

)
dr

=
∫ y+∆y

y

∫ x+∆x

x

∂v1(r, s)

∂x
dr ds +

∫ x+∆x

x

∫ y+∆y

y

∂v2(r, s)

∂y
ds dr

=
∫∫

R

(
∂v1(r, s)

∂x
+

∂v2(r, s)

∂y

)
dr ds.



The Divergence Theorem—2

Definition. In 3-D, let

∇ · v =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
=

d∑

i=1

∂vi

∂x

be the divergence of v (in 2-D, omit the partial derivative in z).

Theorem. ∫∫∫

R
∇ · v dx dy dz =

∫∫

∂R
v · ν dS.

We can fill any region with cubes and add the results above.

Theorem. For any region Ω with unit outer normal vector ν,
∫∫∫

Ω
∇ · v dx dy dz =

∫∫

∂Ω
v · ν dS.

Ω

w - ν



Conservative Fluid Flow

Suppose
ξ is a conserved quantity ξ (mass/volume)

v is the fluid velocity (length/time)

ξv is the flux of ξ (mass/area/time)

q is an external source or sink of fluid (mass/volume/time)

Within a region of space R, the total amount of ξ changes in time by

d

dt

∫∫∫

R
ξ dx dy dz

︸ ︷︷ ︸
= −

∫∫

∂R
ξv · ν dS

︸ ︷︷ ︸
+

∫∫∫

R
q dx dy dz

︸ ︷︷ ︸
Change in R Flow across ∂R Sources/sinks

=⇒ conservation locally on R
∫∫∫

R
ξt dx dy dz = −

∫∫∫

R
∇ · (ξv) dx dy dz

︸ ︷︷ ︸
+

∫∫∫

R
q dx dy dz

Divergence Theorem

This is true for each region R, so in fact

ξt + ∇ · (ξv) = q



Flow in Porous Media and
Elliptic Partial Differential Equations (PDE’s)



Darcy’s Law

Darcy’s law tells us that the fluid flux is

u = −K

µ
(∇p + ρg),

where
p(x, t) is the fluid pressure

u(x, t) is the Darcy velocity

K(x) is the permeability of the medium

µ is the fluid viscosity

ρ(x, t) is the fluid density

g is the gravitational constant vector

Remark. If we neglect gravity, Darcy’s law tells us that fluid flows from

high pressure to low pressure. We determine the direction of flow by

taking the gradient of the pressure, and multiplying by K/µ.

Question: Why does K need to be positive?



Single Phase Darcy Flow

Conservation and Darcy’s law requires that

∂φρ

∂t
+ ∇ · (ρu) = Q =⇒ ∂φρ

∂t
−∇ ·

(
ρ
K

µ
(∇p + ρg)

)
= Q.

where
p(x, t) is the fluid pressure

u(x, t) is the Darcy velocity (v = u/φ)

φ(x, t) is the porosity of the medium

K(x) is the permeability of the medium

µ is the fluid viscosity

ρ(x, t) is the fluid density (ξ = φρ)

g is the gravitational constant vector

Q(x, t) is the source/sink (i.e., wells)



Incompressible Single Phase Darcy Flow

If the fluid and medium are incompressible (ρ is constant and φ is

constant in time), and we neglect gravity (g = 0), then we have

∇ · u = q =⇒ −∇ · (k∇p) = q,

where
q(x) is Q(x)/ρ (assuming q does not change in time)

k(x) is K(x)/µ

In coordinate form, this is

− ∂

∂x

(
k

∂p

∂x

)
− ∂

∂y

(
k
∂p

∂y

)
− ∂

∂z

(
k
∂p

∂z

)
= q.

It is convenient to write a partial derivative using a subscript. Then we

have more simply

−(k px)x − (k py)y − (k pz)z = q.



Boundary Conditions (BC’s)

The equation holds in the interior of the porous formation, which we

call Ω ⊂ R
3. We must also specify what happens on the boundary, ∂Ω.

We consider two types of boundary conditions. Decompose ∂Ω into

nonoverlapping regions ΓD and ΓN (so ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅).

Ω

ΓN

w -

u · ν = f
ΓD

wp = pD

BB

BB

1. Dirichlet. Specify pD, the pressure on ΓD:

p = pD.

2. Neumann. Specify f , the outward normal flux on ΓN :

u · ν = f.

This is the fluid that enters or leaves the domain Ω. For example,

f = 0 for a sealed boundary which cannot support flow.

Remark. If pD = 0 and f = 0, the BC’s are said to be homogeneous.



Compatibility Condition

If ΓN = ∂Ω (i.e., ΓD = ∅), then we may have a conservation problem.

Recall the derivation. Within a region of space R, the total amount of

ξ = φρ is now constant in time, so

0 =
d

dt

∫∫∫

R
φρ dx

︸ ︷︷ ︸
= −

∫∫

∂R
ρu · ν da(x)

︸ ︷︷ ︸
+

∫∫∫

R
ρq dx

︸ ︷︷ ︸
Change in R Flow across ∂R Sources/sinks

If R = Ω, we must have
∫∫∫

Ω
q dx =

∫∫

∂Ω
u · ν da(x)

That is, the data must satisfy the compatibility condition

∫∫∫

Ω
q dx =

∫∫

∂Ω
f da(x) when ΓN = ∂Ω.

Remark. If you inject some fluid through f on the boundary or through

q in the interior, you must take it out somewhere else! This is basically

what it means to have an incompressible fluid and medium.

We will always assume that the compatibility condition holds in this case.

Question: Does the Dirichlet BC require a compatibility condition?



A Second Order Elliptic Boundary Value Problem

In summary, incompressible single phase flow is a second order elliptic

boundary value problem of the form




−∇ · (k∇p) = q, in Ω,

p = pD, on ΓD,

−(k∇p) · ν = f, on ΓN ,

which we may sometimes write as




u = −k∇p, in Ω,

∇ · u = q, in Ω,

p = pD, on ΓD,

u · ν = f, on ΓN .

Remark. If k is constant, we can divide it out of the equation. We then

have Poisson’s equation

∆p = ∇2p = ∇ · ∇p = −q/k

wherein we call ∆ = ∇2 = ∇ · ∇ the Laplacian.



Existance and Uniqueness of a Solution





−∇ · (k∇p) = q, in Ω,

p = pD, on ΓD,

−(k∇p) · ν = f, on ΓN ,

Theorem. If k ≥ k∗ > 0 for some k∗, then this boundary value problem

has a unique solution p and u for any (reasonable) Ω, ΓD, ΓN = ∂Ω \ΓD,

k, q, pD, and f . However, if ΓN = ∂Ω, we require the compatibility

condition on q and f , and uniqueness of p holds only up to a constant.

Remark. The PDE has many solutions, but only one satisfies the BC’s.

Remark. In the pure Neumann case, if p solves the full problem, so does

p + C, for any constant C. In other words, if p1 and p2 both solve the

problem, then p1 − p2 is a constant.



The Maximum Principle

Theorem (Maximum Principle). If q ≤ 0 in a region R, then there are no

local maxima inside R (maxima could exist on ∂R).

Proof. The case q = 0 is a bit tricky, but if q < 0, it is easy to see this.

Suppose that R ⊂ R
2 for simplicity. If we had a local maximum, the

derivatives are 0 and the curvature is negative at that point:

px = py = 0, pxx ≤ 0, and pyy ≤ 0.

But then

0 < −q = ∇ · (k∇p) = (kpx)x + (kpy)y = kxpx + kypy + k(pxx + pyy) ≤ 0,

a contradiction. �

Remark. Wells are local, so q = 0 most places. Thus we cannot have a

build-up of pressure at any point away from the wells. (If we did, fluid

would have to flow away from that point, reducing the pressure until it

was not a local maximum.)



Polar and Cylindrical Coordinates
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x = r cos θ

y = r sin θ
r =

√
x2 + y2

θ = tan−1(y/x)

The polar coordinate transformation in R2 is




r =

√
x2 + y2,

tan θ = y/x,
⇐⇒





x = r cos θ,

y = r sin θ,

with z = z being unchanged for cylindrical coordinates in R
3.

The Laplacian is

∆p = ∇2p = ∇ · ∇p =
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂p

∂θ
+

∂2p

∂z2
,

wherein the z derivatives are missing in R2.



A Single Well

Assume that

• The permeability k is constant.

• There is a single vertical well of

radius a.

• The domain is symmetric and

annular of outer radius b.

• The well maintains a fixed

pressure pa.

• The outer boundary maintains a

fixed pressure pb.

�
�
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�
�> r

θu

Well

Medium

a b

By symmetry, p = p(r) only. Thus, in cylindrical coordinates, we have




∂2p

∂r2
+

1

r

∂p

∂r
= 0, a < r < b,

p(a) = pa, p(b) = pb.

The solution is

p(r) = pa + (pb − pa)
log(r/a)

log(b/a)
.

We note that the pressure is logarithmically decaying.



Linearity

Our problem is linear, in the sense that for constants α and β,




∇ ·
(
k∇(αp1 + βp2)

)
= α∇ · (k∇p1) + β∇ · (k∇p2), in Ω,

(αp1 + βp2) = αp1 + βp2, on ΓD,(
k∇(αp1 + βp2)

)
· ν = α(k∇p1) · ν + β(k∇p2) · ν, on ΓN ,

That is, if




−∇ · (k∇p1) = q1 and −∇ · (k∇p2) = q2, in Ω,

p1 = pD,1 and p2 = pD,2, on ΓD,

(k∇p1) · ν = f1 and (k∇p2) · ν = f2, on ΓN ,

then if p = p1 + p2,




−∇ · (k∇p) = q1 + q2 = q, in Ω,

p = pD,1 + pD,2 = pD, on ΓD,

(k∇p) · ν = f1 + f2 = f, on ΓN ,

Superposition. A hard problem can sometimes be broken into multiple

simpler, solvable problems. If so, the full solution is the superposition

(i.e., sum) of the simpler solutions (e.g., p = p1 + p2).



Simple Example of Linearity
{

pxx + pyy = 2, 0 < x < a, 0 < y < b,

p(0, y) = p(a, y) = p(x,0) = p(x, b) = 0.

Easily p1(x, y) = x(x − a) solves
{

p1,xx + p1,yy = 2, 0 < x < a, 0 < y < b,

p1(0, y) = p1(a, y) = 0, p1(x,0) = p1(x, b) = x(x − a).

So we just need to solve
{

p2,xx + p2,yy = 0, 0 < x < a, 0 < y < b,

p2(0, y) = p2(a, y) = 0, p2(x,0) = −x(x − a), p2(x, b) = 0.

and
{

p3,xx + p3,yy = 0, 0 < x < a, 0 < y < b,

p3(0, y) = p3(a, y) = p3(x,0) = 0, p3(x, b) = −x(x − a).

and then our solution is

p(x, y) = x(x − a) + p2(x, y) + p3(x, y).

We can use separation of variables for p2 and p3.



Solution by Separation of Variables



Limitations on the Problem to be Solved

• For simplicity only, assume that Ω ⊂ R2 (i.e., everything is

independent of the third coordinate, so we can reduce the problem to

2-D).

• Assume that the domain Ω is a rectangle.

• Assume that k is constant (take k = 1).

Then we have −pxx − pyy = q.

Simple example. We take q = 0 and the BC’s:




pxx + pyy = 0, 0 < x < a, 0 < y < b,

p(a, y) = g(y),

p(0, y) = p(x,0) = p(x, b) = 0.

0

b

0 a

Ω

p = 0

p = 0

p = 0 p = gpxx + pyy = 0



Separation of Variables—1

Step 1, separate the variables. We look for solutions to

pxx + pyy = 0

of the form

p(x, y) = X(x)Y (y).

Thus

X ′′Y + XY ′′ = 0 =⇒ X ′′

X
+

Y ′′

Y
= 0 =⇒ X ′′

X
= −Y ′′

Y
.

Note that X ′′/X depends on x only, and Y ′′/Y depends on y only, so if

these are equal, they must be constant! Let λ2 be this constant:

X ′′

X
= −Y ′′

Y
= λ2,

or

X ′′ − λ2X = 0 and Y ′′ + λ2Y = 0 .

Remark. We take the constant to be a square for convenience. The

constant may be negative if λ is imaginary.



Separation of Variables—2

Step 2, solve the problem with two BC= 0 (homogeneous BC’s). The

general solution for Y is

Y (y) =





α cos(λy) + β sin(λy), if λ > 0,

α cosh(λy) + β sinh(λy), if λ < 0,

α + βy, if λ = 0,

where

cosh x = 1
2

(
ex + e−x

)
and sinh x = 1

2

(
ex − e−x

)
.

We now need to recall the BC’s for y = 0 and y = b, which are

p(x,0) = p(x, b) = 0 or X(x)Y (0) = X(x)Y (b) = 0.

The only way to have his true for all x is to require

Y (0) = Y (b) = 0,

Since Y (0) = 0, we must take α = 0.



Separation of Variables—3

For the other BC,

0 =





β sin(λb), if λ > 0,

β sinh(λb), if λ < 0,

βb, if λ = 0.
Now β = 0 is not interesting, since then Y = 0 and so p = 0. But

β sinh(λb) > 0 and βb > 0,

so λ ≤ 0 is not possible. Now λ > 0 and we have

Y (y) = β sin(λy),

and the requirement that

sin(λb) = 0.

This fails in general, but it is true for certain λ, namely if

λ = λn =
nπ

b
, n = 1,2,3, ....

Let

Yn = sin(λny) = sin

(
nπy

b

)
, n = 1,2,3, ....



Separation of Variables—4

Step 3, solve the other problem. Now for λ = λn, we must have

X(x) = α cosh(λnx) + β sinh(λnx).

The boundary condition

p(0, y) = X(0)Y (y) = 0 =⇒ X(0) = 0,

so α = 0. Let

Xn(x) = sinh(λnx).



Separation of Variables—5

Step 4, use superposition. We have derived infinitely many solutions

pn(x, y) = Xn(x)Yn(y) = sinh(λnx) sin(λny), n = 1,2,3, ...,

to the problem
{

pn,xx + pn,yy = 0, 0 < x < a, 0 < y < b,

pn(0, y) = pn(x,0) = pn(x, b) = 0.

By superposition, for any constants cn,

p(x, y) =
∞∑

n=1

cnpn(x, y) =
∞∑

n=1

cn sinh(λnx) sin(λny),

where λn = nπ/b, p(x, y) solves the same problem, which is the one we

want to solve except that we need to require the final BC:

p(a, y) =
∞∑

n=1

(
cn sinh(λna)

)
sin(λny) = g(y).

Question: That is, can we find cn such that this holds?



Fourier Series

Definition. Given a function f(x) for 0 < x < `, let

an =
2

`

∫ `

0
f(x) cos(2nπx/`) dx and bn =

2

`

∫ `

0
f(x) sin(2nπx/`) dx.

Then the Fourier series of f is

F(x) = 1
2a0 +

∞∑

n=1

(
an cos(2nπx/`) + bn sin(2nπx/`)

)

Definition. Given a function f(x) for 0 < x < `, let

an =
2

`

∫ `

0
f(x) cos(nπx/`) dx and bn =

2

`

∫ `

0
f(x) sin(nπx/`) dx.

Then the Fourier cosine series of f is

C(x) = 1
2a0 +

∞∑

n=1

an cos(nπx/`),

and the Fourier sine series of f is

S(x) =
∞∑

n=1

bn sin(nπx/`).

Theorem. If x is such that 0 < x < ` and f(x) is continuous, then
F(x) = C(x) = S(x) = f(x).



Separation of Variables—6

Step 5, set the remaining BC. It remains to show that

g(y) =
∞∑

n=1

(
cn sinh(λna)

)
sin(λny).

But we now know that

g(y) =
∞∑

n=1

bn sin(nπy/b) for bn =
2

b

∫ b

0
g(y) sin(nπy/b) dy,

so

cn = bn/ sinh(λna) =
2

b sinh(λna)

∫ b

0
g(y) sin(nπy/b) dy,

and

p(x, y) =
∞∑

n=1

cn sinh(nπx/b) sin(nπy/b)

solves the original problem.

Remark. The solution has modes that involve sine waves in y.



Solution by Fourier Transforms
and Green’s Functions



The Fourier Transform

Closely related to Fourier series is the Fourier transform.

Definition. Given a function f(x), we define its Fourier transform by

f̂(ω) =

∫ ∞

−∞
f(x) e−iωx dx,

and the Fourier inverse transform by

f̌(ω) =
1

2π

∫ ∞

−∞
f(x) eiωx dx.

Theorem. The transforms are inverses of each other:

ˇ̂f = f and ˆ̌f = f.

Remark. We transform from physical space x to Fourier space ω. Since

eiθ = cos θ + i sin θ

involves harmonic functions, we decompose f info harmonic waves f̂ ,

which can be reconstructed to return f .



Some Properties of The Fourier Transform

Definition. The convolution of f and g is the function

(f ∗ g)(x) =

∫ ∞

−∞
f(y) g(x − y) dy.

Theorem. For functions f and g, f ∗ g = g ∗ f . Therefore

(f ∗ g)(x) =

∫ ∞

−∞
f(x − y) g(y) dy.

Theorem.

1. (αf1 + βf2)̂ = αf̂1 + βf̂2 (F.T. is linear).

2. ̂f ∗ g = (2π)−1f̂ ĝ (F.T. converts convolution to multiplication).

3. f̂ ′(ω) = iωf(ω) (F.T. converts differentiation to multiplication by iω).

Similar results hold for the Fourier inverse transformation.

Question: Can you show these results using only calculus?



Limitations on the Problem to be Solved

• Assume the domain Ω = R3 is all of space! Then we have no BC’s.

• Assume that k is constant (take k = 1).

Then we have

−pxx − pyy − pzz = q,

which we convert to Fourier space by taking three Fourier transforms:

f̂(ω1, ω2, ω3) =
∫ ∞

−∞

[ ∫ ∞

−∞

( ∫ ∞

−∞
f(x, y, z) e−iω1x dx

)
e−iω2y dy

]
e−iω3z dz

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z) e−i(ω1x+ω2y+ω3z) dx dy dz.

We obtain (recall that i2 = −1)

−p̂xx − p̂yy − p̂zz = −(iω1)
2p̂ − (iω2)

2p̂ − (iω3)
2p̂

= (ω2
1 + ω2

2 + ω2
3)p̂.

Thus, in Fourier space, the equation is

(ω2
1 + ω2

2 + ω2
3) p̂(ω1, ω2, ω3) = q̂(ω1, ω2, ω3).



Solution by Fourier Transform

(ω2
1 + ω2

2 + ω2
3)p̂ = q̂

There are no derivatives, so we solve easily as

p̂ =
q̂

ω2
1 + ω2

2 + ω2
3

=⇒ p =

(
q̂

ω2
1 + ω2

2 + ω2
3

)̌
,

if this makes sense! Suppose that

κ̂(ω1, ω2, ω3) =
2π

ω2
1 + ω2

2 + ω2
3

.

Then

p(x, y, z) = (2π)−1(q̂κ̂)̌ = q ∗ κ(x, y, z),

where the multivariable convolution is

q ∗ κ(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
q(X, Y, Z)κ(x − X, y − Y, z − Z) dX dY dZ.

In fact, this does make sense, since we can find

κ(x, y, z) =

(
2π

ω2
1 + ω2

2 + ω2
3

)̌
.



Dirac Delta Function

The Dirac delta function (or Dirac mass) is a “generalized function” (or

“distribution”) that looks like

δ0(x) =




0, if x 6= 0,

+∞, if x = 0,

and has the property that for any continuous function f ,

∫ ∞

−∞
f(x) δ0(x) dx = f(0).

Note that

f ∗ δ0(x) =
∫ ∞

−∞
f(x − y) δ0(y) dy = f(x),

and

(f ∗ g)′(x) =
d

dx

∫ ∞

−∞
f(x − y) g(y) dy =

∫ ∞

−∞
f ′(x − y) g(y) dy = f ′ ∗ g(x).

Theorem.

• f ∗ δ0(x) = f(x).

• (f ∗ g)′ = f ′ ∗ g = f ∗ g′.



A Fundamental Solution–1

In any dimension Rd, let κ be

κ =





−1
2|x|, if d = 1,

− 1
2π log

√
x2 + y2, if d = 2,

1
4π(x2 + y2 + z2)−1/2, if d = 3,

Theorem.

−∆κ = δ0.

Note that δ0 represents an infinitely small well at the origin of unit

strength, and κ solves our flow problem. We saw the logarithmic

singularity earlier for a well in 2-D.

Definition. We call κ a fundamental solution to the differential equation

−∆p = q because −∆κ = δ0.



A Fundamental Solution–2

Since

−∆(q ∗ κ) = −q ∗ ∆κ = q ∗ δ0 = q,

we have the following theorem.

Theorem.

p(x, y, z) = q ∗ κ(x, y, z).

Remark. By translation, κ(x − X, y − Y, z − Z) is the response to a Dirac

mass (i.e., source or well) at (X, Y, Z), since

−∆κ(x − X, y − Y, z − Z) = δ0(x − X, y − Y, z − Z) = δ(X,Y,Z)(x, y, z).

Therefore, our solution is an infinite superposition of fundamental

solutions:

p(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞︸ ︷︷ ︸
q(X, Y, Z)︸ ︷︷ ︸ κ(x − X, y − Y, z − Z)︸ ︷︷ ︸ dX dY dZ

“Infinite sum” Source at Response at (x, y, z)

(X, Y, Z) to the source at (X, Y, Z)

In general, q ∗ κ does not satisfy the BC’s. But we can fix them up!



The Green’s Function

We return to the case where k 6= 1. We find the response to a Dirac

mass at (X, Y, Z) with homogeneous BC’s by solving




−∇ · (k∇G) = δ(X,Y,Z), in Ω,

G = 0, on ΓD,

−(k∇G) · ν = 0, on ΓN ,

Note that G = G(x, y, z;X, Y, Z) is a function of 6 variables: for each

source point (X, Y, Z), we have a response at point (x, y, z). The

derivatives above are taken in (x, y, z) with (X, Y, Z) fixed.

Definition. We call G the Green’s function for the problem.

Theorem. The function

p(x, y, z) =

∫∫∫

Ω
q(X, Y, Z)G(x, y, z;X, Y, Z) dX dY dZ

solves the homogeneous BC problem




−∇ · (k∇p) = q, in Ω,

p = 0, on ΓD,

−(k∇p) · ν = 0, on ΓN .

Question: Can you verify this?



The Dirichlet Problem

For the pure Dirichlet problem,
{−∇ · (k∇p) = q, in Ω,

p = pD, on ∂Ω,

the solution is given by the Poisson integral formula

p(x, y, z) =
∫∫∫

Ω
q(X, Y, Z)G(X, Y, Z;x, y, z) dX dY dZ

−
∫∫

∂Ω
pD(X, Y, Z)∇G(X, Y, Z;x, y, z) · ν dS,

wherein the normal derivative of G is taken in the first set of variables.

Remark. Note that we have interchanged the two sets of variables in

this formula from what we had before!



The Neumann Problem

For the pure Neumann problem,
{−∇ · (k∇p) = q, in Ω,

−(k∇p) · ν = f, on ∂Ω,

the solution is given by

p(x, y, z) =

∫∫∫

Ω
q(X, Y, Z)G(X, Y, Z;x, y, z) dX dY dZ

−
∫∫

∂Ω
f(X, Y, Z)G(X, Y, Z;x, y, z)ν dS.

Again, we have interchanged the two sets of variables in this formula.

Remark. The Green’s function data does not satisfy the compatibility

condition, since
∫∫∫

Ω
δ(X,Y,Z)(x, y, z) dx dy dz = 1 6=

∫∫

∂Ω
0 dA.

In fact we solve
{−∇ · (k∇G) = δ(X,Y,Z) − 1/V, in Ω,

−(k∇G) · ν = 0, on ∂Ω,

where the volume of Ω is

V =

∫∫∫

Ω
dx dy dz.



Numerical Solution by
Vertex Centered Finite Differences



Vertex Centered Rectangular Grid

• For simplicity, we work in 2-D. Everything generalizes to 3-D.

• Assume that the porous medium domain Ω is the rectangle

0 < x < L1 and 0 < y < L2.

We define a uniform rectangular grid on Ω by choosing integers M ≥ 1

and N ≥ 1, and setting the grid spacings to be

h = L1/M and k = L2/N,

and defining the grid vertex points

x0 = 0, x1 = h, ... , xi = ih, ... , xM = L1,

y0 = 0, y1 = k, ... , yj = jk, ... , yN = L2.

x0 x1 x2 . . . xM
y0

y1

y2

...

yN

6
k

?

� h -

Remark. We have taken a uniform grid (i.e., constant x and y spacing)

for simplicity. Most things generalize to nonuniform grids.



Approximation

We approximate

p(xi, yj) ≈ pij for i = 0,1, ..., M, j = 0,1, ..., N.

Strategy. Our strategy is to

• approximate derivatives of p using only these values pij;

• replace the derivatives of p in the PDE by these approximations;

• solve the discretized PDE equations for the pij;

• interpolate values of pij if we need p at a point other than a grid

point.

Remark. We will sometimes need the “half”-grid points, defined by

xi+1/2 =
xi + xi+1

2
= (i + 1/2)h

and

yj+1/2 =
yj + yj+1

2
= (j + 1/2)k.



Two Point Finite Difference

xi−1 xi xi+1

x x x

Given a function f(x), we have the two Taylor expansions

f(xi±1) = f(xi) ± f ′(xi)h + O(h2).

Forward difference. We have the forward difference approximation

f ′(xi) =
f(xi+1) − f(xi)

h
+ O(h) ≈ fi+1 − fi

h
.

Backward difference. We have the backward difference approximation

f ′(xi) =
f(xi−1) − f(xi)

−h
+ O(h) ≈ fi − fi−1

h
.

Theorem. Both approximations are first order accurate, meaning the

error is O(h).



Two Point Centered Finite Differences

xi−1 xi xi+1

x × x

Recall the two Taylor approximations (with an additional term)

f(xi+1) = f(xi) + f ′(xi)h + 1
2f ′′(xi)h

2 + O(h3),

f(xi−1) = f(xi) − f ′(xi)h + 1
2f ′′(xi)h

2 + O(h3).

Subtracting, we get

f(xi+1) − f(xi−1) = 0 + 2f ′(xi)h + 0 + O(h3).

Centered difference. We have the centered difference approximation

f ′(xi) =
f(xi+1) − f(xi−1)

2h
+ O(h2) ≈ fi+1 − fi−1

2h
.

Theorem. The centered approximation is second order accurate,

meaning the error is O(h2).

Remark. Note that O(h3) −O(h3) = O(h3) (not 0), and the error is

O(h3)/2h = O(h2), since the big oh notation does not keep track of the

constant multiple.



Summary of Two Point Finite Differences

xi−1 xi xi+1

x x x

Forward difference.

f ′(xi) ≈ fi+1 − fi

h
, accurate to O(h).

Backward difference. approximation

f ′(xi) ≈ fi − fi−1

h
, accurate to O(h).

Centered difference.

f ′(xi) ≈ fi+1 − fi−1

2h
, accurate to O(h2).

The centered difference is the most accurate!



Finite Differences for Second Order Derivatives

xi−1 xi−1/2 xi xi+1/2 xi+1

x × x × x

� h -

The standard formula is

f ′′(xi) ≈ fi+1 − 2fi + fi−1

h2
.

To see this, note that

f ′′(xi) = (f ′)′(xi) ≈
f ′(xi+1/2) − f ′(xi−1/2)

h

≈ 1

h

(
fi+1 − fi

h
− fi − fi−1

h

)
.

Theorem. This approximation is accurate to second order, O(h2).

Remark. It would appear that the error is O(h). To see that the error is

in fact O(h2), a more careful analysis is needed involving looking more

carefully at the Taylor remainder terms.



Second Order Derivatives with a Coefficient

xi−1 xi−1/2 xi xi+1/2 xi+1

x × x × x

� h -

Suppose instead we have a coefficient

(Kf ′)′(xi) ≈
(Kf ′)(xi+1/2) − (Kf ′)(xi−1/2)

h

≈ 1

h

(
Ki+1/2

fi+1 − fi

h
− Ki−1/2

fi − fi−1

h

)
.

The formula is

(Kf ′)′(xi) ≈ 1

h2

[
Ki+1/2fi+1 −

(
Ki+1/2 + Ki−1/2

)
fi + Ki−1/2fi−1

]
.

Theorem. This approximation is accurate to second order, O(h2).



Approximation of the Dirichlet Problem

In the pure Dirichlet case (write K for the permeability),
{−∇ · (K∇p) = q, in Ω = (0, L1) × (0, L2),

p = pD, on ∂Ω,

we know how to set the boundary values

pi0 = pD(xi,0), piN = pD(xi, L2), i = 0,1, ..., M,

p0j = pD(0, yj), pMj = pD(L1, yj), j = 0,1, ..., N.

It remains to solve the PDE at the interior grid points. We have

−∇ · (K∇p)(xi, yj) = −(Kpx)x(xi, yj) − (Kpy)y(xi, yj)

≈ − 1

h2

[
Ki+1/2,jpi+1,j −

(
Ki+1/2,j + Ki−1/2,j

)
pi,j + Ki−1/2,jpi−1,j

]

− 1

k2

[
Ki,j+1/2pi,j+1 −

(
Ki,j+1/2 + Ki,j−1/2

)
pi,j + Ki,j−1/2pi,j−1

]
.



The Finite Difference Stencil

Rearranging terms, the (i, j)th equation is

1

h2k2

[(
k2Ki+1/2,j + k2Ki−1/2,j + h2Ki,j+1/2 + h2Ki,j−1/2

)
pi,j

− k2Ki+1/2,jpi+1,j − k2Ki−1/2,jpi−1,j

− h2Ki,j+1/2pi,j+1 − h2Ki,j−1/2pi,j−1

]

= qi,j, i = 1,2, ..., M − 1, j = 1,2, ..., N − 1.

This method has a five point stencil: pij is related to its four nearest

neighbors.

~~ ~

~

~

pi−1,j pi+1,j

pi,j−1

pi,j+1

pi,j

Ki−1/2,j/h2 Ki+1/2,j/h2

Ki,j−1/2/k2

Ki,j+1/2/k2



Linear System for the Dirichlet Problem—1

Our approximation is a system of linear equations for the interior pij. If

we assume that K is constant and h = k, then we have simply

K

h2

[
4pi,j − pi+1,j − pi−1,j − pi,j+1 − pi,j−1

]

= qi,j i = 1,2, ..., M − 1, j = 1,2, ..., N − 1.

We linearly order the interior grid points:

m = i + (M − 1)(j − 1),

which gives a unique m to each (i, j) in the interior. Then

p =
(
p11, p21, ... , pM−1,1, p12, p22, ... , pM−1,2, ... , pM−1,N−1

)T

and the right-hand-side (RHS) vector is

b =

(
q11 +

K

h2
(p01 + p10), q21 +

K

h2
p20, ... ,

qM−1,1 +
K

h2
(pM1 + pM−1,0), ..., qM−1,N−1 +

K

h2
(pM,N−1 + pM−1,N)

)T

,

wherein we have included any pij on the boundary. Note that the

corners p00, pM−1,0, p0,N−1, and pM−1,N−1 are never used.



Linear System for the Dirichlet Problem—2

The matrix is

A =
K

h2




4 −1 0 0 . . . −1 0 0 . . . 0
−1 4 −1 0 . . . 0 −1 0 . . . 0
0 −1 4 −1 . . . 0 0 −1 . . . 0
... ... ... ... . . . ... ... ... . . . ...

−1 0 0 0 . . . 4 −1 0 . . . 0
0 −1 0 0 . . . −1 4 −1 . . . 0
0 0 −1 0 . . . 0 −1 4 . . . 0
... ... ... ... . . . ... ... ... . . . ...
0 0 0 0 . . . 0 0 0 . . . 4




,

which is (M − 1)(N − 1) × (M − 1)(N − 1). It has a banded structure.

We are reduced to solving the linear system

Ap = b.

Theorem. There exists a unique solution to the linear system, and the

error satisfies

max
i,j

∣∣∣p(xi, yj) − pij

∣∣∣ = O(h2 + k2).



Approximation of the Neumann Problem

In the pure Neumann case,
{−∇ · (k∇p) = q, in Ω = (0, L1) × (0, L2),

−(k∇p) · ν = f, on ∂Ω,

and we need to determine all pij, not just those in the interior.

We have the same discretized equations as in the Dirichlet case for the

interior grid points

1

h2k2

[(
k2Ki+1/2,j + k2Ki−1/2,j + h2Ki,j+1/2 + h2Ki,j−1/2

)
pi,j

− k2Ki+1/2,jpi+1,j − k2Ki−1/2,jpi−1,j

− h2Ki,j+1/2pi,j+1 − h2Ki,j−1/2pi,j−1

]

= qi,j, i = 1,2, ..., M − 1, j = 1,2, ..., N − 1,

and the same five point stencil.



Approximation of the Neumann BC—1

x0 = 0 x1

x x

Consider the left edge of the domain where x = 0. Let y = yj be fixed
(so we can ignore it for now). The BC says that

Kp′(0) = f(0),

If we make a standard finite difference approximation in terms of the
two values p0 and p1, we obtain

K
p1 − p0

h
= f0 =⇒ p0 = p1 − h

K
f0.

Thus we add this to the equations we have. Note that we maintain the
“five” point stencil (with three points missing), although the weights are
different.

x×

×

×

x p1p0

1



Approximation of the Neumann BC—2

Restoring the y variable, and treating the other three sides, gives us the

following four sets of equations to add to the interior equations:

p0,j = p1,j −
h

K
f0,j, j = 1,2, ..., N,

pM+1,j = pM,j −
h

K
fM+1,j, j = 1,2, ..., N,

pi,0 = pi,1 − k

K
fi,0, i = 1,2, ..., M,

pi,N+1 = pi,N − k

K
fi,N+1, i = 1,2, ..., M.

Problem. The BC approximation is only O(h + k) accurate, so we lose

overall accuracy of the finite difference method.

Question: In fact, the convergence is O(h3/2 + k3/2). Can you explain

why?



Approximation of the Neumann BC—3

Solutions.

• Approximate the boundary derivative by three points to obtain O(h2)

accuracy.

x0 = 0 x1 x2

x x x

Question: What happens to the stencil?

• Be more clever near the boundary, by using the fact that

pxx + pyy = −q.

One can get an approximation within the five point stencil with one

missing point that is O(h2 + k2) this way.

x× x

x

x

p1,jp0,j

p0,j−1

p0,j+1



Linear System for the Neumann Problem–1

We linearly order the grid points, counting from left to right, and

bottom to top. We have

(M + 1) × (N + 1) − 4

points, since the four corners are never used (or approximated). This

gives us a linear system to solve for

p =
(
p10, p20, p30, ... , pM,0, p01, p11, ... , pM+1,1, ... , pM,N+1

)T

Again, we are reduced to solving a linear system

Ap = b.



Linear System for the Neumann Problem–2

This system is singular, since the solution to the pure Neumann problem

is not unique up to a constant. That is,

c =
(
1, 1, 1, ... ,1

)T

is in the null space of A (i.e., Ac = 0). To solve this system, we need to

replace one equation (the last?) by either

•
∑

i

∑

j

pij = 0 (average pressure is zero),

• or p10 = 0 (or any other pij).

Theorem. There exists a unique solution to the linear system.

Moreover, the error is O(h3/2 + k3/2) with the first order BC method,

and O(h2 + k2) with the improved methods.

Remark. We can obtain higher order accuracy by taking a larger stencil.

But this means that we need more computation, and so the code runs

more slowly.



Numerical Solution by
Cell Centered Finite Differences



Cell Centered Rectangular Grid

We define a uniform rectangular grid on Ω = {0 < x < L1, 0 < y < L2} by

choosing integers M ≥ 1 and N ≥ 1, and setting the grid spacings to be

h = L1/M and k = L2/N,
and defining the grid lines at the half-grid points

x1/2 = 0, x3/2 = h, ... , xi−1/2 = (i − 1/2)h, ... , xM+1/2 = L1,

y1/2 = 0, y3/2 = h, ... , yj−1/2 = (j − 1/2)h, ... , yN+1/2 = L2.

What we care about now are the cell centers

x1 = h/2, x2 = 3h/2, ... , xi = (i − 1/2)h, ... , xM = L1 − h/2,

y1 = k/2, y2 = 3k/2, ... , yj = (j − 1/2)k, ... , yN = L2 − k/2.

s s s s s

s s s s s

s s s s s

s s s s s

x1 x2 x3 . . . xM

y1

y2

...

yN
6
k

?

� h -

Remark. We have taken a uniform grid (i.e., constant x and y spacing)

for simplicity. Most things gerneralize to nonuniform grids, and then the

cell centered grid is fundamentally different from a vertex centered grid.



Approximation of the Velocity—1

We approximate the mixed system
{

u = −k∇p, in Ω,

∇ · u = q, in Ω.

We begin with the velocity, and approximate it on grid element edges.

yj

xi xi+1/2 xi+1

×w w

x-edges. For an x-edge, we approximate the normal velocity (i.e., u1) as

u1(xi+1/2, yj) = −Kpx

≈ ui+1/2,j = −Ki+1/2,j

pi+1,j − pi,j

h
.

This is O(h2) accurate, and it works for nonuniform grids by simply

replacing h by xi+1 − xi.



Approximation of the Velocity—2

xi

yj

yj+1/2

yj+1

×
w

w

y-edges. For an y-edge, we approximate the normal velocity (i.e., u2) as

u2(xi+1/2, yj) = −Kpy

≈ ui,j+1/2 = −Ki,j+1/2

pi,j+1 − pi,j

k
.



Approximation of the Divergence

yj

xi

w

×

×

× ×� -

?

6

Recall

∇ · u = q =⇒ q = u1,x + u2,y.

Thus we approximate at (xi, yj)

qi,j =
ui+1/2,j − ui−1/2,j

h
+

ui,j+1/2 − ui,j−1/2

k
.



Overall Approximation Stencil—1

Combining, we have a five point stencil

qi,j =
ui+1/2,j − ui−1/2,j

h
+

ui,j+1/2 − ui,j−1/2

k

= −Ki+1/2,j

pi+1,j − pi,j

h
+ Ki−1/2,j

pi,j − pi−1,j

h

− Ki,j+1/2

pi,j+1 − pi,j

k
+ Ki,j−1/2

pi,j − pi,j−1

k
.

yj

xi

× ×

×

×
w

w

w

w

w



Overall Approximation Stencil—2

Boundary Conditions. The Neumann BC is easily incorporated. For

example, on an x-edge, above we would use

u1/2,j = f(0, yj).

For Dirichlet conditions, we simply approximate, for example,

u1/2,j = −K1/2,j
p1,j − pD(0, yj)

h/2
.

Question: How accurate is this?

Theorem. The pressure is accurate to O(h2 + k2), and the velocity is

O(h + k). This result holds for any BC’s and nonuniform grids.

Question: Is this surprising?



Evaluation of K on the Edges—1

For an x-edge,

ui+1/2,j = −Ki+1/2,j

pi+1,j − pi,j

h
.

Often, one assumes that K is piecewise constant on grid elements, so

where we need it, it is discontinuous.

Question: Should we just average the two values?

yj

xi xi+1/2 xi+1

×w w

We have essentially 1-D flow from (xi, yj) to (xi+1,j, yj).



Evaluation of K on the Edges—2

Since q = 0 most places, we almost have




− (Kp′)′ = 0,

p(xi) = pi and p(xi+1) = pi+1.

Thus

−Kp′ = Constant = u,

so

p′ =





u/Ki, xi < x < xi+1/2,

u/Ki+1, xi+1/2 < x < xi+1,

which implies that

p =





pi + (u/Ki)(x − xi), xi < x < xi+1/2,

pi+1 − (u/Ki+1)(xi+1 − x), xi+1/2 < x < xi+1.

But p must be continuous at x = xi+1/2.

Question: Why?



Evaluation of K on the Edges—3

So

pi −
u

Ki

h

2
= pi+1 − u

Ki+1

h

2
,

which implies that

u = −2

(
1

Ki
+

1

Ki+1

)−1
pi+1 − pi

h
= −Ki+1/2

pi+1 − pi

h
.

Therefore, we should take

Ki+1/2 = 2

(
1

Ki
+

1

Ki+1

)−1

=
2KiKi+1

Ki + Ki+1
,

which is the harmonic average of Ki and Ki+1, which emphasizes small

values. It is the reciprocal of the average of the reciprocals.



Local Mass Conservation

If E is the (i, j) grid element, then
∫∫

E
q dx dy =

∫∫

E
∇ · u dx dy =

∫

∂E
u · ν dS

is the integral of the normal velocities around ∂E. ×

×

× ×� -

?

6

If we define the source value as qij =
1

hk

∫∫

E
q dx dy, then our method is

qij h k = [ui+1/2,j − ui−1/2,j]k + [ui,j+1/2 − ui,j−1/2]h

=

∫ yj+1/2

yj−1/2

[ui+1/2,j − ui−1/2,j] dy +

∫ xi+1/2

xi−1/2

[ui,j+1/2 − ui,j−1/2] dx,

which is also the integral of the normal velocities around ∂E.

That is, our method reproduces the local mass conservation principle

exactly over each grid element. We say that it is locally conservative.

Vertex centered finite differences do not have this property!

Question: Why is local conservation important?



The Maximum Principle

Recall that local maxima cannot occur if q ≤ 0 in the true solution.

Question: Can they occur in the numerical solution?

For the discrete solution, a local maximum would be a point such that

pij > max{pi−1,j, pi+1,j, pi,j−1, pi,j+1}.

Theorem. For any of our methods, this will imply flow away from the

point (i.e., q > 0), so we indeed satisfy the maximum principle.

Question: If we write a code and find that the solution violates the

maximum principle (or the local conservation principle for cell centered

finite differences), what should we conclude?

Remark. Methods that approximate derivatives with more points (and

so are more accurate, error O(hr), r > 2) do not satisfy this property!

Sometimes, we see small “nonphysical” flows, i.e., a small amount of

fluid flowing in the wrong direction. We call such features numerical

artifacts.

Question: Is this a paradox? More accurate but fails to satisfy the

maximum principle.



Numerical Solution by Finite Elements



Integration by Parts

Theorem. The product rule for divergences is

∇ · (ϕv) = ∇ϕ · v + ϕ∇ · v.

Theorem. The integration by parts formula is

∫∫∫

Ω
∇ϕ · v dx dy dz =

∫∫

Ω
ϕv · ν dS −

∫∫∫

Ω
ϕ∇ · v dx dy dz,

or

∫∫∫

Ω
ϕ∇ · v dx dy dz =

∫∫

Ω
ϕv · ν dS −

∫∫∫

Ω
∇ϕ · v dx dy dz.

The proof is just an application of the divergence theorem and the

product rule.

Question: Why do we call this “integration by parts?”



The Weak Form of the Problem—1

Our PDE is

−∇ · (k∇p) = q, in Ω.

Strategy.

• Multiply the PDE by a function ϕ(x, y, z), called a test function.

• Integrate over Ω.

• Integrate by parts to even out the derivatives on the solution p and

the test function ϕ.

Remark. We lose nothing by this “testing process,” since if
∫∫∫

fϕ dx dy dz =
∫∫∫

gϕ dx dy dz

for every test function ϕ, then

f = g.

That is, if two two functions agree in all their tests, they are the same!



The Weak Form of the Problem—2

The full problem is 



−∇ · (k∇p) = q, in Ω,

p = pD, on ΓD,

−(k∇p) · ν = f, on ΓN .

Following our strategy, we get
∫∫∫

Ω
q ϕ dV = −

∫∫∫

Ω
∇ · (k∇p)ϕ dV

=

∫∫∫

Ω
k∇p · ∇ϕ dV −

∫∫

∂Ω
k∇p · νϕ dS.

Boundary Conditions. Neumann: We replace the normal derivative by f .

Dirichlet: We impose the BC directly (i.e., not via the test function).

The weak form of the equations. Assume that

p = pD and ϕ = 0 on ΓD.

Then we have the weak form of the equations

∫∫∫

Ω
k∇p · ∇ϕ dV =

∫∫∫

Ω
q ϕ dV −

∫∫

ΓN

f ϕ dS.

Theorem. The PDE problem is equivalent to the weak problem.



The Galerkin Method

The basic ideas of Galerkin’s method.

• Work on the weak problem, rather than the PDE problem.

• Approximate the weak problem by replacing p and ϕ by simple

functions.

• Solve for the simplified p.

The finite element method (FEM) is a divide-and conquer strategy to

find a simple representation for p (and ϕ).



The Computational Grid or Mesh

Let us restrict for simplicity to 2-D. We divide the domain into

rectangles and/or triangles. If we use triangles, Ω can be irregularly

shaped.

Note that all grid elements completely share their faces.



Piecewise Linear Polynomials on Triangles—1

Ea b

c

ϕ

y y

y

y

y

y

Over each triangle, let ϕ be a linear polynimial

ϕ(x, y) = α + βx + γy.

This is a three dimensional vector space, with the following basis.

Ea b

c
ϕa

y

y

y

y

Ea b

c
ϕb

yy

y

y

Ea b

c

ϕc

y

y y

y

Then

ϕ(x, y) = ϕ(a)ϕa(x, y) + ϕ(b)ϕb(x, y) + ϕ(c)ϕc(x, y).



Piecewise Linear Polynomials on Triangles—2

Example.

0
0

h

k

Then

ϕ0,0(x, y) = 1 − x

h
− y

k
, ϕh,0(x, y) =

x

h
, ϕ0,k(x, y) =

y

k
,

since three points determine a plane and

ϕ0,0(0,0) = 1, ϕh,0(0,0) = 0, ϕ0,k(0,0) = 0,

ϕ0,0(h,0) = 0, ϕh,0(h,0) = 1, ϕ0,k(h,0) = 0,

ϕ0,0(0, k) = 0, ϕh,0(0, k) = 0, ϕ0,k(0, k) = 1.

Finally, for example,

ϕ(x, y) = 3 + 2x − 4y

= 3ϕ0,0(x, y) + (3 + 2h)ϕh,0(x, y) + (3 − 4k)ϕ0,k(x, y).



Piecewise Linear Polynomials on Triangles—3

We now piece these functions together to form a global basis function,

as follows.

a

ϕa

y

y

y

y y

y

y y



Finite Element Approximation

We approximate p by

P(x, y) =
∑

a6∈ΓD

αaϕa(x, y) +
∑

a∈ΓD

pD(a)ϕa(x, y)

and find the coefficients αa satisfying the weak equations
∫∫

Ω
k∇P · ∇ϕb dV =

∫∫

Ω
q ϕb dV −

∫

∂Ω
f ϕb dS,

for all b 6∈ ΓD. This is,

∑

a6∈ΓD

αa

∫∫

Ω
k∇ϕa · ∇ϕb dV =

∫∫

Ω
q ϕb dV +

∫

∂Ω
f ϕb dS

−
∑

a∈ΓD

pD(a)

∫∫

Ω
k∇ϕa · ∇ϕb dV,

Again, this is a matrix problem (since we have two indices, a and b).



The Linear System

We solve

AP = r,

where, for a and b not in ΓD,

Pa = αa,

Aa,b =

∫∫

Ω
k∇ϕa · ∇ϕb dV,

rb =

∫∫

Ω
q ϕb dV +

∫

∂Ω
f ϕb dS

−
∑

c∈ΓD

pD(c)

∫∫

Ω
k∇ϕa · ∇ϕb dV,

Remark. Most matrix entries are 0. We call such a matrix sparse.

Question: How do we find these integrals?



Piecewise Bilinears on Rectangles—1

On a rectangle, we use a bilinear polynomial of the form

ϕ(x, y) = α + βx + γy + δxy.

This four dimensional vector space has the following basis.

0 h
0

k

y

y

y

y

ϕ0,0 =

(
1 − x

h

)(
1 − y

k

)
, ϕh,0 =

x

h

(
1 − y

k

)
,

ϕ0,k =

(
1 − x

h

)
y

k
, ϕh,k =

x

h

y

k
.



Piecewise Bilinears on Rectangles—2

These functions piece together to form a global basis function over four

rectangles, as follows.
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Convergence—1

Taylor’s theorem says that if p has derivatives of order r + 1, then it is a

polynomial of degree r plus a remainder

p(x, y) = Pn(x, y) + Rn(x, y),

where the remainder Rn depends on the (r + 1)st derivatives. In 1-D,

Rn(x) =
1

n!

∫ x

0
f(n+1)(t) (x − t)n dt.

In the finite element method, we locally approximate p by a polynomial

of degree r, where r = 1 for piecewise linears or bilinears, but we could

also use higher order polynomials. Hopefully, then, the error in the

method is like Taylor’s theorem, depending on

• the size of the deviation from the base point;

• the size of the (r + 1)st derivatives.



Convergence—2

Let h be the maximal size of the grid elements.

E

h -�

Theorem. If the finite elements are based on polynomials of degree r,

then the error satisfies
{ ∫∫

Ω

(
p(x, y) − P(x, y)

)2
dx dy

}1/2

= O(hr+1),

{ ∫∫

Ω
‖∇

(
p(x, y) − P(x, y)

)
‖2 dx dy

}1/2

= O(hr).

Remarks.

• This bounds the error on the average rather than at points.

• It is unprofitable to use high degree polynomials if p has large

derivatives! This is typically the case for porous media.

• The method fails to satisfy the local mass conservation principle.

• The method does not necessarily satisfy the maximum principle.


