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Abstract.

The constitutive relationships required for the parameterization of multiphase

flow and transport problems are of critical importance to hydrologic modeling. Recently, a
hypothesis has been developed that predicts a functional relationship between capillary
pressure, saturation, and interfacial area. A network model was developed to test this
hypothesis. Microscale physical processes were simulated and volume averaging was used
to derive the macroscopic measures of saturation and fluid-fluid interfacial area per
volume of porous media. Results indicate that a smooth, though complex, functional
relationship exists at the continuum scale. These results have direct relevance to
constitutive theory and the modeling of nonaqueous phase liquid dissolution processes.

Introduction

This paper presents results of a pore-scale network model
simulator designed to explore the relationship between capil-
lary pressure, saturation, and fluid-fluid interfacial area in a
multifluid porous medium. Such a functional dependence has
direct relevance to modeling interfacial mass transfer, includ-
ing problems such as nonaqueous phase liquid (NAPL) disso-
lution. Experience has shown that fluid saturations alone are
inadequate characterizations of the system state in attempts to
model NAPL dissolution [e.g., Powers et al., 1992; Miller et al.,
1990]; information regarding the distribution of the fluid
phases is also required because it is the distribution of fluids at
the pore scale that determines both the interfacial area be-
tween the fluid phases and the relative permeability of the
medium to each fluid. These factors play an important role in
regulating interfacial mass transfer and the transport of soluble
species away from zones containing residual NAPL ganglia.
Because of the difficulties inherent in measuring interfacial
area, recent research has focused on the factors controlling
ganglion size distributions and sought surrogate measures that
can serve to characterize fluid distributions [e.g., Powers et al.,
1994a, b, 1992; Geller and Hunt, 1993; Parker et al., 1991; Imhoff
et al., 1993; Mayer and Miller, 1992; Miller et al., 1990]. In the
present study, numerical results from a pore-scale network
model are used to determine quantitatively a macroscopic re-
lationship between capillary pressure, fluid saturations, and
interfacial area between fluid phases.

This paper also provides an initial test of a hypothesis de-
veloped by Hassanizadeh and Gray [1990] that proposes a for-
mal constitutive relationship between capillary pressure, satu-
ration, and interfacial area. Such a functional dependence
challenges the traditional constitutive relationship in which
capillary pressure is a function of saturation alone, leading to
the familiar hysteretic moisture retention function [e.g., Dul-
lien, 1992]. (For the purposes of this paper, the “moisture
retention function” refers to the relationship between capillary
pressure and saturation, independent of the two fluids in-
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volved.) Verification of the hypothesis of Hassanizadeh and
Gray through physical experimentation will be an extremely
difficult task because of the problems associated with measure-
ments of the interfacial area between fluid phases in a three-
dimensional, opaque, porous medium. Even if such an exper-
iment can be designed and performed, it is possible that
standard measurements on field cores may never be feasible.
Computational multiphase network models offer an alternate,
numerical means of performing such an “experiment” pending
physical measurements or other computational approaches.

Network models were first developed by Fatt [1956] based
on the idea that pore space may be represented as an inter-
connected network of capillary tubes whose radii represent the
dimensions of the pores within a porous medium. Within the
network of pores, proposed microscopic physical processes are
simulated in order to model such behavior as the pore-by-pore
displacement of immiscible fluids. The important benefit of
such a modeling approach is that the geometry of all menisci in
the system can be calculated. These fluid-fluid interfaces, along
with the pore space geometry, completely determine the
boundaries delineating the spatial distribution of fluids within
the lattice. Given this information, macroscopic variables, such
as fluid saturations and interfacial area per volume of porous
medium, may be defined through geometric volume averaging.
In this respect, network models can serve as a bridge between
the microscopic and macroscopic scales.

Network models are now heavily used as investigative tools
to study the nature of fluid flow from the perspective of the
pore scale. They are used in petroleum engineering, chemical
engineering, and physics and increasingly in hydrology. They
have been used to study such topics as diffusion and dispersion
[e.g., Hollewand and Gladden, 1992; Burganos and Payatakes,
1992; Sorbie and Clifford, 1991; Koplik et al., 1988; de Arcangelis
et al., 1986], flow in fractures [e.g., Fourar et al., 1993; Pyrak-
Nollte et al., 1992], pore-scale evaporation processes [Nowicki et
al., 1992], the formation and flow of foam [Laidlaw et al., 1993],
the interpretation of mercury porosimetry and associated char-
acterization of pore size distributions [e.g., loannidis and
Chatzis, 1993; loannidis et al., 1993; Tsakiroglou and Payatakes,
1990; Chatzis and Dullien, 1985], and ganglion formation and
mobilization [e.g., Dias and Payatakes, 1986; Li and Wardlaw,
1986a, b]. There have also been several network models de-
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veloped to study the constitutive relationships required to pa-
rametrize multiphase flow equations. The relative permeabil-
ity-saturation function has been studied, primarily by
petroleum engineers [e.g., Bryant et al., 1993; Blunt and King,
1991; Jerauld and Salter, 1990; Kantzas and Chatzis, 1988]. The
moisture retention function for both two- and three-phase
systems has also received attention [e.g., Soll and Celia, 1993;
Zhou and Stenby, 1993; Maier and Laidlaw, 1993, 1990; Soll,
1991; Ferrand and Celia, 1989, 1992a, b; Li et al., 1986]. The
network model algorithm used in this study borrows heavily on
the algorithms and insights of these researchers and others. A
review of the recent literature on network modeling is pro-
vided by Celia et al. [1995].

Motivation

The constitutive relationships required for modeling flow
and transport in multiphase systems are of critical importance
to hydrologic modeling. It is through the incorporation of
constitutive relationships into the flow equations that a simple
mass balance statement is transformed into a system-specific
formulation, i.e., specific to the particular porous medium and
fluids present. Constitutive relationships also represent the
point at which physical measurements are incorporated into
mathematical and numerical models. In the case of two-phase
flow, the required constitutive relationships in traditional mod-
els are the moisture retention function and the relative per-
meability-saturation function. Typically, the flow equations for
each fluid phase are written in terms of fluid phase pressures
and saturations. These equations are coupled through the
moisture retention function, which relates the contrast be-
tween fluid phase pressures to the fluid saturations. The dif-
ference in phase pressures is defined as the capillary pressure:

P,=P"— P (1)

where

P, capillary pressure (macroscopic), equal to f{(S"* or §”);
P> pressure of fluid phase a, « = w, n;
S saturation of fluid phase o, &« = w, n;

w, n wetting and nonwetting fluid phases, respectively.

The relative permeability-saturation (k,,-S*) function is re-
quired for the parameterization of the generalized form of
Darcy’s law. The common parameter, saturation, serves to link
the two constitutive relationships and provides further cou-
pling of the flow equations through the additional constraint
that the fluid saturations sum to unity.

Multiphase transport models, in turn, are coupled to the
flow equations through the volumetric flux and are thus indi-
rectly linked to the constitutive relations. Most phenomeno-
logical models for the description of residual NAPL dissolu-
tion are based on a parameterization relating the mass flux of
dissolving NAPL to the interfacial area between fluid phases, a
mass transfer coefficient, and the concentration difference
across the fluid-fluid interface [e.g., Miller et al., 1990]. This
formulation expresses the concept that mass transfer is gov-
erned, in part, by the spatial distribution of the fluids. If the
more soluble chemical components are to move directly from
the NAPL phase into the aqueous phase, then the fluid-fluid
interface separating the fluid phases must be crossed. Thus inter-
facial area serves as a limiting factor on the dissolution process.

What is common to the multiphase flow and transport prob-
lems is that both are heavily dependent on the pore-scale
physics of fluid-fluid interfaces. This is stated explicitly in the
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phenomenological model for NAPL dissolution, but the con-
nection to the multiphase flow constitutive relationships is
implicit at best. Both the P_-S* and k, ,-S* relationships are
nonlinear and hysteretic. Their complex functional form re-
sults from the aggregation of many pore-scale physical pro-
cesses. These include fluid-solid interactions and properties
such as wettability and contact angle hysteresis, the effects of
pore geometry, fluid properties, and fluid-fluid interactions
[see, e.g., Bear, 1972; Dullien, 1992; Hillel, 1982]. These also
include the pore-scale processes associated with the movement
fluid-fluid interfaces, primarily through the irreversibility of
drainage and imbibition displacement events at the pore scale.
These interfaces can support nonzero stresses and thus allow
pressure differences to exist between the fluid phases. The
shape and movement of the interfaces captures much of the
physical interaction between the fluids and between the fluids
and solid. Fluid-fluid interfaces also serve as internal system
boundaries. If flow is to take place, then the interfaces must
move or the flow must be constrained within these internal
boundaries. If saturation is to change,then these boundaries
must move. In a sense, the distinguishing feature of multiphase
systems is the existence of fluid-fluid interfaces [Gray and Has-
sanizadeh, 1991a].

Recently, Hassanizadeh and Gray [1993a, b, 1990] have de-
veloped a theory that explicitly incorporates the physics of
phase interfaces into the governing flow equations. Their the-
ory is based on careful volume averaging from the pore scale to
the porous medium continuum scale. At the continuum scale,
interfacial area per unit volume of porous medium becomes an
independent variable, and a new, thermodynamically based
definition of capillary pressure is hypothesized. Their defini-
tion of capillary pressure includes increased functional depen-
dence on the interfacial area per unit volume between all
phases in the system [Hassanizadeh and Gray, 1990]. Of pri-
mary interest to NAPL dissolution problems is the proposed
functional dependence of P. on a™”, the interfacial area per
unit volume of wetting and nonwetting phases. This is a some-
what radical departure from the more simple functional de-
pendence of the traditional theory. The implication is that the
standard definition of capillary pressure results in a hysteretic
moisture retention function as a result of its incomplete func-
tional dependencies. Hassanizadeh and Gray [1993a] reason
that the hysteretic moisture retention function is an artifact of
projecting the P.-S"-a"" surface onto the P.-S" plane. (See
Hassanizadeh and Gray [1993a, b, 1990] and Gray and Has-
sanizadeh [1991a, 1991b] for details).

Quasi-static network models provide a unique means of test-
ing for a functional dependence of capillary pressure on inter-
facial area by providing a systematic bridge between the mi-
croscopic and macroscopic scales. Numerical simulations may
be set up to mimic physical experiments used to measure the
moisture retention function for soil or rock cores. A three-
dimensional network of pores with external connections to
wetting and nonwetting fluid reservoirs serves as a computa-
tional porous medium (see Figure 1). The displacement of the
fluids is then governed by the stability of menisci within the
network. A capillary pressure is imposed on the system, and
each meniscus is interrogated for stability using the Young-
Laplace equation, which relates the equilibrium meniscus ge-
ometry in a cylindrical capillary tube to the capillary pressure,
surface tension, and contact angle:

20™" cos 6

PC Reﬁ

(2)
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where

P_ capillary pressure (microscopic);
Ry effective radius of the top of the meniscus;
o™ surface tension between wetting and nonwetting fluid
phases;

0 contact angle.

Unstable menisci result in the displacement of one fluid by
another. Displacement continues until all menisci are found to
be stable. Details of these calculations are given in the follow-
ing section.

The resultant macroscopic properties of the system, i.e., the
fluid saturations and the interfacial area between fluids, may
then be calculated using the equilibrium fluid configuration.
Fluid saturations are calculated by summing the actual fluid
volumes within the pores and dividing by the volume of the
pore network. The interfacial area between fluid phases per
unit volume of porous medium is calculated by summing the
areas of all menisci and dividing by the total volume of the
system, including the solid phase volume. These calculations
require complete knowledge of the geometry of all menisci.
This is facilitated by the use of a highly structured network of
pores. Traditionally, network models have involved pore ele-
ments having simple geometric shapes arranged on a regular
lattice. If the cross sections of the pore elements are circular,
then the actual radius of a meniscus is equal to its effective
radius, and so its geometry is fully constrained.

Fortunately, the hypothesized definition of capillary pres-
sure of Hassanizadeh and Gray can be shown to reduce to the
traditional definition of capillary pressure, equation (1), at
equilibrium [Hassanizadeh and Gray, 1990]. Because, in the
network model, the system properties are determined only at
equilibrium, the standard definition of capillary pressure, (1),
may be used. The macroscopic capillary pressure may then be
taken as the difference between the nonwetting and wetting
fluid reservoir pressures, as in physical experiments. The move-
ment and deformation of the individual fluid-fluid interfaces,
however, is governed by the microscopic capillary pressure at
the locality of the meniscus. Fluid regions that have become
isolated from their respective reservoirs can have pressures
that are unrelated to the current reservoir pressures. These
pressures are recorded as the simulation progresses. The local
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Figure 1.

Cubic pore network.
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Half Pore Throat

Pore Body

Figure 2. Typical spherical pore body with its associated bi-
conical pore throats.

fluid pressures are used to define the microscopic capillary
pressure for use with the Young-Laplace equation (2).

Network Model Formulation

The network model developed for this study uses a quasi-
static displacement process such as that described above and is
similar to those developed by, for example, Soll [1991], Jerauld
and Salter [1990], and Ferrand and Celia [1989]. The pore space
network is three dimensional, and two immiscible fluid phases
are simulated. The model is capable of simulating both drain-
age and imbibition.

Pore Space Geometry

The pore network simulated in the model is a cubic lattice
with constant node spacing. Thus the nodes of the lattice, or
pore bodies, have six orthogonal connections to their neigh-
bors (see Figures 1 and 2). These connections are often re-
ferred to as pore throats. The top of the lattice serves as a
reservoir for nonwetting fluid, while the bottom serves as the
wetting fluid reservoir. The four lateral sides of the pore network
have no further connections and act as “no-flow” boundaries.

The elements of the pore network consist of two simple
geometric shapes. The pore bodies are represented by spheres,
as have been used by most past researchers. The pore throats
are biconical tubes with the constriction located at the mid-
point between pore body centers (see Figures 2 and 4). The
radius of the biconical sections at the point of attachment to
the pore body is fixed at r,/\/2, where r, is the pore body
radius. This creates a well-defined pore space and ensures that
menisci cannot overlap one another. It also approximates the
converging-diverging character of the pore space of real po-
rous media. This geometry has been used by Nowicki et al.
[1992], among others, and differs from the traditional, cylin-
drical connection used by most other researchers. Cylindrical
pore throats force the location of fluid-fluid interfaces to be
restricted to the connection between the pore body and pore
throat; a biconical pore throat allows for a greater range of
menisci locations because they may reside within the pore
throat as well as at the pore body—pore throat connection and
the pore throat constriction. It should be noted that this pore
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Figure 3. Meniscus geometry in a conical capillary of circular
cross section.

space representation does not possess “corners” where pendu-
lar fluid could reside, as would exist in real porous media with
grain to grain contact points. The proposed fluid displacement
rules used in the model address this shortcoming in a limited way.

Lattice Construction

A realization of the pore space is constructed by assigning
radii to the lattice elements using a beta probability distribu-
tion. The beta distribution is attractive due to its flexibility and
the fact that it has fixed upper and lower bounds. A minimum
lower bound of zero is an obvious constraint, while an upper
bound approaching the half spacing of the lattice is desired to
prevent the overlap of pore bodies. This distribution has been
widely used in simulations of consolidated rocks and monodis-
perse spheres [Jerauld and Salter, 1990; Chatzis and Dullien,
1982; Payatakes et al., 1980]. The pore body constriction radii
and pore throat constriction radii are generated indepen-
dently. Following the radii assignments, the pore throats are
checked against their adjacent pore bodies, and any that are
found to be greater than r,/\/2, where r, is the radius of the
smaller of the adjacent pore bodies, are redefined to a value of
r,/V/2. While this introduces a degree of correlation between
the pore throat radii and the pore body radii, its effect can be
mitigated by specifying probability density functions for the
pore throats and pore bodies that are nonoverlapping. If de-
sired, the spacing between pore body centers can then be
varied in order to adjust the overall porosity of the system.

Fluid Displacement Procedure

Displacement of one fluid by another rests upon the defini-
tion of fluid regions as “free” or “trapped.” Only free fluids are
available for potential displacement. Free fluid regions are
those that have a continuous path back to their respective
reservoirs, while trapped regions of fluids have become iso-
lated. Additionally, isolated wetting fluid may be defined as
free in order to simulate a strongly wet system; in this case a
wetting film may be seen as connecting the isolated wetting
fluid regions to their reservoir. The existence of continuous
wetting films allows a zero residual wetting phase saturation to
be achieved, as observed in physical experiments involving
strongly wet systems [Dullien et al., 1986]. The identification of
free and trapped fluid regions is performed at the end of each
capillary pressure step. Any free fluid may be displaced at the
subsequent capillary pressure step. In addition, the capillary
pressure value of the most recent displacement step is re-
corded for all the newly trapped fluid regions. This is done so
that the menisci of trapped regions can be “frozen” into posi-
tion to ensure that the volumes of the trapped regions can be
maintained at subsequent capillary pressure values.

Displacement takes place along the composite interface
composed of all the menisci separating free fluid phases. The
individual menisci are interrogated in turn at the given, local,
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capillary pressure, and fluids displace each other when a me-
niscus is found to be unstable. A special version of the Young-
Laplace equation for a conical capillary is used to check for
meniscus stability [Dullien, 1992, p. 192] (See Figure 3):

~ 20"[cos (6 + B

R. .=
equil
q })c

(3)

P_ capillary pressure (microscopic);
o surface tension between wetting and nonwetting
fluid phases;
0 contact angle;
B half angle of the cone;

R equilibrium radius of the top of the meniscus.

In this manner the composite interface is gradually deformed
from its initial configuration. When all the menisci along the
composite interface are found to be stable, the system has
reached a new equilibrium.

Drainage mechanisms. Nonwetting fluid may displace wet-
ting fluid via two mechanisms. The primary mechanism is gov-
erned by the constriction radii of the pore throats. Equation
(3) is used to examine the stability of interfaces within the pore
throats in the limiting case of B = 0° corresponding to the
constriction where the sides of the capillary are parallel (see
Figures 3 and 5). If the constriction radius is too large, then a
“Haines jump” occurs [Haines, 1930], and the nonwetting fluid
invades the pore throat. The adjacent pore body will also drain
because its size will be larger than the pore throat. This mech-
anism, often referred to as “piston drainage,” is the standard
drainage rule used by most network modelers [e.g., Soll, 1991;
Jerauld and Salter, 1990; Ferrand and Celia, 1989].

A secondary mechanism for drainage is invoked if a “singlet”
of wetting fluid is left stranded between drained pore bodies
during the displacement procedure. When this occurs, the lo-
cations of the menisci at either end of the singlet are explicitly
calculated to test whether or not they intersect. If they are
found to intersect, then the wetting fluid within the pore throat
is displaced by nonwetting fluid. The details of the meniscus
location calculations are the same as those listed below in the
saturation and interfacial area calculation discussion. This
mechanism is unique to network models involving biconical
pore throats. It is not strictly rigorous in addressing the stability
of fluid membranes but captures the behavior presented by
Toledo et al., [1994]. It serves to prevent the buildup of wetting
fluid singlets which, if left in place, cause excessive trapping of
nonwetting fluid and result in significant trap hysteresis [Blunt
et al., 1992; Wardlaw and McKellar, 1981]. Micromodel studies
indicate that isolated singlets of wetting fluid are more readily
displaced than larger regions of fluid, although this effect is
facilitated by pendular fluids [Soll, 1991, p. 192]. The inclusion

equil

Figure 4. Meniscus geometry at the pore body-pore throat
contact.
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Figure 5. Meniscus geometry at the pore throat constriction.

of this secondary drainage mechanism serves to capture, in a
simplified way, this physical behavior.

Imbibition mechanisms. The displacement of nonwetting
fluid by wetting fluid is governed by the pore body radii. As
with drainage, equation (3) is used to test whether or not a
meniscus can span a pore body. The half cone angle S is set to
zero, which corresponds to the hemisphere of the pore body
where the sides are parallel. If spanning is possible, then the
wetting fluid invades the pore body and its surrounding pore
throats, since the pore throats are always smaller than the pore
body. This mechanism, referred to as “piston displacement” or
“retraction,” is the simplest form of the standard imbibition
rule. More involved displacement formulations based on local
fluid configurations in the vicinity of the meniscus [Blunt et al.,
1992; Jerauld and Salter, 1990] are not included for simplicity.
As well, no “snap-off” mechanisms are simulated in the model,
again for simplicity. Snap-off is enhanced by the presence of
pendular fluid which is lacking in the current pore geometry
[Li and Wardlaw, 1986a, b; Lenormand and Zarcone, 1984]. As
well, this mechanism is somewhat dependent on the shape of
the pore bodies [Mohanty et al., 1987], which makes the for-
mulation of a snap-off displacement rule somewhat arbitrary.
To facilitate the interpretation of the model results, no snap-
off mechanisms are included in the model.

Saturation and Interfacial Area Calculations

The actual locations of menisci separating fluid phases are
not specifically calculated during the displacement procedure
except when isolated singlets of wetting fluid are examined.
Instead, they are only tracked in a cursory sense so that they
are known to be located within a particular pore throat. In
order for the saturation and interfacial area calculations to be
performed, the location and geometry of all the fluid-fluid
interfaces must be calculated explicitly. This requires the cal-
culation the equilibrium radius and radius of curvature for
each meniscus. The equilibrium radius is calculated using the
Young-Laplace equation (3). The radius of curvature may then
be calculated using the equilibrium radius, the contact angle,
and the half angle of the conical capillary. These are related by
[Dullien, 1992, p. 192] (see Figure 3)

R equil

R = [cos (6 + B)]

4
where R_,,, is the radius of curvature of the meniscus.

Once these values are calculated, the boundaries separating
solid and fluid phases are known. Fluid saturations are calcu-
lated by summing the volumes of simple geometric shapes
(truncated cones, spherical caps, and spheres) and dividing by

the total pore volume. Although pendular films were assumed
to exist to facilitate the displacement of isolated wetting fluid,
the volumes of these films are considered negligible and do not
contribute to the saturation calculations. The interfacial area
between fluid phases consists of a summation of the area of
spherical caps formed by the menisci. The total interfacial area
is then divided by the total volume of the averaging volume,
including the volume occupied by the solid, to arrive at the
interfacial area between fluid phases per unit volume of porous
medium, a¢"”. The interfacial area contributed by films is not
included in the calculation of a"”. In this manner, only those
fluid-fluid interfaces whose curvature is governed by the cap-
illary pressure contribute to the interfacial area. This definition
differs from traditional equilibrium thermodynamic definitions
of a”" but appears to be consistent with the theory of Has-
sanizadeh and Gray [1990].

A meniscus may be located at three general positions: some-
where within a pore throat, at the entrance to the adjacent
pore body, or at the pore throat constriction (See Figures 3, 4,
and 5 respectively). If the equilibrium radius of the meniscus is
found to be located within the pore throat, then (3) and (4)
apply. During imbibition the calculated equilibrium radius of a
meniscus may be found to be larger than the radius of attach-
ment of the pore throat to the pore body but still too small to
have spanned the pore body and caused imbibition displace-
ment. In this case, (3) is inverted and an apparent cone angle
B.pp is determined using a fixed equilibrium radius of r,/ V2.
A new radius of curvature can then be found using (4) and
Bapp- This procedure mimics a geometrically smooth transition
at the attachment between the pore throat and the pore body
rather than a sharp corner. A similar situation may arise during
drainage when the equilibrium radius of a meniscus may be
found to be smaller than the pore throat constriction though
drainage displacement has not occurred. This is possible be-
cause the limiting condition for displacement during drainage
is B,,, = 0°. In this situation the equilibrium radius of the
meniscus is fixed at the bond constriction radius, and (3) is
used to solve for an apparent cone angle. A radius of curvature
is then calculated using (4) as in the previous situation. Again,
this is equivalent to a geometrically smooth transition at the
pore throat constriction.

Results and Discussion
Representative Elementary Volume Determination

Fluid saturations and interfacial areas per unit volume are
properties that are poorly defined at the pore scale. Volume
averaging must be invoked in order to define these quantities
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Figure 6. Representative elementary volume results.

at the continuum scale. The averaging must be performed at a
volume sufficiently large that the resulting fields are smooth,
well defined, and insensitive to changes in the averaging vol-
ume. Such a volume is referred to as a representative elemen-
tary volume, or REV [Bear, 1972, pp. 19-20].

An REYV for the network model simulation was determined
by analyzing the wetting fluid saturation and interfacial area
per unit volume for a range of subvolumes within the pore
lattice. The smallest volume consisted of the central pore body
and its six adjacent half pore throats, often referred to as a
voxel (See Figure 2). The second volume consisted of the
central voxel and the shell of voxels surrounding it. The vol-
umes were increased by adding shells of voxels until the entire
lattice was included in the calculations. Figure 6 shows the
results of this test for the wetting fluid saturation and the
interfacial area between fluid phases. The quantities, as ex-
pected, are seen to be erratic for small averaging volumes but
approach a limiting behavior above approximately 17 shells.
The values can be seen to diverge slightly from this limiting
behavior as the influence of the boundaries is felt. This behav-
ior is consistent with results reported by Ferrand and Celia
[1992a]. The wetting fluid saturation and the interfacial area
can also be seen to reach their limiting behaviors at the same
volume. Investigation of the averaging behavior over a broad
range of saturation values shows that the REV size is indepen-
dent of the saturation at which the simulation is performed. On
the basis of these results, an REV value of 40 pore bodies was
chosen (corresponding to 1728 mm?> at the given node spac-
ing). The subsequent simulation was performed using a lattice
of 50° pore bodies, and the five outer shells were omitted from
the saturation and interfacial area calculations to minimize
boundary effects.

Moisture Retention Function Simulation

In order to investigate the hypothesis concerning the func-
tional relationship between capillary pressure, saturation, and
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interfacial area, a displacement simulation was performed us-
ing a series of 3989 sequential capillary pressure steps. Fluid
saturation and interfacial area calculations were performed at
the end of each displacement step. The simulation was de-
signed to provide saturation and interfacial area values both on
and within the main hysteresis loop, such that complete sets of
imbibition and drainage scanning curves were calculated. De-
tails of the input parameters for the simulation are provided in
the appendix; these parameters correspond to an air-water
system that is strongly water wet.

Primary drainage and main hysteresis loop. The simula-
tion was begun under fully saturated conditions; the lattice was
then drained to zero residual over 60 capillary pressure steps.
This was followed by a main imbibition cycle of 50 steps where
the wetting fluid saturation reached a maximum value of
74.4%. At this point the only nonwetting fluid remaining in the
lattice was trapped. The main hysteresis loop was then defined
by another cycle of main drainage followed by main imbibition
using the same capillary pressure step sequences.

The moisture retention function resulting from these steps is
plotted in Figure 7a. The primary drainage curve can be seen
to be separated from the main hysteresis loop and shows a
distinct entry pressure of 50 cm H,O. The main hysteresis loop
is repeatable and shows a very abrupt decrease in saturation at
an entry pressure of about 41 cm H,O. This is a noticeably
lower entry pressure than for primary drainage. The reduced
entry pressure and the resulting sharp break in saturation dur-
ing main drainage are caused by the presence of trapped non-
wetting phase regions. The trapped regions aid in the propa-
gation of nonwetting fluid pathways through the lattice by
increasing the number of individual menisci along the invasion
front and thus increasing the probability of fluid displacement.
This accentuates the break in saturation during main drainage
and accounts for the decreased entry pressure.

Figure 7b shows a plot of wetting fluid saturation versus
interfacial area per unit volume for the same sequence of
capillary pressure steps. The endpoints of the primary drainage
curve represent single-phase systems, and thus the interfacial
area values are zero. The sudden increase in interfacial area at
the high end of the saturation range corresponds to the entry
pressure of the primary drainage curve of the moisture reten-
tion function. The primary drainage curve is asymmetric about
the saturation axis with a maximum value of 0.267 mm?*mm? at
a wetting fluid saturation of 27.1%. The steep decrease in
interfacial area as the primary drainage curve approaches 0%
saturation represents the loss of the menisci contributed by
isolated singlets as they are finally drained.

The saturation—interfacial area relationship is seen to be
hysteretic for the data points corresponding to the main hys-
teresis loop in the moisture retention function and its crescent
shape is similar to that hypothesized by Hassanizadeh and Gray
[1993a, Figure 8]. During the main imbibition cycle the inter-
facial area can be seen to increase to its maximum value at a
saturation of 38.1%, just after crossing the primary drainage
curve. The interfacial area then decreases in a symmetric fash-
ion before leveling off as residual nonwetting phase saturation
is achieved. The main drainage curve is similar in shape to the
main imbibition curve but has higher interfacial area values
throughout its range and reaches its maximum at a lower
saturation value. At the beginning of the main drainage se-
quence the interfacial area and saturation values remain con-
stant for the capillary pressure values below the entry pressure.
This, again, is the result of the trapped nonwetting fluid re-
gions. The fluid-fluid interfaces surrounding these regions ac-
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count for all the net interfacial area at this point in the simu-
lation. They are not allowed to deform so as to preserve their
volumes. This causes the saturation and interfacial area to be
fixed prior to reaching the entry pressure during the subse-
quent drainage cycle. An abrupt increase in interfacial area
follows and reaches a maximum value of 0.348 mm?/mm? near
a saturation of 29.5%. The interfacial area then decreases
smoothly to zero as drainage is completed.

The complex shape of the main hysteresis loop results from
several pore-scale events that take place as the menisci sepa-
rating fluid phases adjust to new capillary pressure conditions.
The adjustments may involve Haines jumps (fluid displace-
ment) [Haines, 1930] or movement of individual menisci within
their original pore throat (meniscus adjustments). Fluid dis-
placements may result in the “spawning” of new menisci or the
destruction of old menisci, depending on the local fluid con-
figurations. The adjustment of menisci within a pore throat and
the stranding of a meniscus at the pore throat constriction or
pore throat—pore body contact will also produce changes in its
interfacial area. The proportion of displacement to adjustment
events depends on the local fluid configuration, which, in turn,
depends on the overall saturation state of the lattice. As a
result, certain events will dominate over specific ranges of
saturation. It should also be noted that both types of events can
produce increases or decreases in interfacial area during both
drainage and imbibition. Despite the complexity of these pore-
scale processes, the net result is a smooth functional relation-
ship between capillary pressure and saturation throughout the
main hysteresis loop.

Figure 7c shows a three-dimensional plot of the moisture
retention function using the additional axis of interfacial area.
The vertical axis is interfacial area per unit volume of porous
medium, and the origin of the plot lies at the lower left-hand
corner. The combination of the two, two-dimensional plots
yields a well-behaved main hysteresis loop in three-dimen-
sional space. The points of maximum interfacial area are
clearly visible on all three curves, with the highest value cor-
responding to the main drainage curve. The constant satura-
tion and interfacial area values corresponding to the first few
capillary pressure steps of the main drainage curve also stand
out. This figure is similar to the results Gvirtzman and Roberts
[1991] obtained in their investigation of the interfacial area
associated with pendular wetting fluid in sphere packs.

Drainage scanning curves. After defining the main hyster-
esis loop, a series of drainage scanning curves were generated
to investigate the interfacial area behavior interior to the loop.
The capillary pressure sequence for the drainage scanning cy-
cles was constructed by first imbibing through a series of pres-
sure steps derived from the original master list for imbibition.
The imbibition sequence was stopped prior to reaching the
residual nonwetting phase saturation at an intermediate cap-
illary pressure value. The drainage scanning curve was then
generated by subsequent drainage to zero residual wetting
phase saturation. The drainage steps were derived from the
master list of capillary pressure steps for drainage and included
only those capillary pressure values higher than the final im-
bibition step. The subsequent drainage scanning curve se-
quence included two more imbibition steps. In this manner, 15
drainage scanning curves were generated.

The moisture retention function including the drainage
scanning curves is shown in Figure 8a. The primary drainage
curve has been omitted for clarity, and one of the scanning
curves has been highlighted. The behavior is similar to that
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seen in physical measurements with the scanning curves lying
completely within the main hysteresis loop. The curves do not
cross one another, and they mirror the shape of the main
drainage curve. The drainage scanning curves originating from
the vicinity of the residual nonwetting fluid saturation begin to
mimic the shape of the main drainage curve. All scanning
curves converge to a point at zero residual wetting phase sat-
uration. The first few steps of each drainage curve represent
capillary pressure values that are too low to cause a Haines
jump (i.e., piston displacement) anywhere in the lattice, and
hence the decrease in saturation results solely from the move-
ment of menisci within their pore throats. The drainage scan-
ning curves originating from the flat portion of the main im-
bibition curve have as much as 20% saturation decreases due
solely to this mechanism.

The corresponding saturation and interfacial area values are
plotted in Figure 8b. The same drainage scanning curve has
been highlighted as in Figure 8a and again, the primary drain-
age curve has been omitted. The scanning curves can be seen
to originate from the main imbibition curve and then rise
sharply in interfacial area. All but the first two scanning curves
cross the main drainage curve as they do so. After reaching
their maximum values, the interfacial areas decrease abruptly.
As the scanning curves approach the main drainage curve, they
become asymptotic to it. They then follow the main drainage
curve to the origin. The scanning curves with the largest max-
ima are those that depart from the flat portion of the main
imbibition curve of the moisture retention function. The set of
drainage scanning curves can be seen to be bounded by an
upper envelope that mirrors their individual shape. The enve-
lope maximum in interfacial area is about 0.57 mm?*mm? and
occurs just below 50% wetting fluid saturation.

The three-dimensional plot of these two figures is shown in
Figure 8c. Again, the primary drainage curve has been omitted,
and the same drainage scanning curve has been highlighted.
The set of drainage curves can be seen to form a unique,
though complex, surface in three-dimensional space. The max-
imum value of the surface is located within the main hysteresis
loop and corresponds to the maximum in the bounding enve-
lope of Figure 8b. The surface has curvature in all directions
and appears to be smooth and well behaved. The major axis of
the surface, or hinge line, corresponds to the bounding enve-
lope of maximum interfacial area seen in Figure 8b.

Imbibition scanning curves. Imbibition scanning curves
were calculated following the drainage scanning curve se-
quence. The capillary pressure steps for the imbibition scan-
ning curves were generated in a similar manner to those used
to generate the drainage scanning curves. The lattice was first
drained from the residual nonwetting phase saturation through
a series of capillary pressure steps derived from the original
master list of 60 drainage steps. Drainage was stopped at an
intermediate point and then followed by imbibition. The im-
bibition steps were taken from the master list of the imbibition
set and included those capillary pressure values lower than the
final intermediate drainage step. Subsequent imbibition scan-
ning curves followed in the same manner but with two addi-
tional drainage steps each time. A total of 22 imbibition scan-
ning curves were generated.

The moisture retention function showing the imbibition
scanning curves is plotted in Figure 9a. Again, the primary
drainage curve has been omitted, and one scanning curve has
been highlighted. The imbibition scanning curves can be seen
to mirror the shape of the main imbibition curve. Those orig-
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inating at lower capillary pressure values show a much more
gradual curvature than those closer to the main imbibition
curve. There is also a “trap hysteresis” associated with the
imbibition scanning curves. Trap hysteresis is the lowering of
the final wetting fluid saturation that can be obtained during
imbibition. This phenomenon results from the additional trap-
ping of nonwetting fluid regions caused when the lattice is not
completely drained prior to imbibition. The subsequent drain-
age sequence is thus slightly different from the main drainage
curve. The most extreme case seen in Figure 9a has an 8% final
saturation reduction. This corresponds to the first scanning
curve, which originates at the drainage step just following the
entry pressure. The trapping behavior becomes less pro-
nounced as the imbibition scanning curves originate at higher
capillary pressure values on the main drainage curve. This
phenomenon has been documented in physical experiments
and is discussed in depth by Wardlaw and McKeller [1981].

The same set of data points is plotted on the saturation—
interfacial area plane in Figure 9b. The imbibition scanning
curves originate from the main drainage curve or the interme-
diate drainage curves that result from the trap hysteresis. Like
the drainage scanning curves, the change in interfacial area
along the imbibition scanning curves is not monotonic. Unlike
the drainage scanning curves, the maximum values reached by
the individual imbibition scanning curves do not occur at se-
quential saturation values. Instead, the first nine scanning
curves have their peaks at sequentially lower saturation values,
while the remaining curves have their maxima at sequentially
higher saturation values. The first four scanning curves are
relatively symmetric and reach successively higher maximum
values. The remainder of the curves have successively lower
maximum interfacial area values and slowly approach the
shape of the main imbibition curve. The final imbibition scan-
ning curve is nearly identical to the main imbibition curve. The
trap hysteresis is manifested as the sequence of points forming
an irregular line at the far right of the plot above the point of
the main hysteresis “crescent.” The intermediate drainage
curves that arise from the trap hysteresis can be seen just above
the main drainage curve. As in Figure 8b, the maximum inter-
facial areas achieved by the imbibition scanning curves appear
to be bounded. The bounding envelope is very symmetric with
a maximum interfacial area value of 0.56 mm?*/mm? at a satu-
ration value of approximately 37%. The maximum value of the
bounding envelope is nearly identical to that of Figure 8b, but
the saturation value at which the maximum occurs is signifi-
cantly lower.

The three-dimensional plot of Figures 9a and 9b is shown in
Figure 9c. The shape of the surface is very similar to the
surface generated by the drainage scanning curves. It shares
the same general curvature and convexity, but there are slight
differences with regard to the location of the maximum inter-
facial area and the curvature orthogonal to the major axis. The
region of trap hysteresis significantly affects the shape of the
surface. The constant saturation and interfacial area values
associated with the drainage steps below the entry pressure
result in a planar ramp in the surface at its right edge.

Discussion of Results

The results of the network model simulation clearly indicate
a strong functional dependence of capillary pressure on the
interfacial area between fluid phases. This supports the hy-
pothesis of Hassanizadeh and Gray [1990]. The surface gener-
ated by the drainage scanning curves is slightly different from
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that generated by the imbibition scanning curves, but both
surfaces share a very similar form (See Figures 8c and 9c). The
surfaces have an S-shaped major axis that stretches from the
zero residual saturation point, crosses the central portion of
the main hysteresis loop, and then terminates at the final point
of the main imbibition curve. The main axes, or hinge lines, are
represented in the two-dimensional plots of interfacial area
versus saturation as upper bounding envelopes for interfacial
area (See Figures 8b and 9b). The surfaces have a maximum
interfacial area value near the center of the main hysteresis
loop and are convex with respect to the capillary pressure—
saturation plane. They also appear to be relatively smooth and
well behaved.

The curvature displayed by the surfaces suggests that the
relationship between capillary pressure, saturation, and inter-
facial area is very complex. Because of the convex shape of the
surface, the functional relationship is not single valued. For
any value of capillary pressure there correspond two points on
the surface with different saturation values and the same in-
terfacial area. Likewise, for any set value of saturation, there
exist at least two different capillary pressure values with the
same interfacial area. This may suggest that we should view
interfacial area as a function of capillary pressure and satura-
tion, i.e., a””" = f(P,, S") rather than P, = f(a™”, §"). (M.
Hassanizadeh, personal communication, 1995). It should be
noted that these observations are based on the definition of
a™" for which the contributions by wetting films are ignored.

The differences between the surface generated from the
drainage scanning curves and the surface generated from the
imbibition scanning curves are notable (Figures 8c and 9c). We
had hypothesized that these surfaces might match except in
systems with contact angle hysteresis. The system modeled
used identical contact angles for the advancing wetting fluid,
receding wetting fluid, and equilibrium fluid configurations, so
contact angle hysteresis cannot account for the differences
between the surfaces. The differences could be true manifes-
tations of the complex nature of the constitutive relationship,
or they could be artifacts of the simulation method. Possible
artifacts include the capillary pressure step sequence used in
the simulation and the simplified displacement rules employed.

The sequence in which the scanning curves were generated
could be responsible for the differences between the two sur-
faces. Prior to the generation of the drainage scanning curves,
the lattice was completely drained. The drainage scanning
curves were then calculated sequentially with one imbibition
cycle and one drainage cycle used to generate each scanning
curve. The drainage cycles always resulted in complete drain-
age of the lattice. Because of this procedure the imbibition
cycles always began from the same system state, i.e., 0% wet-
ting fluid saturation. As a result, the drainage scanning curves
are independent from each other. The same is not true of the
imbibition scanning curves, owing to the presence of residual
nonwetting phase saturations and trap hysteresis. Because
each imbibition scanning curve has a different starting satura-
tion and that saturation is determined as part of a continuous
calculation cycle, each imbibition scanning curve is dependent
on the entire sequence of capillary pressure steps used for the
imbibition scanning curve cycle. This causes the imbibition
scanning curves to be dependent on the sequence in which they
are generated. Had the imbibition scanning curves been cal-
culated in a different sequence, it is possible that a slightly
different surface would have resulted. The capillary pressure
step sequence used in the simulation therefore may account for
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some of the differences in the surfaces generated from the
drainage and imbibition scanning curves.

The simplified imbibition displacement rules would also af-
fect the results of the simulation and thus the shapes of the
surfaces. The weakest displacement rule, in a physical sense, is
the use of the Young-Laplace equation (3) to test for imbibi-
tion displacement. As discussed in the model formulation sec-
tion, no modifications were made to this rule to account for the
local fluid configuration and geometry of the pore body being
tested for imbibition. Modifications to this rule, as suggested
by other researchers, are somewhat discretionary and typically
require the use of an additional fitting parameter [e.g., Jerauld
and Salter, 1990]. These fitting parameters have only a weak
theoretical underpinning and have yet to be physically mea-
sured. For these reasons, the most simplistic formulation was
used. The other potential fault in the displacement rule for-
mulation involves snap-off mechanisms. No snap-off mecha-
nism was incorporated in the model because the pore space
represented in the network model does not account for pen-
dular wetting fluid. Either of these choices concerning dis-
placement rules might account for the differences seen in the
surfaces created by the drainage scanning curves and the im-
bibition scanning curves. The significance of these effects re-
mains to be investigated.

The issue of pendular wetting fluid also arises in compari-
sons of the pore space simulated by the network model with
that of real porous media. The simulated pore space, while
possessing connectivity and three-dimensionality, is highly styl-
ized and consists of simple geometric elements with circular
cross sections. Real pore spaces, on the other hand, are highly
irregular and contain grain-to-grain contact points. These con-
tact points create “corners” in which wetting fluid may reside
even after the “core” of the pore space has been invaded by
nonwetting fluid. This pendular wetting fluid can contribute
significantly to the net saturation and interfacial area of the
system. The role played by pendular wetting fluid has been
partially examined by Gvirtzman and Roberts [1991], who con-
sidered the pendular rings associated with packings of perfect
spheres. They used the Young-Laplace formulation to calcu-
late the geometry of the fluid-fluid interfaces at a given capil-
lary pressure. This allowed them to calculate the wetting fluid
saturation and net interfacial area of the system. Their results
are very similar to those seen in Figures 8c and 9c and dem-
onstrate the importance of pendular fluids with regard to sat-
uration and interfacial area. The major limitations of the ap-
proach of Gvirtzman and Roberts [1991] are that hysteresis
cannot be studied and that the interfacial area values corre-
sponding to the intermediate saturation values cannot be de-
termined. These shortcomings are addressed by the network
model used in this study.

Conclusions and Future Research

The results presented in this paper indicate that the inter-
facial area between fluid phases per volume of porous medium
becomes a well-defined macroscopic property at an averaging
volume similar to that of saturation. Simulated immiscible dis-
placement experiments were performed to explore how the
interfacial area between fluid phases changes during imbibition
and drainage in a two-fluid system. The results of the simula-
tions indicate that a functional relationship exists between cap-
illary pressure, saturation, and the interfacial area between
fluid phases at the macroscopic scale. The P_-S"-a™" relation-
ship was seen to be consistently smooth and well behaved
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throughout a wide range of capillary pressure and saturation
values. This implies that direct estimates of fluid-fluid interfa-
cial area could be predicted given information regarding the
capillary pressure and saturation of the system under study.
This has important implications regarding the prediction of
NAPL dissolution and other interfacial mass transfer pro-
cesses. The smoothness of the simulation results, despite the
limitations of the simplified network model used, suggests that
this relationship may indeed be fundamental to multiphase
systems and provides a measure of verification to the consti-
tutive theory of Hassanizadeh and Gray [1990], which hypoth-
esizes such a functional dependence. The nonunique P_-S"-
a™" surfaces generated by the drainage and imbibition
scanning curve sequences, however, prohibit ascribing the hys-
teresis seen in the traditional moisture retention function to its
being a projection of a simple three-dimensional surface onto
the P_.-§" plane. The physical causes and implications of this
phenomenon remain to be explored.

Further investigation of the P.-S"-a™" relationship using
network models should focus on the impact of pendular wet-
ting fluid on both interfacial area and saturation. The pore
space simulated by the network model used in this study is too
simple to allow the simulation of pendular wetting fluid. It
does, however, capture the impact of the “ink bottle” effect
that results in the differences between the main drainage and
main imbibition curves. An analysis of the role played by pen-
dular wetting fluid will necessitate an improvement in the rep-
resentation of the pore space but could borrow from the meth-
odology of Gvirtzman and Roberts [1991]. Some advances have
already been made in this direction. Several researchers have
substituted capillary tubes with square or triangular cross sec-
tions for the cylindrical pore throats traditionally used in net-
work models [e.g., loannidis and Chatzis, 1993, loannidis et al.,
1993; Chatzis and Dullien, 1985]. The emphasis, however, has
been to study how the hydraulic conductivity of pendular fluids
affects relative permeability [e.g., loannidis and Chatzis, 1993;
Chambers and Radke, 1991; Lenormand and Zarcone, 1984].
These formulations represent a potentially significant advance
in our conceptualization of pore space. The significance of
wetting fluid films to the interfacial area also remains an un-
resolved issue. These calculations are performed in the model,
but the results were not presented because of space limitations.

A research effort parallel to the computational studies de-
scribed herein should also be made to measure the interfacial
area between fluid phases in real porous media. Experimental
results analogous to those given in this paper would further
strengthen the hypothesis of Hassanizadeh and Gray and pro-
vide substantiation of network model results. Physical mea-
surements would also provide a data set with which to calibrate
more complex network models. Further improvements in pore
space representation, calibration to physical data sets, and
improved pendular-fluid-dependent displacement rules (i.e.,
snap-off) should lead to more realistic network models. Such
models should continue to serve as valuable computational
tools to investigate a wide variety of multiphase porous media
problems.

n

Appendix: Network Model Simulation
Parameters

Lattice Geometry

Input lattice statistics. The dimensions of the lattice are
50 X 50 X 50, and the numbers of pore elements (excluding
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Table Al. Pore Element Radius Distributions (Beta
Distribution)
Lattice Mean, Variance, Minimum, Maximum,
Element mm mm? mm mm
Input
Pore body 0.0650 3.2000E-04 0.0100 0.0900
Pore throat 0.0250 1.3000E-04 0.0100 0.0700
Output
Pore body 0.0650 3.1991E-04 0.0103 0.0900
Pore throat 0.0229 8.8663E-05 0.0073 0.0588

reservoirs and reservoir connections) are as follows:

125,000
370,000

Pore bodies
Pore throats

Distributions of pore element radii are given in Table Al.
Output lattice statistics. Pore throat adjustments are as
follows (excluding reservoir connections):

370,000
74,910

Total
Total adjusted

and pore element volumes are (excluding boundary shells)

58.256 (26.94% of total)
157.970 (73.06% of total)
216.226

Pore bodies
Pore throats
Total

Porosity is 12.513%. Distributions of pore element radii are
given in Table Al.
Fluid Parameters

Contact angles (advancing, receding, and equilibrium) are
0.00 rad. Miscellaneous fluid parameters are

Surface tension, dyn/cm 72.00
Wetting fluid viscosity, mPa s 1.00
Wetting fluid density, g/cm® 1.00
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