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Overview

- Level set representation of surfaces

- Data representation for porous media

- Marching cubes (MC) algorithm

- Porous medium marching cubes algorithm (PMMC)
- Higher order PMMC (HOPMMC)

- Interfacial curvatures

- Examples: Lattice Boltzmann, X-ray tomography



What 1s a Level Set?

Suppose that you have some continuous function G(x)
defined vx € @

It we set this function to be equal to a constant
value v, G(x) = v defines an “level set” or
1sosurface.

If we are able to determine G(x) and v so that this
1sosurface corresponds to a surtace which we are
interested 1n, our job will be easy.



Data Sets




Data Sets




Data Sets
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Goal

Use this information to determine the position of the
phases, intertface location, curvature of the interface,
other types of information which are of interest



Marching Cubes (MC)

Compute 1sosurface G(x) = v
from continuous data

Here we look at a two
dimensional case:

- values of G(x) are known at
the corners of squares that
cover the domain

- Move through the system one

box at a time




Marching Cubes (MC)

An 1nterface exists along a cube
edge 1f (intermediate value
theorem):

G(xT) —v][G(x7) —v] <0

The 1nterface locations are
approximated along the cube
edges using linear interpolation:

G(xt) —v
G(x*) = G(x7)

(x~ —x")



Marching Cubes (MC)

The reason that the MC
algorithm is not called the
marching squares algorithm 1is
because it 1s a 3-D algorithm.

Three dimensions makes things
more complicated:
- surfaces are represented as a
set of triangles
- you have to figure out a way
to specity how to form these
triangles




Data Sets with MC




Data Sets with MC




MC and Interfacial Areas

Suppose we want to measure interfacial area from a
porous medium data set.

We are interested 1in the component interfacial areas
between one phase and another. For a three phase (two
fluids) system there are three such interfaces: Q,., Q... Qun

The MC allows us to extract one interface at a time,
which usually means you have to compute the
interfacial areas you want using interfaces you can
compute easily:

1
Awn = §(aw + an — as)



Porous Medium Marching Cubes
(PMMC) Objectives

- Use the 1deas developed 1n the MC to compute the
component interfaces explicitly to obtain a precise
representation of the system including the common
curve.

- Implement 1n a general framework so that it can be
applied to different kinds of data.



Porous Media Marching Cubes (PMMC)

® Solid surface defined by S(x) = v,

® [nterface between wetting and non-wetting fluids defined
by F(x) = vun

® 5(x)is defined Vx € 2, I'(x)may be defined ¥x € 2, U,

® Using linear interpolation, construct approximations for the

interfaces and common curve within each cube as in the
MC algorithm



Porous Media Marching Cubes (PMMC)

Sets needed for the PMMC algorithm.

Set

Description

NC,l? Nl’i) 86,l7 xl

nodes bounding cube, nodes forming all edges i, edges in cube [, and
locations of nodes bounding cube

vertices on the respective surface

Vs Vs, Vws, V
TwTL)T?’LS)TwS)TS

triangles comprised of vertices on the respective surface

vertices where the three phases meet

line segments consisting of pairs of vertices from Vs




PMMC Algorithm - Five Primary Cases

1. All cube corners correspond to single phase; no interface exists.
2. Some corners have F(x) < v,,, the rest have F(x) > vy ;
only the wn interface exists.

3. Some corners have S(x) < v, the rest have F(x) < v

only the ws interface exists.

4. Some corners have S(x) < v, the rest have F(x) > v,;

only the ns interface exists.

5. Some corners have S(x) < v,, some have F(x) < v,, , the rest
have F(x) > v,,; all interfaces and common curve are present



Algorithm 1 PMMC Algorithm

for/=1,...,n2 do

Form N, ;, Ny, €., and X
if x; € Q. Vx; € X, € {w,n, s} then

no surfaces or common curve segments exist in cube [
else if x; € {Q),, 2, }Vx; € X; then

apply the MC algorithm using F/(x) = vy, to find Vy,; and Ty,
else if x; € {Q,, Q}Vx; € X; then

apply the MC algorithm using S(x) = v; to find V,s; and T
else if x; € {Q),, Q:}Vx; € X; then

apply the MC algorithm using S(x) = vs to find V,,5; and T,
else

apply the MC algorithm using S(x) = v, to find Vs and T

find F(x)Vx € V4

if F'(x) is defined Vx; € X; then

use linear interpolation to form V,,,s; and L
else
use extrapolation to form V,,,; and L

end if

use Vs and Vs to form V,,s and V,,,

form Tys; and T,

form V,,,; from &

form Ty from Vi,s; and Vi,
end if
update global sets Vi, Vuss Vs, Vanss Jwns Jwss Ins, and L,ns as needed

end for




PMMC - Finding the Common Curve

- Values of F(x) are
obtained at every point on
the solid surface.

- These values may be used
to compute the common
line along triangle edges 1n
exactly the same fashion
vertices are computed along
cube edges 1n the MC
algorithm







Higher Order Approach (HOPMMC)

Construct a higher order representation of S(x) and F(x)

use this to com;

bute the common curve more accurately.

F(X) = g + a1T + asy + a3z + asxy + asrz + agyz + arxryz

Based on our knowledge of the system, we require

F(X) = tyn =0
S(x) — v, =0

n-(x —xq) =0

n = [VE(xo) x VS(x0)]/|VE(x0) x VS(x0)]



HOPMMC

-Subdivide each segment of the N
common curve to generate initial |
points

- Use points as an initial guess for
a Newton iteration that moves
them to the proper position.

- Note that this could be applied to
improve the PMMC surtaces also.




PMMC in Application

We have methods to construct the objects we are interested
in as long as we have functions S(x) and F(x) and
1sovalues v, and v,

- Gives us information about the position of the
phases and interfaces as well as other information

- How do we obtain these functions and 1sovalues for a
particular data set?



Test Case 1: Lattice Boltzmann (LB)

The solid phase 1s composed of a sphere packing so that
the geometry 1s known exactly. S(x) 1s computed using the
signed distance function:

S(x) :min{HX—cng —7’3}, for s=1,...,ng

Note that S(x) = 0 by construction at the solid surface.

F(x) 1s chosen to be the fluid density output from the LB
simulation. Because it 1s only defined 1n the porespace, an
extrapolation 1s necessary to determine its value at the
solid surface.



Test Case 2: X-Ray Tomography

Objective for experimental data: Determine S(x)
and F'(x) as well as isovalues Vs and Vun

Smoothing
Dry two- | operations
phase - S(x)
data \
PMMC
Code
Smoothing
Three- : /
phase operations | Fx)
data




Test Case 2: X-Ray Tomography

“dry”” data three-phase data



Isovalue determination - solid phase

10° Histogram for 2-phase system
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Isovalue determination - fluid phase

Histogram for 3-phase system
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Things to Consider: Isovalue
Determination

- If you have any information that you know for sure (ie.
porosity, saturation), you should be able to use this
information to determine 1sovalues that will match them.

- Interfacial area estimates should be relatively insensitive
to the choice of 1sovalue.



Other Ideas to Consider

“Edge detection” or “‘steepest descent”



Edge Detection Algorithms

Take the gradient of the values and look for the
regions where they are high.

It you are looking for a maximum in the
gradient and wish to find points that do not live
on the grid, you need to use a non-linear
approximation (not too bad in 2-D).



Data Set Overlap




