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Abstract. Modeling of multiphase flow in porous media requires that the physics of the phases
present be well described. Additionally, the behavior of interfaces between those phases and of the
common lines where the interfaces come together must be accounted for. One factor complicating
this description is the fact that geometric variables such as the volume fractions, interfacial areas
per volume, and common line length per volume enter the conservation equations formulated at
the macroscale or core scale. These geometric densities, although important physical quantities, are
responsible for a deficit in the number of dynamic equations needed to model the system. Thus, to
obtain closure of the multiphase flow equations, one must supplement the conservation equations
with additional evolutionary equations that account for the interactions among these geometric vari-
ables. Here, the second law of thermodynamics, the constraint that the energy of the system must
be at a minimum at equilibrium, is used to motivate and generate linearized evolutionary equations
for these geometric variables and interactions. The constitutive forms, along with the analysis of the
mass, momentum, and energy conservation equations, provide a necessary complete set of equations
for multiphase flow modeling in the subsurface.

Key words: multiphase flow, porous media, closure, unsaturated flow, interfacial area, entropy
inequality, thermodynamics.

Nomenclature

Latin
A measure of disequilibrium between changes in solid surface area and porosity.
a interfacial area per unit volume.
B measure of disequilibrium between changes in wn interfacial area and other geometric

properties.
b entropy source term per unit mass.
C measure of disequilibrium between changes in common line length and other geometric

properties.
Cwns common line wns within an averaging volume.
Di/Dt material time derivative following the motion of the i component, ∂/∂t + vi • ∇.
d rate of strain tensor, (∇v + ∇vT )/2.
Êi internal energy of component i per unit volume.
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Es Lagrangian strain tensor of the solid phase.
êij rate of mass exchange from component j to component i.
Fs location of macroscale solid that was initially at Xs .
Gαβ macroscale orientation tensor for αβ interface.
Gwns macroscale orientation tensor for wns common line.
h external supply of energy per unit mass.
I unit tensor.
J s macroscopic curvature of s interface based on unit normal outward from s phase.
Jααβ macroscopic curvature of αβ interface based on unit normal outward from α phase.
Kθ heat conduction tensor.
Kiαβ mass transfer exchange coefficient between phase i and interface αβ.

K
αβ
wns mass transfer exchange coefficient between interface αβ and common line wns.
Ls coefficient in dynamic capillary pressure equation.
Lws coefficient in dynamic spreading pressure equation.
Lε coefficient in dynamic total pressure equation.
lwns length of common line wns per unit volume.
Mi mass conservation equation for phase, interface, or common line i.
Mi mass of component i.
ns unit vector normal to the surface of and pointing outward from the s phase.
nααβ unit vector normal to the αβ interface pointing outward from the α phase.
P s grand canonical potential (GCP) of solid phase per unit volume of solid phase.
p pressure.
Q̂i
j

rate of energy exchange from component j to component i.

q non-advective heat flux vector.
Rij flow resistance coefficient between components i and j .

Sαβ interfacial area between α and β phases.
T̂i
j

momentum exchange between components i and j .

ti stress tensor for component i.
V total volume of system.
V macroscale, representative averaging volume.
vi macroscale velocity of component i.
Xs initial location of solid phase.
xαss fraction of the s surface that is in contact with the α phase.

Greek
$αβ grand canonical potential (GCP) of αβ interface per unit area of αβ interface.
$wns grand canonical potential (GCP) of wns common line per unit length of wns common

line.
γ interfacial or lineal tension.
δ variation.
δ fixed point variation.
ε porosity.
εα volume fraction of phase α.
η̂ entropy per unit volume.
θ temperature.
κwns
G

macroscale geodesic curvature of the wns common line.
κwnsg microscale geodesic curvature of the wns common line.
κwnsN macroscale normal curvature of the wns common line.
κwnsn microscale normal curvature of the wns common line.
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, rate of entropy generation.
λiE Lagrange multiplier for incorporation of energy conservation constraint for component i

into the entropy inequality.
λiM Lagrange multiplier for incorporation of mass conservation constraint for component i

into entropy inequality.
λλλiP Lagrange multiplier for incorporation of momentum conservation equation for com-

ponent i into the entropy inequality.
λλλwns microscale unit vector tangent to the wns common line.
µ chemical potential.

ννν
αβ
wns unit vector normal to the wns common line, tangent to the αβ interface, positive outward

from the αβ interface.
ξξξ microscale spatial coordinate.
ρ density, mass per unit volume.∑
α summation over all phases (w, n, and s).∑
β �=α summation over all phases except α-phase.∑
αβ summation over all interfaces (wn, ws, and ns).

σσσ s solid phase stress.
τττ i dynamic momentum exchange term for component i.
4 macroscale effective contact angle between the wetting phase and the solid.
4i gravitational potential for component i.
ϕ microscale contact angle between the wetting phase and the solid.
ϕϕϕ non-advective entropy flux vector.
6̂ grand canonical potential (GCP) per unit volume.

Superscripts/Subscripts
i generic reference to either the w, n, or s phase; the ns, wn, or wn interface; or the wns

common line.
n relating to the non-wetting phase.
ns relating to the interface between the non-wetting and solid phases.
s relating to the solid phase.
w relating to the wetting phase.
wn relating to the interface between the wetting and non-wetting phases.
wns relating to the common line.
ws relating to the interface between the wetting and solid phases.
, a relative quantity (e.g. θw,wn = θw − θwn).

1. Introduction

Although multiphase flow in porous media has been germane to the fields of petro-
leum engineering and hydrology for decades, its proper physical and mathematical
representation is still a subject of considerable study. The traditional conceptu-
alization of a two-fluid system, for example, begins at the microscale at which
the porous medium is composed of a solid phase and a connected void space in
which the fluids may move and interact (Figure 1). The phases are considered to
be immiscible and to have distinct thermodynamic properties. They are separated
by very thin transition regions which are typically modeled as two-dimensional
interfacial surfaces. In principle, an interface between a particular pair of phases
has its own thermodynamic properties that are distinct from those of the phases and
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Figure 1. Microscale perspective of a three phase (wns) system (below) showing the particular
phases, interfaces, and common lines employed in the analysis and the averaging pathway to
a macroscale point (top) using a representative volume approach.

from other interfaces. In a three phase system, transition regions at the junction of
all three phases may also exist. These may be assigned thermodynamic properties
of their own and are typically represented as one-dimensional common lines. The
phases are bounded by interfaces and the interfaces are bounded by common lines.
Thus, the microscopic picture of a porous medium system is a space occupied by
phases, interfaces, and common lines that exist in mutually exclusive domains.

Although microscale conservation equations may be formulated for this system,
their solution is complicated by the fact that the evolving geometry of each phase
throughout the domain must be known so that boundary conditions can be spe-
cified. Interfaces and common lines are moving boundaries. For natural systems,



TWO-FLUID FLOW IN POROUS MEDIA 33

such geometric detail is unavailable, even for an immobile solid phase, except for
very small samples, and the solution of practical problems over realistic length
scales is infeasible. Therefore the equations describing the physics of the flow are
typically formulated at a larger scale encompassing tens to thousands of pores
within a representative volume centered on a macroscopic ‘point’ in the system
(Figure 1). At such a point, the phases are considered to coexist yet are understood
to occupy only a fraction of the region in the representative volume itself. Thus, at
the macroscale the phases are overlapping continua.

The mass, momentum, and energy conservation equations for interfaces and
common lines can also be integrated from the microscale to the macroscale. Al-
though these equations are neglected in traditional analyses (e.g. Whitaker, 1967,
1969; Bachmat, 1972; Slattery, 1972; Hassanizadeh and Gray, 1979), their inclu-
sion is needed to realistically and systematically account for the thermodynamic
effects of interfaces and common lines in multiphase flow problems. As a by-
product of changing from the microscale to the macroscale, several new primary
‘geometric’ variables enter the formulation that have no counterparts at the micro-
scale. These include the familiar phase volume fractions (often expressed in terms
of saturations and porosity) as well as the interfacial areas per volume and com-
mon line length per volume. Unfortunately, the change of scale also introduces
an equation deficit into the formulation, as evolutionary equations for the geo-
metric variables are not directly available. In addition, constitutive postulates must
be made for quantities such as the macroscale stress tensor, the expressions for
mass, momentum, and energy exchanges between phases, and the heat conduction
vector. Systematic processes for obtaining the needed constitutive relations have
been presented elsewhere, as described subsequently.

The problem of formulating a comprehensive constitutive theory has led to
several different approaches. Whitaker (e.g. 1998) uses an approach that maps a
microscale quantity into a macroscale quantity such that a differential equation
arises whose solution completes the closure problem. This approach has been most
often applied for the case of a rigid solid matrix. Interface dynamics and macroscale
thermodynamics are not considered. Kalaydjian (1987) has developed a formula-
tion that employs the entropy inequality and also has some equations for interface
dynamics. However, the common line is not included and the development makes
some significant assumptions along the way rather than looking at the complete
entropy inequality. Allen (1984) has developed the multiphase flow equations using
a mixture theory approach, but the closure conditions obtained are incomplete be-
cause the interfaces have not been incorporated. A paper by Hilfer (1998) indicates
further the difficulties in closing the complex system of multiphase flow equations
obtained if one uses the mixture theory approach. His heuristic assumptions are
not able to properly account for interfacial area or the energy of the interfaces
and erroneously lead to an equation that indicates flow can be driven by gradi-
ents in volume fraction. Gray and Hassanizadeh (1991) presented an unsaturated
flow theory that included interface dynamics that employed the averaged entropy
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inequality to obtain the needed constitutive relations. Bennethum and Giorgi (1997)
and Bennethum (1994) have also used the entropy inequality in obtaining porous
media flow equations. The postulation of the thermodynamic dependence of in-
ternal energy was improved in Gray (1999) by making the postulations in terms of
extensive variables. This change also clarified the need for closure conditions in-
volving the dynamics of the geometric variables. The closure conditions developed
there are based on approximations to averaging theorems and do not account for
the average orientation of the interfaces within the averaging volume and thus are
somewhat limited in their applicability. Presentation of a systematic process based
on exploitation of the second law of thermodynamics for overcoming the equation
deficit and obtaining geometric evolutionary equations is the thrust of this paper.
These equations are essential to specification of a complete model.

2. Macroscale Conservation Equations

The multiphase system to be considered is composed of three phases (Figure 1):
a wetting phase, w, a non-wetting phase, n, and a solid phase, s. Therefore, three
different types of interfaces will exist denoted as: wn between the wetting and
non-wetting phases, ws between the wetting and solid phases, and ns between
the non-wetting and solid phases. The only type of common line is formed where
the three phases (or more precisely, the three interfaces) intersect. The common
line is designated as wns. Note that interfaces are adjacent to phases, phases and
common lines are adjacent to interfaces, and interfaces are adjacent to common
lines.

The derivation of general macroscale equations by averaging or localization is
well-understood and will not be repeated here (see e.g. Gray and Hassanizadeh,
1998). However, the equations themselves are necessary precursors to the con-
stitutive approach. Therefore the balance equations are provided here in tabular
form.

The mass balance equations appear in Table I with the notation given previously.
Observe that the entries in the third column have units of mass per macroscale
volume; the entries in the fourth column account for exchanges of mass between a
region and the adjacent regions.

When the interfaces and common line are treated as massless, only the source/
sink terms survive. This simplified form of the interface mass conservation equa-
tion is equivalent to the standard jump condition for the exchange of mass between
two phases of different densities with no accumulation of mass within the interface.

The component terms of the momentum balance per unit macroscale volume are
provided in Table II. The source and sink terms for momentum are each composed
of two parts, one associated with mass exchange and a second due to surface stress
effects between adjacent regions due to pressures, tensions, and the macroscale
accounting for microscale viscous effects. The sum of the source terms over all
regions of the macroscale volume is equal to the sum of the sink terms over all
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Table I. Conservation of mass

Mi = DiMi

Dt
+ Midi : I + Mi

sink − Mi
source = 0

Region i Mi Mi
sink − Mi

source = 0

w-phase w εwρw −êwwn − êwws
n-phase n εnρn −ênwn − ênns
s-phase s εsρs −êsws − êsns
wn-interface wn awnρwn êwwn + ênwn − êwnwns
ws-interface ws awsρws êwws + êsws − êwswns
ns-interface ns ansρns ênns + êsns − ênswns
wns-line wns lwnsρwns êwnwns + êwswns + ênswns

regions as momentum is not created within the volume. When the interfaces and
common lines are massless, the surviving terms in the interface momentum equa-
tion express the macroscale forms of the standard jump conditions for momentum
exchange between phases. If microscale interfacial and lineal tensions are zero, it
can be shown that the stress tensors Ji for the interfaces and common lines will be
zero.

The energy balance terms appear in Table III. The equations provide the bal-
ances of total energy (internal plus kinetic plus potential) for each region per
macroscale volume. The source and sink terms appearing in the last column sum
over all regions to zero. Because of the possibility of considering massless inter-
faces and common lines, the internal energy is expressed directly on a per volume
basis. If the interface is massless, the kinetic and potential energy terms will be
zero. Also, for the case of a massless interface, the interface momentum equations
reduce to the standard jump conditions between phases. The massless common line
energy equation expresses the jump condition for energy among the interfaces that
meet at the common line.

The entropy inequalities for the phase, interface, and common line regions are
given in Table IV. The entropy is expressed per unit of system volume in each
equation. Note that although the source and sink terms, accounting for exchanges
among the regions, cancel when summed over all phases and interfaces, the sum
of the generation term survives. This sum must be non-negative for the entropy
inequality to be satisfied. This condition serves to help guide the development of
the constitutive forms needed to close the problem.

Tables I through 3 provide five macroscale conservation equations for each
of the seven phase ‘regions’ that may be solved for 35 primary dependent vari-
ables: density, velocity (displacement for the solid phase), and temperature. These
variables may be listed as:
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Table II. Conservation of momentum

Pi = Di(Mivi )
Dt

+ Mividi : I − ∇ • Ji + Mi∇4i + Pisink − Pisource = 0

Region i Mi J1 Pisink − Pisource

w-phase w εwρw εwtw −êwwnvw − T̂wwn

−êwwsvw − T̂wws

n-phase n εnρn εntn −ênwnvn − T̂ nwn
−ênnsvn − T̂nns

s-phase s εsρs εsts −êswsvs − T̂sws

−êsnsvs − T̂sns

wn-interface wn awnρwn awntwn êwwnvw + T̂wwn + ênwnvn + T̂nwn

−êwnwnsvwn − T̂wnwns

ws-interface ws awsρws aws tws êwwsv
w + T̂wws + êswsvs + T̂sws

−êwswnsvws − T̂wswns

ns-interface ns ansρns ans tns ênnsv
n + T̂nns + êsnsvs + T̂sns

−ênswnsvns − T̂nswns

wns-line wns lwnsρwns lwnstwns êwnwnsv
wn + T̂wnwns + êwswnsvws + T̂wswns

+ênswnsvns + T̂nswns

ρi, vi , θ i , ρs,Fs, θ s where i = w, n,wn,ws, ns,wns. (1)

In addition, the macroscale equations also contain seven primary geometric vari-
ables that do not occur in the corresponding microscale problem. These variables
are geometric in nature and include the volume fraction of each phase, the specific
areas per unit bulk volume of the interfaces, and the specific length per unit bulk
volume of the common lines. These variables are listed as:

εw, εn, εs, awn, aws, ans , lwns . (2)

They should be recognized as spatially and temporally variable quantities that
evolve with changing system conditions. To solve the conservation equations, addi-
tional information is needed concerning the inter-relation of these seven variables
and their relation to changes of the primary variables. Ideally, seven dynamic geo-
metric evolutionary equations for these quantities would be specified which would



TWO-FLUID FLOW IN POROUS MEDIA 37

Ta
bl

e
II

I.
C

on
se

rv
at

io
n

of
en

er
gy

E
i
=
D
i

{ Ê
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Table IV. Entropy inequality

Rigeneration = Diη̂i

Dt
+ η̂idi : I − ∇ • Bi − Mibi + ηisink − ηisource � 0

Region i Mi Bi ηisink − ηisource Rigeneration

w-phase w εwρw εwϕw −êwwnη̂w/Mw − 4̂wwn εw,w

−êwws η̂w/Mw − 4̂wws
n-phase n εnρn εnϕn −ênwnη̂n/Mn − 4̂wwn εn,n

−ênns η̂n/Mn − 4̂nns
s-phase s εsρs εsϕs −êsws η̂s/Ms − 4̂sws εs,s

−êsns η̂s/Ms − 4̂sns
wn-interface wn awnρwn awnϕwn êwwnη̂

w/Mw + 4̂wwn + ênwnη̂n/Mn awn,wn

+4̂nwn − ê
wn
wns η̂

wn

Mwn
− 4̂wnwns

ws-interface ws awsρws awsϕws êwws η̂
w/Mw + 4̂wws + êsws η̂s/Ms aws,ws

+4̂sws − ê
ws
wns η̂

ws

Mws
− 4̂wswns

ns-interface ns ansρns ansϕns ênns η̂
n/Mn + 4̂sns + êsns η̂s/Ms ans,ns

+4̂sns − ê
ns
wns η̂

ns

Mns
− 4̂nswns

wns-line wns lwnsρwns lwnsϕwns
êwnwns η̂

wn

Mwn
+ 4̂wnwns + ê

ws
wns η̂

ws

Mws
lwns,wns

+4wswns + ê
ns
wns η̂

ns

Mns
+ 4̂nswns

allow the system to be closed. Unfortunately, only one such equation is available,
the requirement that the sum of the volume fractions be 1:

εw + εn + εs = 1. (3)

The six additional equations needed are much more elusive. Gray (1999) has pro-
posed some forms based on an examination of the averaging theorems in conjunc-
tion with the entropy inequality. Here, more less restrictive forms are obtained by
considering the conditions of mechanical equilibrium at the macroscale in con-
junction with the entropy inequality. However, it must be stressed that these six
relationships are evolutionary approximations and are not conservation laws. They
are subject to further improvement based on insights derived from numerical and
experimental studies in the future.
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For application to a particular system, the macroscale conservation equations
must be augmented or closed by a series of approximate constitutive equations for
the 115 additional variables (such as mass exchange terms, stress tensor, internal
energy, etc.) that appear in the equations. These functions must ideally be expressed
in terms of the primary dependent and geometric variables and their derivatives
in such a way that the forms obtained do not violate the second law of thermo-
dynamics and are consistent with observed physical systems. For example, the
stress tensor has been previously shown to be symmetric based on the form of the
macroscale angular momentum equation (Hassanizadeh and Gray, 1979) reducing
the number of unknown stress components from nine to six for each phase. Note
also that although, for example, the heat conduction in an interface will be a two-
dimensional vector at the microscale, the fact that an interface does not necessarily
have a single orientation within the macroscale region means that interfacial heat
conduction is a spatial process viewed from the macroscale. Indeed, all the tensors
and vectors that are two-dimensional at the microscale will be three-dimensional
at the macroscale. The procedures for obtaining constitutive forms based on the
entropy inequality may be found, for example, in Gray and Hassanizadeh (1998).

To obtain the additional expressions needed for evolution of the geometric vari-
ables, it is necessary to first set up the second law of thermodynamics for the
full system. This is obtained from the entropy inequalities for each of the system
regions subject to the constraints of the conservation equations. The development
of this constrained entropy inequality is not new to this work, however its exploita-
tion to obtain the closure conditions as a deviation from the thermomechanical
equilibrium state is new.

3. The Second Law of Thermodynamics

The second law of thermodynamics is a powerful tool that can be used to guide the
development of closure and constitutive relationships for the macroscopic equa-
tions of multiphase flow (Hassanizadeh and Gray, 1980; Gray, 1999). It is espe-
cially useful in complicated multiphase systems such as that considered here. The
starting point is the general statement of the second law, which prescribes that the
net rate of production of entropy of a system inside a large system volume V must
be non-negative:∫

V

,dV � 0. (4)

The macroscale entropy production per unit volume, ,, must be non-negative for
this inequality to hold for any volume. In terms of the macroscopic quantities
employed in our three phase system, this may be written as:

, = εw,w + εn,n + εs,s + awn,wn + aws,ws + ans,ns + lwns,wns
=

∑
i

Rigeneration � 0. (5)
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Every solution to the generally-posed field equations in Tables I–III must be such
that inequality (5) is satisfied. Hence, these equations serve as constraints on in-
equality (5) and need to be imposed or incorporated within it in order to extract use-
ful system insights. This may be accomplished through a rather long substitution
process, such as that pursued by Hassanizadeh and Gray (1980) and Gray (1999),
or via a conceptually simpler approach first suggested by Liu (1972). In Liu’s
technique, Equation (5) is modified through the addition of a linear combination of
the balance equations appearing in Tables I–III,

, =
∑
i

Rigeneration + λiMMi + λλλiP • Pi + λiEEi � 0, (6)

where λiM, λλλiP, and λiE are arbitrary parameters. Since all the terms added to the
entropy inequality are zero, the calculated rate of entropy generation is unchanged
by this modification. However, the new version can be rearranged in terms of like
quantities that appear throughout the balance equations and used to identify par-
ticular non-zero values of λiM, λλλiP, and λiE that strategically simplify the resulting
relationship.

The uniform extensive (or integrated) energy for each phase, interface, and com-
mon line lying within a macroscopic volume V is postulated to be a function of the
extensive variables of the system, namely its integrated entropy, mass, volume,
interfacial area, common line length, etc. To allow for gradients in the energy
that may exist, energy density is obtained as a function of the densities of the
independent variables. Additionally, the first order homogeneous property of the
thermodynamic functions (Callen, 1985; Bailyn, 1994) is exploited to obtain
the explicit form of the energy density. The energy of each system component
is written as depending explicitly on, at least, the entropy of that component, the
mass of the component, and the geometric extent (volume, area, or length) of that
component as:

Êα(η̂α, εαρα, εα, . . .) = η̂αθα + εαραµα − εαpα + . . . , α = w, n, (7a)

Ês(η̂s , εsρs, εs0Es, . . .) = η̂sθ s + εsρsµs − εsσσσs :Es + . . . , (7b)

Êαβ(η̂αβ, aαβραβ, aαβ, . . .) = η̂αβθαβ + aαβραβµαβ + aαβγ αβ + . . . ,
αβ = wn,ws, ns, (7c)

Êwns(η̂wns, lwnsρwns, lwns , . . .)

= η̂wnsθwns + lwnsρwnsµwns − lwnsγ wns + . . . . (7d)

The inclusion of interfacial areas and common line lengths as independent vari-
ables in these expressions are critically important for the thermodynamic descrip-
tion of the macroscale state (Gray, 1999). As indicated by the ellipses, additional
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independent variables could be included at this stage (as in Gray (1999)) that would
allow for other particular effects to be considered. To treat film flow, for example,
this might entail allowing the interfacial or contact line energies (Êαβ or Êwns)
to be functions of the neighboring phase volumes (εα and εβ). However, in the
development that follows, only the explicit dependences shown in Equations (7a)
through (7d) will be retained and incorporated.

Before proceeding further, it is useful to recast the internal energy densities that
appear in Equation (6) into grand canonical potential (GCP) functions using the
Lagrange transformation (Callen, 1985). In essence, this transformation provides
an energy potential (the GCP) that depends on chemical potentials and temperature
in place of an energy potential (the internal energy) that depends on mass and
entropy per volume. This change of independent variables is not required for this
analysis but is convenient in anticipation the form of the final set of equations.
A Lagrange transformation on the entropy per unit volume and the mass per unit
volume can be made to obtain the GCP functions per unit volume for each phase,
designated here as 6̂i . The results of the transformation are:

−εαP α = 6̂α(θα, µα, εα, . . .) = Êα − η̂αθα − εαραµα, α = w, n (8a)

−εs<<<s:Es = −εsP s = 6̂s(θ̂ s, µs, εs0Es, . . .) = Ês − η̂sθ s − εsρsµs, (8b)

aαβ$αβ = 6̂αβ(θαβ, µαβ, aαβ , . . .) = Êαβ − η̂αβθαβ − aαβραβµαβ,
αβ = wn,ws, ns (8c)

−lwns$wns = 6̂wns(θwns, µwns , lwns, . . .)

= Êwns − η̂wnsθwns − lwnsρwnsµwns. (8d)

The GCPs have units of energy per volume (or force per unit area) and allow
the various phase pressure variables to be formally introduced. The capitalized
terms on the left side of these equations are used to represent the intrinsic GCPs.
For example, Pα in Equation (8a) is the GCP of the α phase per unit volume of α
phase, while $αβ in Equation (8c) is the GCP of the αβ interface per unit area of αβ
interface. The use of a capitalized letters for these terms refers to their most general
functional representation. They are equivalent to their lower case counterparts (e.g.
pα, γ αβ , or γ wns), appearing on the right sides of (7a) through (7d) when the energy
specifically, and only, depends on the particular variables listed.

The macroscopic balance laws shown in Tables I–III are now substituted into
the pointwise entropy inequality (6). The GCP functions (6̂i) are used in place
of the internal energies (Êi). As a shorthand notation to help reveal the structure
of the full entropy inequality, the geometric densities are given a general notation
such that

χα = εα, χαβ = aαβ and χwns = lwns . (9)
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We also utilize the Gibbs–Duhem equation

0 = −χi dpi + η̂i dθ i + χiρi dµi, (10)

for further simplification, yielding

, =
∑
i

{[
Diη̂i

Dt
+ η̂idi : I

]
×

× (1 + λiEθ i)− ∇ • (χiϕϕϕi)− χiρibi − (η̂isource − η̂isink)+
+

[
Di(χiρi)

Dt
+ χiρidi : I

] [
λiM + λλλiP • vi + λiE

(
µi
(vi)2

2
+4i

)]
−

− (Mi
source − Mi

sink)λ
i
M +

+
[
χiρi

(
Divi

Dt
+ ∇4i

)
− ∇ • (χiti )

]
• (λλλiP + λiEvi)−

− (Pisource − Pisink) • λλλiP +

+
[
Di6̂i

Dt

∣∣∣∣
θi ,µi

+ (6̂iI − χiti ) : di − ∇ • (χiqi)− χiρihi−

− (Eisource − Eisink)

]
λiE

}
� 0, (11)

where the sum over the index i is such that i = w, n, s,wn,ws, ns and wns.
The values of λiM, λλλiP, and λiE are now chosen such that the factors multiplying the
time derivatives of entropy, mass density, and velocity in Equation (11) are zero.
In the sense of Liu (1972), this step can be motivated by the need for the inequality
to be independent of the derivative quantities appearing in these particular terms.
Thus,

λiE = − 1

θ i
, (12a)

λλλiP = vi

θ i
(12b)

and

λiM = 1

θ i

[
µi +4i − (v

i)2

2

]
. (12c)

This results in a modified entropy inequality that is reflective of the balance law
constraints. Two additional assumptions are now invoked to provide a simplifica-
tion that is consistent with many systems found in nature, namely

• The system is considered to be thermodynamically simple (Eringen, 1980)
such that, for corresponding superscripts, hi = biθ i and θ iϕϕϕi = qi; and
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• Temperatures in phases, interfaces, and the common line at a point are con-
sidered to be equal and will be designated as θ = θ i .

In addition, it will be convenient to express all the material derivatives with respect
to the solid phase velocity, as the reference velocity, using the equation

Di

Dt
= Ds

Dt
+ vi,s • ∇, (13)

where vi,s = vi − vs . With these changes, and upon multiplication by θ , Equation
(11) takes the form

θ, =
∑
i

{
−

[
Ds6̂i

Dt

∣∣∣∣
θ,µi

+ (6̂iI − χiti ): di + vi,s • ∇6̂i
∣∣∣
θ,µi

]
+

+ χ
iqi

θ
• ∇θ +

+
(
µi + (v

i)2

2
+4i

)
(Mi

source − Mi
sink)− vi • (Pisource − Pisink) +

+ (Eisource − Eisink)− θ(η̂isource − η̂isink)

}
� 0, (14)

where it is understood that the sum over i represents a sum over the w, n, and s
phases, the wn, ws, and ns interfaces, and the wns contact lines.

In general, the solid phase GCP requires additional, special consideration. This
is because the deformation of a solid is described differently from the deformation
of a fluid, as accounted for by the presence of the mechanical Lagrangian strain
tensor in the list of independent variables in Equation (8b). Callen (1985) has
noted, however, that the conventional thermodynamic theory, in which the volume
is the single mechanical parameter, fully applies to solids. When this approach is
followed, a solid phase ‘pressure’ is obtained. The inclusion of elastic strain then
serves to provide additional information about the mechanics of the solid phase
pressure. Here, the prime objective is not to obtain information about solid phase
mechanics so that, in the interest of simplicity, the solid phase pressure, designated
as P s in Equation (8b) will appear rather than the details of its dependence on
strain. Therefore expansion of Equation (14) (where we revert back to the explicit
forms of the geometric densities εα , aαβ , and lwns instead of χi) provides:

θ, = −
∑
α


D

s6̂α

Dt

∣∣∣∣∣
θ,µα

+ (6̂αI − εαtα): dα


−

−
∑
αβ


D

s6̂αβ

Dt

∣∣∣∣∣
θ,µαβ

+ (6̂αβI − aαβtαβ): dαβ


−
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−

D

s6̂wns

Dt

∣∣∣∣∣
θ,µwns

+ (6̂wnsI − lwnstwns): dwns


+

+



∑
α

εαqα

θ
+

∑
αβ

aαβqαβ

θ
+ l

wnsqwns

θ


 • ∇θ +

+
∑
αβ

∑
i=α,β

(µαβ − µi)êiαβ +
∑

αβ=wn,ws,ns
(µwns − µαβ)êαβwns −

−
∑
α=w,n

vα,s •

∇ 6̂α

∣∣∣
θ,µα

+
∑
β �=α

(
T̂ααβ + vα,αβ

2
êααβ

)
 −

−
∑
αβ

vαβ,s •
{
∇ 6̂αβ

∣∣∣
θ,µαβ

+ T̂αβwns + vαβ,wns

2
êαβwns −

−
∑
i=α,β

(
T̂iαβ + vi,αβ

2
êiαβ

) }
−

− vwns,s •
{
∇ 6̂wns

∣∣∣
θ,µwns−

∑
ij=wn,ws,ns

(
T̂ijwns + vij,wns

2
êijwns

)}
� 0, (15)

where the source terms from Tables I–III have been substituted. This form of the
entropy inequality, will be used to study two aspects of the problem of multiphase
flow. First, mechanical equilibrium conditions that must exist among some of the
constitutive variables may be established. The approach to developing these con-
ditions at the macroscale has been provided in Gray (2000) and the results will be
collected in Appendix A. Second, ‘near’ equilibrium conditions are examined to
provide the evolutionary closure conditions useful for modeling dynamic problems.
This part of the analysis is new and will be accomplished following a review of the
mechanical equilibrium situation.

4. Mechanical Equilibrium Conditions

Continued analysis of the entropy inequality will be aided by insights derived from
the conditions of mechanical equilibrium for this system. These conditions repre-
sent how infinitesimal changes in geometric variables affect one another when the
system is otherwise at thermal and chemical equilibrium. As shown in the next sec-
tion, they will ultimately be useful in determining thermodynamic equilibrium and
dynamic relations between changes in the geometric variables and thermodynamic
state of the system.

The mechanical equilibrium conditions are obtained using a variational ap-
proach outlined in Appendix A similar to that of Boruvka and Neumann (1977)
for microscale constraints and Gray (2000) for macroscale constraints. A principal
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result of this analysis is the fact that the following three conditions must hold at
equilibrium:

pw − pn − Jwwnγ wn = 0, (16a)

pwxwss + pnxnss − P s + γ wsJ swsxwss + γ nsJ snsxnss +
+ lwns

as
(γ wnsκwnsN − γ wn sin4) = 0, (16b)

γ ws − γ ns + γ wn cos4+ γ wnsκwnsG = 0, (16c)

where xαss = aαs/as is the fractional solid phase area and δε, δεw, and δxwss are
infinitesimal variations of ε, εw, and xwss about otherwise fixed macroscale coordi-
nates. The macroscale curvatures of the interfaces (J ααβ , J s) and of the common line
(κwnsG , κwnsN ) as well as the macroscopic measures contact angles (4) are defined in
Appendix A.

These variables can be considered as secondary, or derivative geometric vari-
ables since they are inherently dependent on the geometric configuration of phases
and interfaces that is represented by the primary geometric variables (εw, εn, awn,
aws , ans , and lwns). Thus, in general, relations for the secondary geometric vari-
ables must be obtained as state functions of some or all of the primary geomet-
ric variables, as necessary and appropriate (e.g. J ααβ = J ααβ(ε

α, aαβ, lwns)). Re-
call that in the traditional multiphase modeling approach, this same philosophy
is followed when the capillary pressure, which is the product of the interfacial
tension multiplied by the interfacial curvature, is postulated to be a function of
saturation.

5. Expansion of the Entropy Inequality in terms of Independent Variables

Since the GCP depends on time only through its dependence on the independent
variables, the time derivatives of the GCP functions in Equation (15) are expanded
in terms of the independent variables listed in Equations (8a) through (8d). In
this process, several of the resultant terms are purposely collected into forms that
are consistent with the structure of the equilibrium conditions of Equations (16a)
through (16c). To complete this rearrangement, the curvature and contact angle
terms have to be added in and subtracted out, as they do not otherwise appear in
the expanded version of Equation (15). This process yields:

θ, = − γ wn
{
Dsawn

Dt
− Jwwn

Dsεw

Dt
− (cos4)as

Dsxwss

Dt
+

+
[
xwss J

w
wn − (sin4)

lwns

as
− xwss (J sws − J s)(cos4)

]
Dsε

Dt

}
−

− (γ wsxwss + γ nsxnss )
[
Dsas

Dt
+ J s D

sε

Dt

]
+
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+ γ wns
{
Dslwns

Dt
+ κwnsG as

Dsxwss

Dt
+

+
[
κwnsG xwss (J

s
ws − J s)− κwnsN

lwns

as

]
Dsε

Dt

}
+

+
[
Dsεw

Dt
− xwss

Dsε

Dt

]
[pw − pn − γ wnJwwn] −

− D
sε

Dt

{
− pwxwss − pnxnss + P s − γ wsJ swsxwss − γ nsJ snsxnss +

+ l
wns

as
[γ wn sin4− γ wnsκwnsN ]

}
+

+
[
as
Dsxwss

Dt
+ xwss (J sws − J s)D

sε

Dt

]
×

×[−γ wn cos4− γ ws + γ ns − γ wnsκwnsG ] −
−

∑
α

(6̂αI − εαtα): dα −
∑
αβ

[6̂αβI − aαβtαβ ]: dαβ −

−[6̂wnsI − lwnstwns]: dwns +
+

{∑
α

εαqα

θ
+

∑
αβ

aαβqαβ

θ
+ l

wnsqwns

θ

}
• ∇θ +

+
∑
αβ

∑
i=α,β

[µαβ − µi]êiαβ +
∑

αβ=wn,ws,ns
[µwns − µαβ]êαβwns −

−
∑
α=w,n

va,s •
{
∇6̂α∣∣

θ,µα
+

∑
β �=α

(
T̂ααβ + vα,αβ

2
êααβ

)}
−

−
∑
αβ

vαβ,s •
{
∇6̂αβ ∣∣

θ,µαβ
+ T̂αβwns + vαβ,wns

2
êαβwns −

−
∑
i=α,β

(
T̂iαβ + vi,αβ

2
êiαβ

)}
−

− vwns,s •
{
∇6̂wns∣∣

θ,µwns−
∑

ij=wn,ws,ns

(
T̂ijwns + vij,wns

2
êijwns

)}
� 0. (17)

Ultimately, the idea in this manipulation is to develop a form appropriate for ex-
ploitation. Restrictions and constraints on the form and value of the various con-
stitutive variables, dictated by this expression of the second law, should become
apparent.

Since the entropy production rate must be zero at equilibrium, each of the
product terms added together in Equation (17) must be zero at equilibrium. To
properly exploit the inequality, it is also desirable for each of the individual factors
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comprising each product to also be zero at equilibrium. Unfortunately, this is not
the case with the current form of (17), as the first factor in each of the first three
products do not meet this criterion. To obtain a more manageable form, three ap-
proximate evolutionary equations, (52), (60), and (62), have been developed in
Appendix B to re-express the second factors in each of these products in terms
of other variables that appear elsewhere in the entropy inequality. The evolutionary
equations are determined using averaging theory, an examination of the mechanical
equilibrium state reviewed in Appendix A, and a linearization around this state for
near equilibrium conditions. These particular approximations comprise three of
the six dynamic constraint equations needed to close the system as discussed pre-
viously in Section 2. They describe changes in geometric variables as the phases,
interfaces, and common lines deform. When the approximations in Equations (52),
(60), and (62) are substituted into Equation (17), it becomes:

θ, =
[
Dsεw

Dt
− xwss

Dsε

Dt

]
[pw − pn − γ wnJwwn]−

− D
sε

Dt

{
− pwxwss − pnxnss + P s − γ wsJ swsxwss − γ nsJ snsxnss +

+ l
wns

as
[γ wn(sin4)− γ wnsκwnsN ]

}
+

+
[
as
Dsxwss

Dt
+ xwss (J sws − J s)D

sε

Dt

]
×

×[−γ wn(cos4)− γ ws + γ ns − γ wnsκwnsG ] −
−

∑
α

{(6̂αI − εαtα) : dα} −

− [6̂wnI − γ wnawnGwn − awntwn] : dwn −
−{6̂wsI − [γ ws − xnss (γ wn cos4− γ ns + γ ws +
+ γ wnsκwnsG )]awsGws − awstws} : dws −
−{6̂nsI − [γ ns + xwss (γ wn cos4− γ ns + γ ws +
+ γ wnsκwnsG )]ansGns − ans tns} : dns −
−{[6̂wnsI + γ wnslwnsGwns − lwnstwns] : dwns} +
+

{∑
α

εαqα

θ
+

∑
αβ

aαβqαβ

θ
+ l

wnsqwns

θ

}
• ∇θ +

+
∑
αβ

{ ∑
i=α,β

[µαβ − µi]êiαβ
}

+
∑

αβ=wn,ws,ns
[µwns − µαβ ]êαβwns−

−
∑
α=w,n

vα,s •
{
∇6̂α∣∣

θ,µα
+

∑
β �=α

(
T̂ααβ + vα,αβ

2
êααβ

)}
−
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− vwn,s •
{
∇6̂wn∣∣

θ,µwn
− γ wn∇ • (Gwnawn)+ T̂wnwns+

+ vwn,wns

2
êwnwns −

∑
i=w,n

(
T̂iwn + vi,wn

2
êiwn

)}
−

− vws,s •
{
∇6̂ws∣∣

θ,µws
− [γ ws − xnss (γ wn cos4− γ ns + γ ws+

+ γ wnsκwnsG )]∇ • (awsGws)+
+ T̂wswns + vws,wns

2
êwswns −

∑
i=w,s

(
T̂iws + vi,ws

2
êiws

)}
−

− vns,s •
{
∇6̂ns∣∣

θ,µns
− [γ ns + xwss (γ wn cos4− γ ns + γ ws+

+ γ wnsκwnsG )]∇ • (ansGns)+
+ T̂nswns + vns,wns

2
ênswns −

[ ∑
i=n,s

(
T̂ins + vi,ns

2
êins

)]}
−

− vwns,s •
{
∇6̂wns∣∣

θ,µwns
+ γ wns∇ • [Gwns lwns] −

−
[ ∑
ij=wn,ws,ns

(
T̂ijwns + vij,wns

2
êijwns

)]}
� 0. (18)

In this new, approximate form, the individual factors comprising each product term
of the inequality are now all zero at equilibrium making it possible to obtain ad-
ditional constitutive information. The independent terms in this inequality must be
non-negative to ensure that the entropy inequality is satisfied.

6. Constitutive Equation Insights from the Entropy Inequality

In this section, the form of the inequality in Equation (18) will be exploited to sug-
gest functional forms of several of the constitutive variables introduced in Section
2. By definition, these forms will be consistent with the second law of thermody-
namics and the current choice of independent variables. In particular, attention will
be focused on the stress tensors ti and momentum exchange vectors, T̂ij , that appear
in the momentum balance equations, the heat conduction vectors, qi , that appear in
the energy balance equations, and the mass exchange terms, êij , that appear in the
mass and momentum balance equations.

Consider, first, the various stress tensors ti that appear in this analysis. Since the
entropy production rate has been assumed independent of the rate of strain tensor
(that is, di is not an independent variable), the multipliers appearing in front of di

in (18) must always be zero, even when the system is not at equilibrium. Using
elements of Equations (8a) through (8d), this suggests that the stress tensors take
the following forms:
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εαtα = 6̂αI = −εαpαI, α = w, n, (19a)

εsts = 6̂sI = −εsP sI, (19b)

awntwn = 6̂wnI − γ wnawnGwn = γ wnawn(I − Gwn), (19c)

awstws = 6̂wsI − [γ ws − xnss (γ wn cos4− γ ns + γ ws +
+ γ wnsκwnsG )]awsGws

= γ wsaws(I − Gws)+ [xnss (γ wn cos4− γ ns + γ ws +
+ γ wnsκwnsG )]awsGws (19d)

anstns = 6̂nsI − [γ ns + xwss (γ wn cos4− γ ns + γ ws + γ wnsκwnsG )]ansGns
= γ nsans(I − Gns)− [xwss (γ wn cos4− γ ns + γ ws +

+ γ wnsκwnsG )]ansGns, (19e)

lwnstwns = 6̂wnsI + γ wnslwnsGwns = −γ wnslwns(I − Gwns). (19f)

Now consider the multipliers of the relative velocities that appear in the entropy
inequality (18). These terms specifically involve the momentum exchange vectors,
T̂ij , and mass exchange terms, êij . As with the velocities, each of these terms is
individually zero at equilibrium, but not necessarily zero away from equilibrium.
For convenience, these terms have been denoted by the vectors τττ i which can be
reexpressed, for simplicity, using elements of Equations (8a) through (8d):

τττα = pα∇εα −
(

T̂αwn + vα,wn

2
êαwn

)
−

−
(

T̂ααs + vα,αs

2
êααs

)
, α = w, n (20a)

τττwn = −γ wn∇ • [(I − Gwn)awn] −
(

T̂wnwns + vwn,wns

2
êwnwns

)
+

+
∑
i=w,n

(
T̂iwn + vi,wn

2
êiwn

)
, (20b)

τττws = −γ ws∇ • [(I − Gws)aws ] −
(

T̂wswns + vws,wns

2
êwswns

)
+

+
∑
i=w,s

(
T̂iws + vi,ws

2
êiws

)
−

− xnss (γ wn cos4− γ ns + γ ws + γ wnsκwnsG )∇ • (awsGws), (20c)
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τττns = −γ ns∇ • [(I − Gns)ans] −
(

T̂nswns + vns,wns

2
ênswns

)
+

+
∑
i=n,s

(
T̂ins + vi,ns

2
êins

)
+

+ xwss (γ wn cos4− γ ns + γ ws + γ wnsκwnsG )∇ • (ansGns), (20d)

τττwns = γ wns∇ • [(I − Gwns)lwns] +
+

∑
ij=wn,ws,ns

(
T̂ijwns + vij,wns

2
êijwns

)
. (20e)

In general, these vectors can be considered functions of independent variables that
are zero at equilibrium and approximated by a linearization around the equilibrium
state. These linearizations may be performed in terms of all equilibrium variables
or over a subset considered to be the most dominant. Such a linearization for τττ i =
τττ i(vi,s , . . .) will be considered in the next section.

As a more specific example, consider how the heat conduction vector appear-
ing in inequality (18) can be approximated using this linearization approach. At
equilibrium, each element of the term

q =

∑

α

εαqα +
∑
αβ

aαβqαβ + lwnsqwns

 • ∇θ (21)

must be zero. Thus, if the simple linearization is employed such that the heat flux
q depends only on ∇θ , a simple linearization yields

q = Kθ • ∇θ, (22)

where Kθ is a positive definite coefficient tensor and the negative sign is required to
maintain a positive contribution to the entropy production away from equilibrium.

A similar approximation of the mass exchange terms assumes êiαβ = êiαβ(µαβ −
µi) and êαβwns = êαβwns(µwns − µαβ) to obtain

êiαβ = Kiαβ(µαβ − µi), αβ = wn,ws, ns, i = α, β (23a)

and

êαβwns = Kαβwns(µwns − µαβ), αβ = wn,ws, ns (23b)

where Kiαβ and Kαβwns are positive coefficients. We note that these terms apply
for systems where there is an exchange of phase mass between pure phases (e.g.
melting ice), as opposed to the transfer of species mass between phases which
is not considered here. Although no mechanism has been included for following
the properties of individual species within a phase, addition of the appropriate
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equations to the formulation can be made directly, albeit with increased algebraic
complexity.

Interestingly, this linearization approach can also be utilized to identify an ap-
proximation to the geometric variable terms appearing in the first three terms of
the inequality (18). Here, the simplest linearizations approach is used in which
the effects if cross-coupling among the different dependent variables is neglected.
Thus, linearization of the first term in the inequality provides

Dsεw

Dt
− xwss

Dsε

Dt
= Ls[pw − pn − γ wnJwwn], (24)

where Ls is a positive coefficient. Similarly, the second and third terms in Equation
(18) linearize to

Dsε

Dt
= −Lε

{
− pwxwss − pnxnss + P s − γ wsJ swsxwss − γ nsJ snsxnss +

+ l
wns

as
[γ wn sin4− γ wnsκwnsN ]

}
(25)

and

as
Dsxwss

Dt
+ xwss (J

s
ws − J s)D

sε

Dt
= Lws[−γ wn cos4− γ ws +

+ γ ns − γ wnsκwnsG ], (26)

where Lε and Lws are positive coefficients. Equations (24) through (26) provide
three approximate closure equations for the geometric variables that, along with
Equations (52), (60), and (62), comprise the six extra conditions needed to fully
close the system, as discussed previously in Section 2. Although the results here
are similar to previous closure relations developed by Gray (1999), they have been
developed here in the context of deviations from thermodynamic equilibrium rather
than simply as approximations to mathematical averaging theorems. They are more
complete and give rise to the improved approximations to be employed in the
mometum equations indicated in constitutive expressions (20a) through (20e).

Notice that Equations (24) through (26) are dynamic equations that independ-
ently reproduce the equilibrium relationships suggested by the mechanical equi-
librium analysis of Appendix A (and shown as Eqs. (16a)–(16c)). There are two
apparent and important implications of Equation (24):

• If the product of the mean macroscale curvature Jwwn and the interfacial tension,
γ wn is identified as the capillary pressure, Equation (24) provides the standard
equilibrium condition that the capillary pressure is equal to the pressure dif-
ference between the fluid phases. Since, from previous discussions and Gray
(1999), it is reasonable to postulate that Jwwn = Jwwn(εw, awn), then the usual as-
sumption that capillary pressure at equilibrium is only dependent on saturation
is not necessarily complete. The actual dependence will have to be determined
or verified experimentally.
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• Away from equilibrium, under transient, flowing conditions, the capillary pres-
sure is a dynamic function that is not necessarily equal to the phase pressure
difference. This has also been suggested by Kalaydjian (1992), who was able
to measure a coefficient of proportionality in a simple experiment. Thus, even
if Jwwn is a function only of saturation, the difference between its equilibrium
and non equilibrium values needs to be carefully distinguished.

Similarly, Equation (25) relates to the dynamic relation among the solid pres-
sure and the fluid pressures and tensions while transients in Equation (26) are
indicative of a disequilibrium in the force balance at the common line, commonly
referred to as spreading pressure.

7. Closure and Simplification of the Mass and Momentum Equations

As an example, let us consider the closure of the mass and momentum balance
equations using the above constitutive relationships. For simplicity, mass exchange
processes due to phase change will be ignored such that êiαβ = ê

αβ
wns = 0. This is

a reasonable approximation in many instances where the exchange terms are small
and also do not influence the momentum transport significantly. Therefore, mass
conservation equations for the phases, interfacial areas, and common line follow
directly from Table I with no further simplification.

The momentum equations for the fluid phases may be obtained from Table II,
Equation (19a) for the stress tensor, Equation (20a) for the momentum exchange
between phases, and linearization of τττα around the zero-velocity equilibrium state.
The form obtained is

Dα(εαραvα)
Dt

+ εαραdα : I + εα∇pα + εαρα∇4α = −Rαα • vα,s −
− Rααs • vαs,s − Rαwn • vwn,s , α = w, n. (27)

In contrast to the previous linearizations, here some coupling between the α
phase and the bounding interfaces is allowed through the tensors Rααs and Rαwn.
Coupling between the α phase velocity and all other system component velocities
could be allowed by including resistance tensors multiplying the other relative
velocities on the right side of Equation (27). For simplicity, this is not done here.
The tensor Rαα is representative of an inverse permeability. It should be noted that
the coefficients that arise in the linearization step (as well as in preceding and
following linearizations) are functions of the independent variables around which
linearizations are not performed. For example, the resistance tensors in Equation
(27), are reasonably assumed to be functions of θ , εα, and aαβ .

Similar manipulations and assumptions can be used to close the momentum
equations for the interfaces when linearizations around the equilibrium state for
the momentum exchange terms are employed. When interactions of the interfaces
with the adjacent phases and common lines are included, the three closed interface
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momentum equations are:

Dwn(awnρwnvwn)
Dt

+ awnρwndwn : I − awn(I − Gwn) • ∇γ wn +
+ awnρwn∇4wn =
− Rwnw • vw,s − Rwnn • vn,s −
− Rwnwn • vwn,s − Rwnwns • vwns,s , (28a)

Dws(awsρwsvws)
Dt

+ awsρws dws : I − aws(I − Gws) • ∇γ ws −
− awsGws • ∇[xnss (γ wn cos4− γ ns +
+ γ ws + γ wnsκwnsG )] + awsρws∇4ws

= −Rwsw • vw,s − Rwsws • vws,s − Rwswns • vwns,s (28b)

and

Dns(ansρnsvns)
Dt

+ ansρnsdns : I − ans(I − Gns) • ∇γ ns +
+ ansGns • ∇[xwss (γ wn cos4− γ ns +
+ γ ws + γ wnsκwnsG )] + ansρns∇4ns

= −Rnsn • vn,s − Rnsns • vns,s − Rnswns • vwns,s . (28c)

Similar manipulations involving the momentum equation for the common line in
Table II yield:

Dwns(lwnsρwns)

Dt
+ lwnsρwnsdwns : I + lwns(I − Gwns) • ∇γ wns +
+ lwnsρwns∇4wns =
− Rwnswn • vwn,s − Rwnsws • vws,s −
− Rwnsns • vns,s − Rwnswns • vwns,s . (29)

In the momentum equations, the factors I − Gαβ and I − Gwns that are dot-
ted with the gradients of the surface tensions account at the macroscale for the
particular orientations that the interfaces and common line have at the microscale.
In particular, microscopic gradients in surface tension will drive the flow only in
directions tangent to the surface. The orientation factor Gαβ is equal to 1/3I if there
is no preferred orientation of an interface within the averaging volume. It accounts
for the fact that flow of interface mass cannot be driven in directions normal to
the surface by gradients in the surface tension. Similarly, the orientation factor
Gwns is equal to 2/3I if the common line orientation within the averaging volume
is random. It accounts for the fact that gradients in the common line tension can
only drive flow along the common line and not in directions orthogonal to the
line.
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For most problems involving multiphase flow in porous, geologic media, addi-
tional assumptions may be applied to the momentum equations such as negligible
advective terms or negligible coupling of momentum between phases. Under such
assumptions, the momentum equations reduce to Darcian forms.

8. Conclusion

A systematic procedure has been presented for obtaining and analyzing the equa-
tions describing two-phase flow in a porous medium. The analysis makes use of the
conservation equations of mass, momentum, and energy for the phases, interfaces,
and common line, averaged so that they are expressed at the macroscale or core
scale. As a result of the averaging procedure, a deficit of six equations is created
that involves the principal geometric properties or variables of the macroscopic
system (i.e. the volume fractions of the phases, area per volume of the interfaces,
and the common line length per volume). To overcome this deficit, six new evol-
utionary equations (or supplementary conditions) were developed to relate these
variables and their rates of change to the primary system variables. Three of these
Equations, (52), (60), and (62), were obtained by noting the need to eliminate a
product from the entropy inequality that contained a non-zero factor and then mak-
ing use of averaging equations. Three more Equations, (24), (25), and (26), were
obtained, in linearized form, from analysis of the equilibrium relations that must
exist among the independent thermodynamic variables and from analysis of the
dynamic entropy inequality. It must be emphasized that these six supplementary
conditions are closure approximations subject to improvement as future insights
might allow.

In addition, the current analysis has also introduced a series of secondary geo-
metric factors, such as interfacial curvature and macroscale contact angle, into the
equations that must be parameterized in terms of a series of state equations to
complete the formulation. These factors are related to the macroscale representa-
tion of the microscale curvatures and orientations of the interfaces and common
lines. In particular, the orientation tensors appearing in the momentum equations
enforce the condition at the macroscale that microscale gradients in surface (lineal)
tension can only produce interfacial (lineal) flow in directions tangent to the inter-
face (common line). Thus, at the macroscale where the orientation of individual
interfaces must be replaced by information about their average orientation within a
core scale volume, this particular geometric factor provides this information.

Within the analysis, it is possible to identify the relative importance of a num-
ber of parameters and sequentially simplify the form and dependence the various
state equations. This reduces the new equation set to the more traditional set that
is currently employed in two-phase flow modeling. Thus, at the very least, the
current work provides explicit information about what assumptions are being em-
ployed in using the traditional equations of two-phase flow. If those assumptions
are deemed to be overly restrictive, the expanded set of equations provided here
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provides information on what supporting experimental data is needed to provide a
consistent and useful set of equations. Indeed, the current theoretical approach re-
quires continuing experimental support from network modeling efforts (e.g. Lowry
and Miller, 1995; Reeves and Celia, 1996), measurements of interfacial area (e.g.
Montemagno and Gray, 1995; Schaefer et al., 2000), and lattice Boltzmann sim-
ulations (e.g. Hou et al., 1997, Hazlett et al., 1998) so that the mechanisms that
influence two phase flow can be properly accounted for.

Appendix A: Derivation of Mechanical Equilibrium Conditions

The mechanical equilibrium conditions are derived from constraining or relating
small (or variational) changes in geometric variables to one another. This analysis
is performed by examining the variation of the GCP around the equilibrium state,
a state for which this potential will be at a minimum. To complete the study, the
functional dependence of these potentials must be fully postulated. It has been
shown previously (Gray, 2000) that the conditions for macroscale thermodynamic
equilibrium are equality of temperature and of chemical potential at a macroscale
point. If films are not included in the analysis, the postulated forms of the GCPs
will be complete as indicated in Equations (8a) through (8d) with no additional in-
dependent variables. To obtain the mechanical equilibrium relations of importance,
the variational for the entire system should be examined. The procedure followed
is the same as in (Gray, 2000) and will only be outlined here.

The variational expression for mechanical equilibrium is given by

− δ
∫

V

6̂
∣∣
θ,µ

dV =

−
∫

V

[δ(6̂w + 6̂n + 6̂s + 6̂wn + 6̂ws + 6̂ns + 6̂wns)θ,µ] dV = 0, (30)

where δ is a fixed point variation with the macroscale coordinates being held fixed.
Postulates (7a) through (7d) are substituted into this expression and the variations
in the right side are of the geometric densities. The variations are applied so that the
microscopic changes in the positions of interfaces and common lines are around the
equilibrium state. Thus, for example, the macroscale variation of a volume fraction
is expanded such that it is related to the microscale variation of the position of the
surface bounding the phase

δεα =
∑
αβ

1

V

∫
Sαβ

nααβ • δξdS. (31)

Similarly, for example, the variation of the interfacial area between the wetting and
non-wetting phases is

δawn = 1

V

∫
Swn

[(∇ • nwwn)(n
w
wn • δξ)] dS + 1

V

∫
Cwns

νννwnwns • δξdC. (32)
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The geometric relations at the common line among the unit vectors normal to the
interfaces, tangent to the interfaces and normal to the common line, and tangent to
the common line may be written where the contact angle, the geodesic curvature,
and the normal curvature at the common line also appear. These equations allow
elimination of some of the unit vectors that appear in variational relations such as
Equations (31) and (32).

When the manipulations outlined are employed, Equation (30) can be rearranged
to the expression:∫

V

{
(pw − pn − Jwwn)

∫
Swn

nwwn • δξdS

}
dV −

−
∫

V

{[
pwxwss + pnxnss − P s + γ wsJ swsxwss + γ nsJ snsxnss +

+ l
wns

as
(γ wnsκwnsN − γ wn sin4)

] ∫
Ss

ns • δξdS

}
dV −

−
∫

V

{
[γ ws − γ ns + γ wn cos4+

+ γ wnsκwnsG ]
∫
Cwns

δξ • νννwswnsdC
}

dV = 0, (33)

where the assumption has been employed that on the solid surface the variations
are related according to

1

xwss

∫
Sws

δξ • nswsdS = 1

xnss

∫
Sns

δξ • nsnsdS

= as

lwns

∫
Cwns

δξ • nswnsdC =
∫
Ss

δξ • nsdS. (34)

This is a key assumption that essentially states that the variation on the surface is
independent of whether the point of interest is on thews-interface, the ns-interface,
or on the common line. This assumption incorporates the difference between the
behavior of an interface involving a solid and one involving a fluid into the analysis
and considers a solid surface to have a well-defined normal at every microscopic
point. With the variations in the three integrals in Equation (33) being independent,
the mechanical equilibrium conditions are:

pw − pn − Jwwnγ wn = 0, (35a)

pwxwss + pnxnss + 6̂
s

εs
+ γ wsJ swsxwss + γ nsJ snsxnss +

+ lwns

as
(γ wnsκwnsN − γ wn sin4) = 0, (35b)
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and

γ ws − γ ns + γ wn cos4+ γ wnsκwnsG = 0, (35c)

where the porosity, ε, is given by

ε = 1 − εs = εw + εn (36a)

the fractional solid phase area is

xαss = aαs/as (36b)

and the averaged first curvatures of the interfaces have been introduced with

J ααβ = 1

Sαβ

∫
Sαβ

∇ • nααβdS (36c)

and

J s = xwss J sws + xnss J sns . (36d)

Also, κwnsG and κwnsN are the macroscale geodesic and normal curvatures, respec-
tively, obtained as averages of their microscale counterparts over the common line.
Similarly, cos4 and sin4 are actually average values of the cosine and sine of the
microscale contact angle, respectively, over the common line.

To proceed with the derivation of the dynamic equations, it is necessary to have
more information than the equilibrium conditions. In particular, expressions for
the three independent variations, the integrals in Equation (33), must be obtained
in terms of the variations of the geometric properties. Algebraic manipulations of
the expressions for the variations of the geometric densities leads to the expressions
for the integrals. Incorporation of the expressions for independent variations into
Equation (33) yields∫

V

{(pw − pn − Jwwnγ wn)[δεw − xwss δε]} dV +

+
∫

V

{[
pwxwss + pnxnss + 6̂

s

εs
+ γ wsJ swsxwss + γ nsJ snsxnss +

+ l
wns

as
(γ wnsκwnsN − γ wn sin4)

]
[δε]

}
dV −

−
∫

V

{[γ ws − γ ns + γ wn cos4+ γ wnsκwnsG ] ×
× [asδxwss + xwss (J sws − J s)δε]} dV = 0. (37)

It is important to note that this relation holds at equilibrium and that each integrand
is composed of three pairs of products whose factors are each zero at equilibrium.
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This form suggests a rearrangement that will be used in Equation (15) after expan-
sion of the material derivatives of the GCPs in terms of their respective independent
variables.

Appendix B: Derivation of Important Geometrical Constraints

From the variational analysis of the macroscale equilibrium conditions, the equi-
librium constraint conditions (35a) through (35c) are developed. When the entropy
inequality is then arranged such that these groups of terms appear as coefficients of
collections of time derivatives, three additional groups remain as contained in the
first three terms on the right side of Equation (17) as follows:

θ, = − γ wn
{
Dsawn

Dt
− Jwwn

Dsεw

Dt
− (cos4)as

Dsxwss

Dt
+

+
[
xwss J

w
wn − (sin4)

lwns

as
− xwss (J sws − J s)(cos4)

]
Dsε

Dt

}
−

− (γ wsxwss + γ nsxnss )
[
Dsas

Dt
+ J s D

sε

Dt

]
+

+ γ wns
{
Dslwns

Dt
+ κwnsG as

Dsxwss

Dt
+

+
[
κwnsG xwss (J

s
ws − J s)− κwnsN

lwns

as

]
Dsε

Dt

}
+ . . . . (38)

The problem with these terms stems from the fact that the entropy inequality needs
to be arranged such that it consists of a sum of products in which each factor is zero
at equilibrium. However, the first factor in each of these terms is a tension term
that is not zero. Therefore some manipulations must be performed that will lead to
these terms being combined into the entropy equality. This is done by developing
relations for each of the second factors in these products in terms of other variables
appearing in the entropy inequality. In other words, expressions for A, B, and C in
the following expressions are sought:

Dsas

Dt
+ (xwss J sws + xnss J sns)

Dsε

Dt
= A, (39)

Dsawn

Dt
− Jwwn

Dsεw

Dt
− (cos4)as

Dsxwss

Dt
+

+
{
xwss J

w
wn − (sin4)

lwns

as
−

− xwss (J
s
ws − J s)(cos4)

}
Dsε

Dt
= B, (40)
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and
Dslwns

Dt
+ κwnsG as

Dsxwss

Dt
+

+
[
κwnsG xwss (J

s
ws − J s)− κwnsN

lwns

as

]
Dsε

Dt
= C, (41)

where factors A, B, and C are zero at equilibrium conditions. Definitive deter-
mination of these factors away from equilibrium would require the existence of uni-
versally applicable evolution equations for the geometric properties. In the absence
of these equations, reasonable approximations must be developed. The purpose of
this appendix is to outline the path to suitable approximations.

First, an approximation for A in Equation (39) will be developed by obtaining
expressions for the two material derivatives that appear in the equation. From Gray
et al. (1993), the following conditions apply for the porosity:

∇ε = 1

δV

∫
Ss

nsdS, (42a)

∂ε

∂t
= − 1

δV

∫
Ss

ns • wdS. (42b)

Take the vector product of Equation (42a) with the macroscale velocity of the solid
phase, vs , and add this to Equation (42b) to obtain

Dsε

Dt
= 1

δV

∫
Ss

ns • (vs − w) dS (43)

It is important to note that the macroscale velocity, vs may be moved inside the
integral without error.

The material derivative of the surface area of the solid phase may be obtained
based on equations from Gray et al. (1993) for the gradient and the time derivative.
The forms of these equations for the complete solid surface within the averaging
volume, δV , are

0 = ∇as − ∇ •
[

1

δV

∫
Ss

nsns dS

]
+ 1

δV

∫
Ss

(∇ • ns)nsdS (44)

and

0 = ∂as

∂t
+ ∇ •

[
1

δV

∫
Ss

nsns • wdS

]
− 1

δV

∫
Ss

(∇ • ns)ns • wdS. (45)

Now take the vector product of Equation (44) with the solid phase macroscale
velocity and add the result to Equation (45) to obtain

0 = Dsas

Dt
− ∇ •

[
1

δV

∫
Ss

nsnsdS
]

• vs + ∇ •
[

1

δV

∫
Ss

nsns • wdS

]
+

+ 1

δV

∫
Ss

(∇ • ns)ns • (vs − w) dS. (46)
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This equation contains no approximations. However the presence of the normal
vectors in the integrals makes these difficult to evaluate exactly. Some approxima-
tions will be applied. First, define the geometric orientation tensors

Gαβ = 1

Sαβ

∫
Sαβ

nααβnααβdS, αβ = wn,ws, ns. (47)

These tensors account for the directional dependence of the microscopic inter-
faces as evidenced at the macroscale. Because they are related to the geometric
configuration of phases and interfaces, Gαβ will be functions of some or all of the
primary geometric variables, as appropriate, and must be specified or parameteriz-
ed as secondary geometric variables in the same way as the curvature variables.
Note that for equisized spherical particles uniformly packed, the geometric tensors
have the property

xwss Gws + xnss Gns = 1
3I. (48)

For a situation where the solid grains are non-spherical but randomly oriented
and the fraction of the surface in contact with each of the fluid phases is also
randomly oriented, the geometric factors take the form

Gws = Gns = 1
3I. (49)

Next, make the approximation that

1

δV

∫
Ss

nsns • wdS = awsGws • vws + ansGns • vns . (50)

Behind this approximation are the assumption that variations in the interfacial
density are negligible as are the correlations between the geometric factors and
the velocity of the interface. Additionally, assume that the correlation between the
interfacial curvature and the velocity of the interface is negligible such that

1

δV

∫
Ss

(∇ • ns)ns • (vs − w) dS

= (xwss J
s
ws + xnss J sns)

1

δV

∫
Ss

ns • (v − w) dS. (51)

Substitution of Equations (43), (47), (50), and (51) into Equation (46) yields

Dsas

Dt
+ (xwss J

s
ws + xnss J sns)

Dsε

Dt
= −awsGws: dws − ansGns : dns −

− ∇ • (awsGws) • vws,s − ∇ • (ansGns) • vns,s. (52)

Therefore the approximation for A in Equation (39) is.

A = − awsGws : dws − ansGns: dns −
− ∇ • (awsGws) • vws,s − ∇ • (ansGns) • vns,s . (53)
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The derivation of B in Equation (40) follows along similar lines. It is a lengthier
derivation in that four different material derivatives must be examined. The equa-
tions involving partial time derivatives and gradients of the geometric densities
in terms of integrals may be found in Gray et al. (1993). In addition, the macro-
scale measures of the sine and cosine of the microscale contact angle are defined
according to

cos4 = 1

Cwns

∫
Cwns

cos ϕ dC (54a)

and

sin4 = 1

Cwns

∫
Cwns

sin ϕ dC. (54b)

Also, a geometric factor for a common line with unit tangent vector λλλwns is given
by

Gwns = 1

Cwns

∫
Cwns

(I − λλλwnsλλλwns) dC. (55)

If the common lines are equisized circles with random orientation within the aver-
aging volume, the common line geometric factor has the value

Gwns = 2

3
I. (56)

The curvature of the common line, κwns is expressed as

λλλwns • ∇λλλwns = κκκwns = κwnsn ns + κwnsg νννwswns, (57)

where κwnsn is the normal curvature and κwnsg is the geodesic curvature. The aver-
aged macroscale curvature components are then defined as

κwnsN = 1

Cwns

∫
Cwns

λλλwns • ∇λλλwns • ns dC = 1

Cwns

∫
Cwns

κwnsn dC (58a)

and

κwnsG = 1

Cwns

∫
Cwns

λλλwns • ∇λλλwns • νννwswnsdC = 1

Cwns

∫
Cwns

κwnsg dC. (58b)

An important remaining issue is to determine how to treat the integrals over
the fluid-solid interfaces. If any grain expansion within an averaging volume is
considered to occur uniformly, then two of the surface and common line integrals
that arise may be approximated as

1

δV

∫
Sws

nsws • (w − vs)dS = −xwss
Dsε

Dt
(59a)



TWO-FLUID FLOW IN POROUS MEDIA 63

and

1

δV

∫
Cwns

ns • (w − vs)dC = − l
wns

as

Dsε

Dt
. (59b)

The preceding approximations may be used along with the expressions for
the material derivatives in Equation (40) to obtain the approximate evolutionary
equation

Dsawn

Dt
− Jwwn

Dsεw

Dt
− (cos4)as

Dsxwss

Dt
+

+
{
xwss J

w
wn − (sin4)

lwns

as
− xwss (J sws − J s)(cos4)

}
Dsε

Dt

= cos4[∇ • (xnss awsGws) • vws,s + xnss awsGws : dws −
−∇ • (xwss ansGns) • vns,s − xwss ansGns : dns] +
+ cos4[awsGws • vws,s + ansGns • vns,s] • ∇xwss −
−∇ • [Gwnawn] • vwn,s − awnGwn : dwn. (60)

Comparison of this equation with Equation (40) indicates that

B = cos4[∇ • (xnss awsGws) • vws,s + xnss awsGws : dws −
−∇ • (xwss ansGns) • vns,s − xwss ansGns : dns] +
+ cos4[awsGws • vws,s + ansGns • vns,s] • ∇xwss −
−∇ • [Gwnawn] • vwn,s − awnGwn: dwn. (61)

Finally, an expression for C in Equation (41) is obtained in a straightforward
manner. All the preliminary work needed involving relations for the material de-
rivatives is encountered in the derivation of Equation (61). The result obtained after
minimal algebra is

Dslwns

Dt
+ κwnsG as

Dsxwss

Dt
+

[
κwnsG xwss (J

s
ws − J s)− κwnsN

lwns

as

]
Dsε

Dt

= −κwnsG ∇ • [xnss Gwsaws] • vws,s + κwnsG ∇ • [xwss Gnsans ] • vns,s −
−∇ • [Gwnslwns] • vwns,s −
− κwnsG [awsGws • vws,s + ansGns • vns,s] • ∇xwss −
− κwnsG xnss a

wsGws : dws + κwnsG xwss a
nsGns : dns −

− lwnsGwns : dwns. (62)

Comparison of this equation with Equation (41) shows that the right side of Equa-
tion (62) is equal to C.
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