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Overview
- Level set representation of surfaces
- Data representation for porous media
- Marching cubes (MC) algorithm
- Porous medium marching cubes algorithm (PMMC)
- Higher order PMMC (HOPMMC)
- Interfacial curvatures
- Examples: Lattice Boltzmann, X-ray tomography



What is a Level Set?
Suppose that you have some continuous function        
defined 

If we set this function to be equal to a constant 
value    ,                 defines an “level set” or 
isosurface.

If we are able to determine         and     so that this 
isosurface corresponds to a surface which we are 
interested in, our job will be easy.

a measure of volume V α, Ωαβ has a measure of area Aαβ, and Ωαβγ has a measure
of length Lαβγ. Specific measures are often of interest for macroscale porous medium
systems and are described as the volume fraction εα = V α/V , the specific interfacial area
εαβ = Aαβ/V , and the specific common curve length εαβγ = Lαβγ/V . Quantities such
as the mean microscale curvature Jαβ of Ωαβ and the macroscale counterpart Jαβ are
also of interest. More complete definitions of systems, entities, and scales relevant to the
multiphase systems of concern in this work are available in the literature [21].

The methods developed in this work provide approximations for these macroscale geo-
metric quantities and a basis upon which graphical reconstruction may be based. In the
sections that follow, we summarize the MC approach, a porous media marching cubes
(PMMC) approach, a higher order porous media marching cubes (HOPMMC) approach,
approximation of curvatures, and data source issues.

2.1 Marching cubes algorithm

The MC algorithm is a procedure that may be used to construct an approximation of
Ωαβ, which we will refer to as Ω̌αβ. This reconstructed surface may be used for some
combination of graphical visualization and estimation of the extent, say Aαβ or εαβ, and
other properties. This construction requires two components: a discretization of Ω, and a
general function containing information related to the distribution of phases G(x) defined,
at least approximately as Ǧ(x), ∀x ∈ Ω. These two components will be summarized in
turn.

Consider a domain aligned with a Cartesian coordinate system Ω = [0, "]× [0, "]× [0, "] ⊂
IR3 of length " on each side discretized with a mesh Mh consisting of n evenly spaced
nodes along each side of the domain for a total of n3 nodes. The node spacing is h =
"/(n − 1) = ∆x = ∆y = ∆z. Mh can be used to describe a set of cubes C = {Ωl|l =
1, . . . , n3

c}, where Ωl = [(i−1)∆x, i∆x]× [(j−1)∆y, j∆y]× [(k−1)∆z, k∆z], nc = n−1,
and l = i + (j − 1)nc + (k − 1)n2

c and i, j, and k refer to integer indexes to a cube
location defined by eight bounding nodes in Mh in the x, y, and z Cartesian coordinate
direction, respectively. Each cube Ωl has boundary Γl, which contains a set of 12 edges
Ec,l = {eli, i = 1, . . . 12} that are each parallel with one of the coordinate directions and
connect a pair of the eight nodes from Mh that together bound cube Ωl. The set of
nodes comprising the end points of the i edge in Ωl are denoted Nli = {nli1, nli2}, the
set of nodes bounding Ωl are denoted Nc,l =

⋃
i=1,··· ,12 Nli, and the set of spatial locations

corresponding to these boundings nodes are Xl = {xi, i = 1, · · · , 8}. The set of all nodes
in Mh are defined as N = {ni, i = 1, ..., n3}.

G(x) represents a general function containing information related to the distribution of
phases. Because many different approaches exist to measure and represent phase distribu-
tions in a multiphase system, the specific nature of this function will depend upon details
of the application. For the time being, we will assume G(x) is a continuous, smooth, real-
valued function that may be evaluated at all nodes in Mh. We will furthermore assume
that a value ν is known such that G(x) = ν for x ∈ Ωαβ. Thus the approximation of
Ωαβ reduces to approximating the surface where G(x) = ν, which is accomplished using
linear interpolation along the set of edges Ec,l within each Ωl using values of G(x) at the
eight nodes from Mh that bound Ωl and form the members of the end-point nodal sets
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Data Sets

0.44 0.42 0.37 0.33 0.42 0.56 0.63 0.66 0.66 0.69 0.69

0.42 0.41 0.36 0.33 0.42 0.57 0.65 0.66 0.67 0.68 0.7

0.4 0.4 0.35 0.33 0.43 0.58 0.65 0.67 0.67 0.68 0.69

0.4 0.4 0.37 0.34 0.42 0.57 0.66 0.67 0.68 0.69 0.69

0.39 0.39 0.35 0.34 0.42 0.57 0.67 0.68 0.67 0.67 0.68

0.38 0.39 0.37 0.33 0.4 0.57 0.66 0.66 0.66 0.68 0.68

0.37 0.39 0.36 0.34 0.39 0.52 0.66 0.68 0.67 0.67 0.67

0.38 0.4 0.36 0.33 0.37 0.51 0.64 0.68 0.66 0.67 0.68

0.37 0.37 0.36 0.32 0.37 0.51 0.64 0.68 0.67 0.65 0.67



Goal

Use this information to determine the position of the 
phases, interface location, curvature of the interface, 
other types of information which  are of interest



Marching Cubes (MC)

Here we look at a two 
dimensional case:
  - values of         are known at
     the corners of squares that
     cover the domain
  - Move through the system one 
    box at a time
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Compute isosurface             
from continuous data
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other properties. This construction requires two components: a discretization of Ω, and a
general function containing information related to the distribution of phases G(x) defined,
at least approximately as Ǧ(x), ∀x ∈ Ω. These two components will be summarized in
turn.

Consider a domain aligned with a Cartesian coordinate system Ω = [0, "]× [0, "]× [0, "] ⊂
IR3 of length " on each side discretized with a mesh Mh consisting of n evenly spaced
nodes along each side of the domain for a total of n3 nodes. The node spacing is h =
"/(n − 1) = ∆x = ∆y = ∆z. Mh can be used to describe a set of cubes C = {Ωl|l =
1, . . . , n3

c}, where Ωl = [(i−1)∆x, i∆x]× [(j−1)∆y, j∆y]× [(k−1)∆z, k∆z], nc = n−1,
and l = i + (j − 1)nc + (k − 1)n2

c and i, j, and k refer to integer indexes to a cube
location defined by eight bounding nodes in Mh in the x, y, and z Cartesian coordinate
direction, respectively. Each cube Ωl has boundary Γl, which contains a set of 12 edges
Ec,l = {eli, i = 1, . . . 12} that are each parallel with one of the coordinate directions and
connect a pair of the eight nodes from Mh that together bound cube Ωl. The set of
nodes comprising the end points of the i edge in Ωl are denoted Nli = {nli1, nli2}, the
set of nodes bounding Ωl are denoted Nc,l =

⋃
i=1,··· ,12 Nli, and the set of spatial locations

corresponding to these boundings nodes are Xl = {xi, i = 1, · · · , 8}. The set of all nodes
in Mh are defined as N = {ni, i = 1, ..., n3}.

G(x) represents a general function containing information related to the distribution of
phases. Because many different approaches exist to measure and represent phase distribu-
tions in a multiphase system, the specific nature of this function will depend upon details
of the application. For the time being, we will assume G(x) is a continuous, smooth, real-
valued function that may be evaluated at all nodes in Mh. We will furthermore assume
that a value ν is known such that G(x) = ν for x ∈ Ωαβ. Thus the approximation of
Ωαβ reduces to approximating the surface where G(x) = ν, which is accomplished using
linear interpolation along the set of edges Ec,l within each Ωl using values of G(x) at the
eight nodes from Mh that bound Ωl and form the members of the end-point nodal sets
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Marching Cubes (MC)

An interface exists along a cube 
edge if (intermediate value 
theorem):

Nli.

Consider the location of two end points of any edge to be x− and x+ and the corresponding
general distribution function values corresponding to these end points to be G(x−) and
G(x+). A vertex where Ǧ(x) = ν will exist along the edge if and only if

[G(x+)− ν][G(x−)− ν] ≤ 0 (1)

If a vertex exists along the edge, the location of the vertex may be approximated using
linear interpolation as

xv = x+ +
G(x+)− ν

G(x+)−G(x−)
(x− − x+) (2)

Evaluating Eqs. (1) and (2) for each edge in a cube, and eliminating duplicates that fall
at nodes, will lead to a set of vertices Vαβ,l such that the number of members in the set is
bounded by 0 ≤ Card (Vαβ,l) ≤ 12. A non-unique set of triangles Tαβ,l can be constructed
from the set of Vαβ,l where Card (Tαβ,l) = max[0, Card (Vαβ,l)−2]. To preserve continuity,
if multiple vertices exist for a face of a cube, they should be connected identically for
both cubes bounded by the face. Global sets of vertices Vαβ and triangles Tαβ can be
constructed by concatenating all unique entries in all local cube sets Vαβ,l and Tαβ,l,
respectively. The global sets can be used for graphical purposes, and estimation of various
measures of the system.

To aid clarity, we illustrate the MC algorithm for a two-dimensional system in Fig. 1. In
this figure, the shading indicates the value of G(x) and the surface of interest is located
at G(x) = 0.5. The white square indicates an example local cell and two vertices exist in
this cell, which follows from examination of the values at the nodes that bound the cell in
light of Eqs. (1) and (2). In this case, the boundary between the phases results in a series
of line segments and the example cell includes one such line segment. The extension to
three-dimensional systems leads to a larger number of potential vertices per cube, which
can be grouped to form a set of triangular planes that approximate Ωαβ.

2.2 Porous media marching cubes approach

The MC approach can be used to construct a surface from a single function G(x). For
the multiphase systems of concern in this work, the situation is complicated because the
domain may consist of three phases, three interfaces, and a common curve. To construct
these entities, two functions, F (x) and S(x), will be used. The quantities of interest
for a three-phase system are described in Table 1. These are logical extensions of the
sets described in detail in §2.1 and for which these global sets have corresponding local
counterparts for each cube. Once computed, these sets form the basis for calculating
interfacial areas, common curve lengths, and other quantities of interest. Computing the
members of these sets depends upon the nature of the data available, the smoothness of
this data, the fraction of the domain over which each source of data is well-defined, and
modifications made to the basic MC algorithm.

Consider the common case of a three-phase system in which a smooth, continuous, dif-
ferentiable function related to the location of the solid phase S(x) is defined ∀x ∈ Ω.
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Marching Cubes (MC)

The reason that the MC 
algorithm is not called the 
marching squares algorithm is 
because it is a 3-D algorithm.

Three dimensions makes things 
more complicated:
   - surfaces are represented as a 

set of triangles 
   - you have to figure out a way  

to specify how to form these 
triangles
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MC and Interfacial Areas
Suppose we want to measure interfacial area from a 
porous medium data set.  
We are interested in the component interfacial areas 
between one phase and another.  For a three phase (two 
fluids) system there are three such interfaces:

The MC allows us to extract one interface at a time, 
which usually means you have to compute the 
interfacial areas you want using interfaces you can 
compute easily:

Algorithm 1 PMMC Algorithm

for l = 1, ..., n3
c do

Form Nc,l, Nli, Ec,l and Xl

if xi ∈ Ωα∀xi ∈ Xl, α ∈ {w, n, s} then
no surfaces or common curve segments exist in cube l

else if xi ∈ {Ωw, Ωn}∀xi ∈ Xl then
apply the MC algorithm using F (x) = νwn to find Vwn,l and Twn,l

else if xi ∈ {Ωw, Ωs}∀xi ∈ Xl then
apply the MC algorithm using S(x) = νs to find Vws,l and Tws,l

else if xi ∈ {Ωn, Ωs}∀xi ∈ Xl then
apply the MC algorithm using S(x) = νs to find Vns,l and Tns,l

else
apply the MC algorithm using S(x) = νs to find Vs and Ts

find F (x)∀x ∈ Vs

if F (x) is defined ∀xi ∈ Xl then
use linear interpolation to form Vwns,l and Lwns,l

else
use extrapolation to form Vwns,l and Lwns,l

end if
use Vs and Vwns,l to form Vws and Vns

form Tws,l andTns,l

form Vwn,l from Ec,l

form Twn,l from Vwns,l and Vwn,l

end if
update global sets Vwn, Vws, Vns, Vwns, Twn, Tws, Tns, and Lwns as needed

end for

nodes have S(x) ≤ νs and are in Ωs, and the rest of the nodes have F (x) > νwn and are in
Ωn, thus only the Ωns interface exist; and (5) some of the nodes have S(x) ≤ νs and are in
Ωs, some of the remaining nodes have F (x) ≤ νwn and are in Ωw, and the rest of the nodes
have F (x) > νwn and are in Ωn, thus interfaces Ωws, Ωns, Ωwn, and common curve Ωwns

all exist within the cube. For Cases 2–4 the standard MC algorithm is applied using the
F (x) = νwn or S(x) = νs condition to approximate vertices on the interface as indicated
in Algorithm 1.

Case 5 is the most complicated case and requires several steps, since three interfaces and
one or more common curve segments exist in the cube. The MC algorithm is first applied
for S(x) = νs resulting in Vs and Ts. This information is sufficient to compute the area of
the solid phase but not to subdivide this area into Ωws and Ωns. The subdivision requires
an approximation of F (x) on the solid surface.

If F (x) is defined within Ωs, linear interpolation is applied along the edges of the cube
to approximate F (x) for all solid-phase vertices in Vs. If F (x) is undefined in Ωs, an
extrapolation procedure is applied in order to determine these values. The extrapolation
used in our algorithm is the polynomial obtained as a result of Algorithm 2. Suppose a
solid phase vertex is found on edge eli. The end points of this edge are denoted by x+

and x− such that S(x+) > νs and S(x−) < νs. Since x− ∈ Ωs, F (x−) is undefined and we
look for fluid nodes in the direction of x+−x− to construct an extrapolation polynomial
f̌ . The value at the solid phase vertex may then be found by evaluating this polynomial.
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Porous Medium Marching Cubes 
(PMMC) Objectives

- Use the ideas developed in the MC to compute the 
component interfaces explicitly to obtain a precise 
representation of the system including the common 
curve.

- Implement in a general framework so that it can be 
applied to different kinds of data.



Porous Media Marching Cubes (PMMC)

• Solid surface defined by

• Interface between wetting and non-wetting fluids defined 
by            

•         is defined              ,          may be defined

• Using linear interpolation, construct approximations for the 
interfaces and common curve within each cube as in the 
MC algorithm

CMWR XVI 3

2. METHODS

In a three-phase porous media system, three interfaces Ωwn, Ωws, Ωns and one common curve
Ωwns may exist. The objective of the MMC algorithm is to construct approximations of these
objects from values of two continuous functions, S(x) and F (x), each of which is known at the
node points of a regular grid. The interfaces in the system are obtained as isosurfaces from these
functions, with S(x) = νs corresponding to the solid surface, and F (x) = νwn corresponding
to the interface between wetting and non-wetting fluids. As in the MC algorithm, surface
approximations are formed by marching through the cubes formed by adjacent grid nodes and
constructing a list of triangles corresponding to the desired surface.

In the MMC algorithm, three possibilities exist for each grid cube in a three-phase system:
(1) only one phase is present in the cube, (2) two phases are present in the cube, or (3) all
three phases are present in the cube. For Case 1, no interfaces or common curves exist in the
cube. For Case 2 one interface is present, but no common curve. For Case 3, three interfaces
and a common curve exist. For a Case 2 cube, the steps used in the standard MC algorithm
are applied to obtain the interface. For a Case 3 cube, the MC algorithm is used first to
construct the solid surface; then interpolation is applied to approximate F (x) on the solid
surface. Linear interpolation along triangle legs may next be used to determine the location of
points on the common curve Ω̌wns, where the hat has been used to denote that this object is
an approximation. Subdivision of the solid surface at the common curve is used to obtain the
interface approximations Ω̌ws and Ω̌ns. Points on the wn interface are then determined along
cube edges, excluding any points for which S(x) < νs. These points are combined with the
common curve points to obtain the triangle vertices for the approximation Ω̌wn. Further details
of the MMC algorithm may be found in McClure et al. [12].

To apply the MMC approach, we must first obtain suitable functions F (x) and S(x), along with
isovalues νs and νwn. The general procedure that we use to obtain this information from CMT
data is shown in Fig. 1. Unprocessed CMT data consists of initial and final energy intensities for
a large number of photon beams that are passed through a sample at different angles. Inversion
of this data yields a three-dimensional representation of the photon attenuation in each voxel
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Figure 1. Formatting procedure used to obtain input data for the MMC ap-
proach from data obtained using x-ray tomography.
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Fig. 1. Analog of the MC algorithm for a two-dimensional system illustrating computation of
the contour defined by G(x) = 0.5.

Table 1
Sets needed for the PMMC algorithm.
Set Description
Nc,l,Nli,Ec,l,Xl nodes bounding cube, nodes forming all edges i, edges in cube l, and

locations of nodes bounding cube
Vwn,Vns,Vws,Vs vertices on the respective surface
Twn,Tns,Tws,Ts triangles comprised of vertices on the respective surface
Vwns vertices where the three phases meet
Lwns line segments consisting of pairs of vertices from Vwns

Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
computational approaches applied to three-phase porous medium systems. The surface
of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
F (x) at the nodes in the cube: (1) all nodes have values that correspond to a single phase
Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the
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Porous Media Marching Cubes (PMMC)
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PMMC Algorithm - Five Primary Cases

1.  All cube corners correspond to single phase; no interface exists.
2.  Some corners have                 , the rest have                   ;
only the wn interface exists.
3. Some corners have                , the rest have                  ;
only the ws interface exists. 
4. Some corners have                , the rest have                  ;
only the ns interface exists.
5. Some corners have                , some have                   , the rest 
have                  ;  all interfaces and common curve are present   

Fig. 1. Analog of the MC algorithm for a two-dimensional system illustrating computation of
the contour defined by G(x) = 0.5.
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Algorithm 1 PMMC Algorithm

for l = 1, ..., n3
c do

Form Nc,l, Nli, Ec,l and Xl

if xi ∈ Ωα∀xi ∈ Xl, α ∈ {w, n, s} then
no surfaces or common curve segments exist in cube l

else if xi ∈ {Ωw, Ωn}∀xi ∈ Xl then
apply the MC algorithm using F (x) = νwn to find Vwn,l and Twn,l

else if xi ∈ {Ωw, Ωs}∀xi ∈ Xl then
apply the MC algorithm using S(x) = νs to find Vws,l and Tws,l

else if xi ∈ {Ωn, Ωs}∀xi ∈ Xl then
apply the MC algorithm using S(x) = νs to find Vns,l and Tns,l

else
apply the MC algorithm using S(x) = νs to find Vs and Ts

find F (x)∀x ∈ Vs

if F (x) is defined ∀xi ∈ Xl then
use linear interpolation to form Vwns,l and Lwns,l

else
use extrapolation to form Vwns,l and Lwns,l

end if
use Vs and Vwns,l to form Vws and Vns

form Tws,l andTns,l

form Vwn,l from Ec,l

form Twn,l from Vwns,l and Vwn,l

end if
update global sets Vwn, Vws, Vns, Vwns, Twn, Tws, Tns, and Lwns as needed

end for

nodes have S(x) ≤ νs and are in Ωs, and the rest of the nodes have F (x) > νwn and are in
Ωn, thus only the Ωns interface exist; and (5) some of the nodes have S(x) ≤ νs and are in
Ωs, some of the remaining nodes have F (x) ≤ νwn and are in Ωw, and the rest of the nodes
have F (x) > νwn and are in Ωn, thus interfaces Ωws, Ωns, Ωwn, and common curve Ωwns

all exist within the cube. For Cases 2–4 the standard MC algorithm is applied using the
F (x) = νwn or S(x) = νs condition to approximate vertices on the interface as indicated
in Algorithm 1.

Case 5 is the most complicated case and requires several steps, since three interfaces and
one or more common curve segments exist in the cube. The MC algorithm is first applied
for S(x) = νs resulting in Vs and Ts. This information is sufficient to compute the area of
the solid phase but not to subdivide this area into Ωws and Ωns. The subdivision requires
an approximation of F (x) on the solid surface.

If F (x) is defined within Ωs, linear interpolation is applied along the edges of the cube
to approximate F (x) for all solid-phase vertices in Vs. If F (x) is undefined in Ωs, an
extrapolation procedure is applied in order to determine these values. The extrapolation
used in our algorithm is the polynomial obtained as a result of Algorithm 2. Suppose a
solid phase vertex is found on edge eli. The end points of this edge are denoted by x+

and x− such that S(x+) > νs and S(x−) < νs. Since x− ∈ Ωs, F (x−) is undefined and we
look for fluid nodes in the direction of x+−x− to construct an extrapolation polynomial
f̌ . The value at the solid phase vertex may then be found by evaluating this polynomial.
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PMMC - Finding the Common Curve

- Values of          are 
obtained at every point on 
the solid surface. 
- These values may be used 
to compute the common 
line along triangle edges in 
exactly the same fashion 
vertices are computed along 
cube edges in the MC 
algorithm 

Fig. 1. Analog of the MC algorithm for a two-dimensional system illustrating computation of
the contour defined by G(x) = 0.5.

Table 1
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Set Description
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Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
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of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
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Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the
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Higher Order Approach (HOPMMC)
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Fig. 3. The construction of the component surfaces and common curve for a grid cell in which
all three phases are present: (a) solid surface (grey) is constructed using the MC algorithm and
extrapolated values of F (x) are estimated at solid phase vertices; (b) Vwns,l (orange) are found
using by using linear interpolation between pairs of solid-phase vertices; (c) the solid surface is
subdivided along the common curve to form members of Tns (blue) and Tws (brown); and (d)
Ωwn is approximated using Vwns and Vwn yielding Twn (green).

2.3 Higher order porous media marching cubes approach

The MC and PMMC cubes outlined above are based upon linear interpolation within a
cube bounded by eight nodes. In some situations, higher order approximations may be
justified and yield more accurate approximations of the surfaces and common curve. One
of the simplest extensions to the linear approximation scheme used thus far is a trilinear
approximation, which can be written as

F̌ (x) = a0 + a1x + a2y + a3z + a4xy + a5xz + a6yz + a7xyz (3)

where ai are constants determined by matching values of F̌ to F at all nodes in the cube,
and x, y, and z are the spatial coordinates. Because this approximation is linear along
edges, it is consistent with the approximations used in the MC and PMMC algorithms
to locate vertices along edges. However, approximation (3) between pairs of such vertices
is not linear and thus its use requires a nonlinear extension of the method presented
previously.

A nonlinear extension, which we refer to as the higher order porous media marching
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Based on our knowledge of the system, we require

cubes (HOPMMC) approach, was implemented using the locations represented by Vwns

as initial guesses for a Newton iteration scheme intended to locate more accurately a set
of common curve vertices. Since these points lie in IR3, the following three equations must
be satisfied simulataneously at any such point

F̌ (x)− νwn = 0 (4)

Š(x)− νs = 0 (5)

n·(x− x0) = 0 (6)

where Š is a trilinear approximation of S, n = [∇F̌ (x0) ×∇Š(x0)]/|∇F̌ (x0) ×∇Š(x0)|
is a unit normal vector specifying the plane in which the final approximation will lie,
and x0 is the initial estimate of the common curve point based upon repeated linear
interpolation described in the PMMC algorithm. The solution to Eqs. (4)–(6) were used
to update Vwns,l and Lwns,l.

The estimated length of the common curve was refined using linear interpolation between
pairs of connected vertices from Vwns as initial guesses to determine additional vertices
on Ωwns again using eqns (4)–(6). The improved and new vertices in Vwns were in turn
used to refine Tws, Tns, and Twn.

The HOPMMC approach is illustrated in Fig. 4. In this example, the common curve
segments shown in Fig. 3 (d) were each subdivided one time and the locations of all
vertices were refined by solving Eqs. (4)–(6). We examined various levels of refinement.

Fig. 4. Refinement of the common curve resulting from a single subdivision of the common
curve line segments shown in Fig. 3 (d) and refinement of all locations using the HOPMMC
approach.

2.4 Approximation of mean curvatures

In addition to the surfaces and common curve computed using the PMMC and HOPMMC
algorithms, we also estimated the mean curvature of Ωαβ, which we refer to as Jαβ at the
microscale and Jαβ when this quantity is integrated over the entire microscale surface
area to yield a single macroscale average.

The curvature of the Ωwn surface was computed after first noting that because the surface
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is a unit normal vector specifying the plane in which the final approximation will lie,
and x0 is the initial estimate of the common curve point based upon repeated linear
interpolation described in the PMMC algorithm. The solution to Eqs. (4)–(6) were used
to update Vwns,l and Lwns,l.

The estimated length of the common curve was refined using linear interpolation between
pairs of connected vertices from Vwns as initial guesses to determine additional vertices
on Ωwns again using eqns (4)–(6). The improved and new vertices in Vwns were in turn
used to refine Tws, Tns, and Twn.

The HOPMMC approach is illustrated in Fig. 4. In this example, the common curve
segments shown in Fig. 3 (d) were each subdivided one time and the locations of all
vertices were refined by solving Eqs. (4)–(6). We examined various levels of refinement.

Fig. 4. Refinement of the common curve resulting from a single subdivision of the common
curve line segments shown in Fig. 3 (d) and refinement of all locations using the HOPMMC
approach.

2.4 Approximation of mean curvatures

In addition to the surfaces and common curve computed using the PMMC and HOPMMC
algorithms, we also estimated the mean curvature of Ωαβ, which we refer to as Jαβ at the
microscale and Jαβ when this quantity is integrated over the entire microscale surface
area to yield a single macroscale average.

The curvature of the Ωwn surface was computed after first noting that because the surface
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- Use points as an initial guess for 
a Newton iteration that moves 
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PMMC in Application

We have methods to construct the objects we are interested 
in as long as we have functions         and         and 
isovalues       and

- Gives us information about the position of the 
   phases and interfaces as well as other information

- How do we obtain these functions and isovalues for a 
  particular data set?

Fig. 1. Analog of the MC algorithm for a two-dimensional system illustrating computation of
the contour defined by G(x) = 0.5.

Table 1
Sets needed for the PMMC algorithm.
Set Description
Nc,l,Nli,Ec,l,Xl nodes bounding cube, nodes forming all edges i, edges in cube l, and

locations of nodes bounding cube
Vwn,Vns,Vws,Vs vertices on the respective surface
Twn,Tns,Tws,Ts triangles comprised of vertices on the respective surface
Vwns vertices where the three phases meet
Lwns line segments consisting of pairs of vertices from Vwns

Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
computational approaches applied to three-phase porous medium systems. The surface
of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
F (x) at the nodes in the cube: (1) all nodes have values that correspond to a single phase
Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the
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the contour defined by G(x) = 0.5.
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Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
computational approaches applied to three-phase porous medium systems. The surface
of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
F (x) at the nodes in the cube: (1) all nodes have values that correspond to a single phase
Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the
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Algorithm 2 Construction of extrapolation polynomial
h← x+ − x−

if {x+ + h,x+ + 2h} ∈ Ωw
⋃

Ωn then
a← F (x+)

b← 1
2

(
3F (x+)− 4F (x+ + h) + F (x+ + 2h)

)

c← 1
2

(
F (x+)− 2F (x+ + h) + F (x+ + 2h)

)

f̌(x+ + ρh) = a + bρ + cρ2

else if {x+ + h} ∈ Ωw
⋃

Ωn then
a← F (x+)
b← F (x+ + h)− F (x+)
f̌(x+ + ρh) = a + bρ

else
f̌(x+ + ρh) = F (x+)

end if

Based upon these interpolated or extrapolated values, the set of three vertices in each
member of Ts can be determined to be in either Ωw or Ωn. If all vertices in a triangle are
in a single phase, that member of Ts is added to either Tws or Tns as appropriate. For
cases in which the vertices in a solid-phase triangle are in a mixture of both of the fluid
phases, it is necessary to locate points on the common curve and subdivide the triangle.
This is accomplished using linear interpolation of F (x) along edges of the triangle to find
points on the solid surface where the approximation F̌ (x) = νwn, which is by definition
a common curve vertex and a member of the Vwns. This procedure is shown in Fig. 2.

Next, linear interpolation is peformed along edges in Ec,l that are bounded by fluids
of a different type at each endpoint, yielding vertices Vwn. Vwns and Vwn are combined
to approximate Ωwn and populate Twn. To aid clarity, the PMMC procedure for a cube
consisting of Ωs, Ωw, and Ωn is depicted in Fig. 3, where discrete values of F (x) at vertices
are shown and νwn = 75.

Fig. 2. Solid-phase triangles containing a common curve segment are subdivided along this
segment, creating three triangles, which are then incorporated into the appropriate surface.
In this example, two of the vertices, and resultant triangles, are located in a region where
F̌ (x) > νwn and are assigned to Ωns, and the other triangle becomes part of the Ωws.
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Algorithm 1 PMMC Algorithm

for l = 1, ..., n3
c do

Form Nc,l, Nli, Ec,l and Xl

if xi ∈ Ωα∀xi ∈ Xl, α ∈ {w, n, s} then
no surfaces or common curve segments exist in cube l

else if xi ∈ {Ωw, Ωn}∀xi ∈ Xl then
apply the MC algorithm using F (x) = νwn to find Vwn,l and Twn,l

else if xi ∈ {Ωw, Ωs}∀xi ∈ Xl then
apply the MC algorithm using S(x) = νs to find Vws,l and Tws,l

else if xi ∈ {Ωn, Ωs}∀xi ∈ Xl then
apply the MC algorithm using S(x) = νs to find Vns,l and Tns,l

else
apply the MC algorithm using S(x) = νs to find Vs and Ts

find F (x)∀x ∈ Vs

if F (x) is defined ∀xi ∈ Xl then
use linear interpolation to form Vwns,l and Lwns,l

else
use extrapolation to form Vwns,l and Lwns,l

end if
use Vs and Vwns,l to form Vws and Vns

form Tws,l andTns,l

form Vwn,l from Ec,l

form Twn,l from Vwns,l and Vwn,l

end if
update global sets Vwn, Vws, Vns, Vwns, Twn, Tws, Tns, and Lwns as needed

end for

nodes have S(x) ≤ νs and are in Ωs, and the rest of the nodes have F (x) > νwn and are in
Ωn, thus only the Ωns interface exist; and (5) some of the nodes have S(x) ≤ νs and are in
Ωs, some of the remaining nodes have F (x) ≤ νwn and are in Ωw, and the rest of the nodes
have F (x) > νwn and are in Ωn, thus interfaces Ωws, Ωns, Ωwn, and common curve Ωwns

all exist within the cube. For Cases 2–4 the standard MC algorithm is applied using the
F (x) = νwn or S(x) = νs condition to approximate vertices on the interface as indicated
in Algorithm 1.

Case 5 is the most complicated case and requires several steps, since three interfaces and
one or more common curve segments exist in the cube. The MC algorithm is first applied
for S(x) = νs resulting in Vs and Ts. This information is sufficient to compute the area of
the solid phase but not to subdivide this area into Ωws and Ωns. The subdivision requires
an approximation of F (x) on the solid surface.

If F (x) is defined within Ωs, linear interpolation is applied along the edges of the cube
to approximate F (x) for all solid-phase vertices in Vs. If F (x) is undefined in Ωs, an
extrapolation procedure is applied in order to determine these values. The extrapolation
used in our algorithm is the polynomial obtained as a result of Algorithm 2. Suppose a
solid phase vertex is found on edge eli. The end points of this edge are denoted by x+

and x− such that S(x+) > νs and S(x−) < νs. Since x− ∈ Ωs, F (x−) is undefined and we
look for fluid nodes in the direction of x+−x− to construct an extrapolation polynomial
f̌ . The value at the solid phase vertex may then be found by evaluating this polynomial.
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Test Case 1: Lattice Boltzmann (LB)
The solid phase is composed of a sphere packing so that 
the geometry is known exactly.         is computed using the 
signed distance function:

Note that                by construction at the solid surface. 

Fig. 1. Analog of the MC algorithm for a two-dimensional system illustrating computation of
the contour defined by G(x) = 0.5.

Table 1
Sets needed for the PMMC algorithm.
Set Description
Nc,l,Nli,Ec,l,Xl nodes bounding cube, nodes forming all edges i, edges in cube l, and

locations of nodes bounding cube
Vwn,Vns,Vws,Vs vertices on the respective surface
Twn,Tns,Tws,Ts triangles comprised of vertices on the respective surface
Vwns vertices where the three phases meet
Lwns line segments consisting of pairs of vertices from Vwns

Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
computational approaches applied to three-phase porous medium systems. The surface
of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
F (x) at the nodes in the cube: (1) all nodes have values that correspond to a single phase
Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the

6

is defined by an isovalue of the function F , the gradient of F is orthogonal to Ωwn. Thus
the unit normal was computed as

n =
∇F

|∇F | (7)

From Eq. (7), the mean curvature Jwn = ∇·nwn at points on Ωwn may be calculated as

Jwn = ∇· ∇F

|∇F | =
(
Fxx(F

2
y + F 2

z ) + Fyy(F
2
x + F 2

z ) + Fzz(F
2
x + F 2

y )− 2FxyFxFy

−2FyzFyFz − 2FxzFxFz

)
/(F 2

x + F 2
y + F 2

z )3/2 (8)

where the subscripts denote differentiation of F .

Eq. (8) was approximated using centered difference approximations to compute all needed
derivatives of F at all nodes in a cube. The values of these derivatives were then used to
linearly interpolate values at the vertices Vwn,l and used to evaluate Jwn at these vertices.
Jwn was computed as an area-weighted average over the entire domain

Jwn =

∫
Ωwn

JwndS
∫
Ωwn

dS
. (9)

Using the surfaces constructed with the PMMC approach, these integrals can be evaluated
numerically. Curvatures Jws and Jns were computed using a similar approach.

2.5 Data source

In many cases, raw data will not be in the format required by the PMMC algorithm.
In this section, we discuss schemes that allow us to obtain input data in the proper
format from various sources. Generally, two primary challenges must be addressed in
order to apply this approach correctly: (1) functions F and S must be identified and
measured to determine their values at nodes in Mh, and (2) appropriate isovalues that
correspond to the surfaces of interest must be identified. In practice, the functions F and
S will correspond to different physical quantities depending on the origin of the data.
It is not feasible to develop well-defined guidelines regarding the data formatting issues
for all possible situations. Instead, we provide a selection of example cases corresponding
to likely scenarios that give insight into considerations that also apply to more general
circumstances.

Fig. 5 (a) shows a slice of a porous medium data set in which F (x) is the fluid density
determined from a LB simulation. A value of zero is assigned to all nodes that are in Ωs

to denote that the fluid density is undefined in this region. In this case, the position of
the solid phase is known a priori, and the solid surface may be reconstructed by using this
knowledge to determine S(x). The solid phase is composed of nS spheres with centers cs

and radii rs, where s = 1, . . . , nS, and we choose S(x) to be the signed distance from a
point x in Mh to the nearest surface of the solid, which we compute as

S(x) = min
{
||x− cs||2 − rs

}
, for s = 1, . . . , nS (10)
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(a) (b)

Fig. 5. Slice of a porous medium data set generated using the LB method: (a) F is comprised
of the fluid density distribution and shown by color shading, and (b) the known location of a
spherical solid-phase is used to create a signed-distance function and Ωs is represented in black
after being constructed using the PMMC algorithm.

By definition S(x) = 0 corresponds to the surface of the solid phase. Consequently, if
we evaluate S at every grid point, we can use the PMMC algorithm to construct an
approximate representation of the solid surface. Performing this reconstruction yields the
representation of the solid surface shown in Fig. 5 (b). For cases in which the functional
form of S(x) is not known explicitly but values are known at grid nodes, the same
approach may be applied.

A case of interest arises in model systems where exact knowledge of the solid phase exists
and is used as a basis for microscale simulations using for example the LB method. In
this case, F is a density function measure indicative of composition and it is only known
at nodes within the pore space, but the solid phase information is exact and can be used
directly. An algorithm representing this important class of application is shown in Fig. 6.

Exact
knowledge

of solid
phase

LB output:
fluid density

!

!

S(x)

F (x)

"""#

$$$%

PMMC
code

Fig. 6. Flow chart depicting the formatting procedure used to obtain input data for the PMMC
approach using information available from a porous medium LB simulation.

For cases in which F (x) is undefined in Ωs, even though we are able to determine an
isovalue such that F (x) = νwn corresponds to Ωwn, some grid cubes will not possess
physically meaningful values for F at each corner. For these cases, the PMMC algorithm
we have described uses an extrapolation procedure based on values of F at nearby grid
nodes within the pore space so that approximate values of F may be obtained at the solid
surface. For cases in which both F (x) and S(x) are continuous and known at each node
inMh, this information may be provided to the PMMC or HOPMMC code directly.
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         is chosen to be the fluid density output from the LB 
simulation.  Because it is only defined in the porespace, an 
extrapolation is necessary to determine its value at the 
solid surface.

Fig. 1. Analog of the MC algorithm for a two-dimensional system illustrating computation of
the contour defined by G(x) = 0.5.

Table 1
Sets needed for the PMMC algorithm.
Set Description
Nc,l,Nli,Ec,l,Xl nodes bounding cube, nodes forming all edges i, edges in cube l, and

locations of nodes bounding cube
Vwn,Vns,Vws,Vs vertices on the respective surface
Twn,Tns,Tws,Ts triangles comprised of vertices on the respective surface
Vwns vertices where the three phases meet
Lwns line segments consisting of pairs of vertices from Vwns

Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
computational approaches applied to three-phase porous medium systems. The surface
of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
F (x) at the nodes in the cube: (1) all nodes have values that correspond to a single phase
Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the
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Test Case 2: X-Ray Tomography

Objective for experimental data:   Determine       
and        , as well as isovalues      and  

Fig. 1. Analog of the MC algorithm for a two-dimensional system illustrating computation of
the contour defined by G(x) = 0.5.

Table 1
Sets needed for the PMMC algorithm.
Set Description
Nc,l,Nli,Ec,l,Xl nodes bounding cube, nodes forming all edges i, edges in cube l, and

locations of nodes bounding cube
Vwn,Vns,Vws,Vs vertices on the respective surface
Twn,Tns,Tws,Ts triangles comprised of vertices on the respective surface
Vwns vertices where the three phases meet
Lwns line segments consisting of pairs of vertices from Vwns

Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
computational approaches applied to three-phase porous medium systems. The surface
of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
F (x) at the nodes in the cube: (1) all nodes have values that correspond to a single phase
Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the
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the contour defined by G(x) = 0.5.

Table 1
Sets needed for the PMMC algorithm.
Set Description
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locations of nodes bounding cube
Vwn,Vns,Vws,Vs vertices on the respective surface
Twn,Tns,Tws,Ts triangles comprised of vertices on the respective surface
Vwns vertices where the three phases meet
Lwns line segments consisting of pairs of vertices from Vwns

Also, a second smooth, continuous, differentiable function related to fluid properties F (x)
is defined ∀x ∈ Ω. Such functions can result from either experimental measurements or
computational approaches applied to three-phase porous medium systems. The surface
of the solid phase corresponds to S(x) = νs, and Ωwn corresponds to F (x) = νwn. In
some cases, it may be true that F (x) is only defined ∀x ∈ Ωw ∪ Ωn. An example of this
would be if F (x) corresponds to the fluid density. Our PMMC algorithm is designed to
construct the objects of interest for either of these cases.

The sets listed in Table 1 are constructed locally in each cube using Algorithm 1. For each
cube, local sets corresponding to nodes, edges, and the corresponding spatial locations
are formed. One of five conditions must hold for each cube given the values of S(x) and
F (x) at the nodes in the cube: (1) all nodes have values that correspond to a single phase
Ωα, thus no interfaces or common curve segments exist; (2) all of the nodes are in a fluid
phase with some values of F (x) ≤ νwn and some value of F (x) > νwn, thus only the Ωwn

interface exists; (3) some of the nodes have S(x) ≤ νs and are in Ωs, and the rest of the
nodes have F (x) ≤ νwn and are in Ωw, thus only the Ωws interface exists; (4) some of the
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2. METHODS

In a three-phase porous media system, three interfaces Ωwn, Ωws, Ωns and one common curve
Ωwns may exist. The objective of the MMC algorithm is to construct approximations of these
objects from values of two continuous functions, S(x) and F (x), each of which is known at the
node points of a regular grid. The interfaces in the system are obtained as isosurfaces from these
functions, with S(x) = νs corresponding to the solid surface, and F (x) = νwn corresponding
to the interface between wetting and non-wetting fluids. As in the MC algorithm, surface
approximations are formed by marching through the cubes formed by adjacent grid nodes and
constructing a list of triangles corresponding to the desired surface.

In the MMC algorithm, three possibilities exist for each grid cube in a three-phase system:
(1) only one phase is present in the cube, (2) two phases are present in the cube, or (3) all
three phases are present in the cube. For Case 1, no interfaces or common curves exist in the
cube. For Case 2 one interface is present, but no common curve. For Case 3, three interfaces
and a common curve exist. For a Case 2 cube, the steps used in the standard MC algorithm
are applied to obtain the interface. For a Case 3 cube, the MC algorithm is used first to
construct the solid surface; then interpolation is applied to approximate F (x) on the solid
surface. Linear interpolation along triangle legs may next be used to determine the location of
points on the common curve Ω̌wns, where the hat has been used to denote that this object is
an approximation. Subdivision of the solid surface at the common curve is used to obtain the
interface approximations Ω̌ws and Ω̌ns. Points on the wn interface are then determined along
cube edges, excluding any points for which S(x) < νs. These points are combined with the
common curve points to obtain the triangle vertices for the approximation Ω̌wn. Further details
of the MMC algorithm may be found in McClure et al. [12].

To apply the MMC approach, we must first obtain suitable functions F (x) and S(x), along with
isovalues νs and νwn. The general procedure that we use to obtain this information from CMT
data is shown in Fig. 1. Unprocessed CMT data consists of initial and final energy intensities for
a large number of photon beams that are passed through a sample at different angles. Inversion
of this data yields a three-dimensional representation of the photon attenuation in each voxel
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Figure 1. Formatting procedure used to obtain input data for the MMC ap-
proach from data obtained using x-ray tomography.
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Figure 1. Formatting procedure used to obtain input data for the MMC ap-
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objects from values of two continuous functions, S(x) and F (x), each of which is known at the
node points of a regular grid. The interfaces in the system are obtained as isosurfaces from these
functions, with S(x) = νs corresponding to the solid surface, and F (x) = νwn corresponding
to the interface between wetting and non-wetting fluids. As in the MC algorithm, surface
approximations are formed by marching through the cubes formed by adjacent grid nodes and
constructing a list of triangles corresponding to the desired surface.

In the MMC algorithm, three possibilities exist for each grid cube in a three-phase system:
(1) only one phase is present in the cube, (2) two phases are present in the cube, or (3) all
three phases are present in the cube. For Case 1, no interfaces or common curves exist in the
cube. For Case 2 one interface is present, but no common curve. For Case 3, three interfaces
and a common curve exist. For a Case 2 cube, the steps used in the standard MC algorithm
are applied to obtain the interface. For a Case 3 cube, the MC algorithm is used first to
construct the solid surface; then interpolation is applied to approximate F (x) on the solid
surface. Linear interpolation along triangle legs may next be used to determine the location of
points on the common curve Ω̌wns, where the hat has been used to denote that this object is
an approximation. Subdivision of the solid surface at the common curve is used to obtain the
interface approximations Ω̌ws and Ω̌ns. Points on the wn interface are then determined along
cube edges, excluding any points for which S(x) < νs. These points are combined with the
common curve points to obtain the triangle vertices for the approximation Ω̌wn. Further details
of the MMC algorithm may be found in McClure et al. [12].

To apply the MMC approach, we must first obtain suitable functions F (x) and S(x), along with
isovalues νs and νwn. The general procedure that we use to obtain this information from CMT
data is shown in Fig. 1. Unprocessed CMT data consists of initial and final energy intensities for
a large number of photon beams that are passed through a sample at different angles. Inversion
of this data yields a three-dimensional representation of the photon attenuation in each voxel
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Figure 1. Formatting procedure used to obtain input data for the MMC ap-
proach from data obtained using x-ray tomography.



Test Case 2: X-Ray Tomography 

“dry” data three-phase data



Isovalue determination  - solid phase
Histogram for 2-phase system
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Isovalue determination - fluid phase
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Histogram for 3-phase system
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Things to Consider: Isovalue 
Determination

- If you have any information that you know for sure (ie. 
porosity, saturation), you should be able to use this 
information to determine isovalues that will match them.

- Interfacial area estimates should be relatively insensitive 
to the choice of isovalue.



Other Ideas to Consider

“Edge detection” or “steepest descent”



Edge Detection Algorithms

Take the gradient of the values and look for the 
regions where they are high.

If you are looking for a maximum in the 
gradient and wish to find points that do not live 
on the grid, you need to use a non-linear 
approximation (not too bad in 2-D).



Data Set Overlap


