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Abstract

This paper is the second in a series that details the thermodynamically constrained averaging theory (TCAT) approach for mod-

eling flow and transport phenomena in porous medium systems. In this work, we provide the mathematical foundation upon which

the theory is based. Elements of this foundation include definitions of mathematical properties of the systems of concern, previously

available theorems needed to formulate models, and several theorems and corollaries, introduced and proven here. These tools are

of use in producing complete, closed-form TCAT models for single- and multiple-fluid-phase porous medium systems. Future work

in this series will rely and build upon the foundation laid in this work to detail the development of sets of closed models.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The first paper in this series on the thermodynami-

cally constrained averaging theory (TCAT) approach

provided a conceptual introduction and established the

focus of this research on the production of rigorously-

based, closed models [19]. The TCAT approach inte-

grates classic notions of volume averaging with other
key concepts such as the need to model interfaces, com-

mon curves, and common points in realistic multiphase

systems; a rigorous approach for introducing multiscale

thermodynamic dependencies of internal energy on

other system variables; a formal, systematic approach

for constraining the entropy production; and consistent

approaches for producing closed models. Each of these
0309-1708/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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steps, and others that are involved, will be fully devel-

oped and applied for a variety of systems to produce

complete, closed, and well-posed models in this series

of papers. A step in facilitating such a development

of TCAT-based models is the specification of a mathe-

matical foundation, including necessary notation,

definitions, and certain theorems useful for developing

such models. That step is the focus of the present
paper.

The overall goal of this work is to provide the math-

ematical foundation upon which TCAT models can be

constructed and advanced. The specific objectives of this

present paper are: (1) to define carefully the systems and

scales of concern; (2) to define the basic properties of

these systems; (3) to introduce a compact notation to ex-

press common quantities needed in the TCAT approach;
(4) to summarize key available theorems for averaging

quantities from the microscale to the macroscale; and

(5) to advance a set of new theorems and corollaries that
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Nomenclature

A area measure

d rate of strain tensor
E set of all types of entities

eabc unit vector tangent to the abc common curve

and oriented positive outward at the

endpoints

f general scalar quantity

f general vector quantity

f general second-rank tensor quantity

g general scalar quantity
g general vector quantity

g general second-rank tensor quantity

I index set of all types of entities

I identity tensor

L length measure

L measure of entity

‘ length scale

labc unit vector tangent to the abc common
curve

mab unit vector orthogonal to na and outward

normal from the ab interface along the

edge of the interface

N number measure

n outward normal vector

nC number of common curves

nI number of interfaces
nP number of phase volumes

nPt number of common points

na outward normal vector from phase volume a
P set of system properties

t time

t stress tensor

V volume measure

v velocity vector
w weighting function for averaged quantity

w microscale velocity vector of an interface

whose tangential components may differ from

the tangential velocity of the material in the

interface

Greeks

C boundary
d‘ change in length scale

e precision estimate for property

�a measure of quantity of entity a per system

volume

q mass density

sg general time scale

st thermodynamic time scale

X domain
x mass fraction

Subscripts and superscripts

– mass average qualifier (superscript)
= specifically defined average (superscript)

C common curve qualifier (subscript)

e external boundary qualifier (subscript)

I interface qualifier (subscript)

i general index (subscript and superscript)

i internal boundary qualifier (subscript)

j general index (subscript)

k general index (subscript and superscript)
ma macroscale qualifier (superscript)

me megascale qualifier (superscript)

mi microscale qualifier (subscript)

mo molecular scale qualifier (subscript)

P qualifier for phases (subscript)

Pt qualifier for points (subscript)

r qualifier for resolution scale (subscript and

superscript)
T transpose operator

a entity qualifier for a phase volume (subscript

and superscript)

ab (or other pair of Greek letters) entity qualifier

for an interface between the a and b phases

(or other pair of phases, subscript and

superscript)

abc entity qualifier for a common curve that is on
the boundary of the a, b, and c phases (sub-

script and superscript)

abcd entity qualifier for a common point where the

boundaries of the a, b, c, and d phases are in

contact (subscript and superscript)

b entity qualifier for a phase volume (subscript)

c entity qualifier for a phase volume (subscript)

d entity qualifier for a phase volume (subscript)
i general entity qualifier which could indicate a

phase volume, interface, or common curve

(subscript and superscript)

Other mathematical symbols

closure of set (overline)

h i averaging operator

D�i=Dt material derivative as defined by Eq. (15)
D0�i=Dt material derivative restricted to an interface

and defined by Eq. (46)

D00�i=Dt material derivative restricted to a common

curve and defined by Eq. (67)

R set of real numbers

o 0/ot partial derivative of a point on a potentially

moving interface as defined in Eq. (44)

o00/ot partial derivative of a point on a potentially
moving common curve as defined by Eq. (65)
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$ 0 microscale surficial del operator on an inter-

face as defined in Eq. (42)

$00 microscale curvilinear del operator on a com-

mon curve as defined by Eq. (63)

Abbreviations

AO averaging operator

n nonwetting phase

ns nonwetting–solid phase interface

REV representative elementary volume

RHS right-hand side

s solid phase

TCAT thermodynamically constrained averaging

theory
w wetting phase

wn wetting–nonwetting phase interface

ws wetting–solid phase interface

wns wetting–nonwetting–solid phase common

curve
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will prove useful in producing TCAT-based models of

porous medium systems.
2. Systems and scales

Fig. 1 shows an example of the physical components

of a microscale system composed of a solid phase (s), a
Fig. 1. Physical components of an exampl
wetting fluid phase (w), and a nonwetting fluid phase

(n). The figure provides a telescoped view such that the

microscale components are seen to be elements within

the macroscale averaging volume, which in turn exists

in an aquifer. The solid phase is connected and fills a por-

tion of the domain, X, and a connected pore space within

the solid fills the remaining portion of X. The solid phase

may be rigid or deform as a function of an applied stress.
e three-phase microscale system [14].
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In this example, the pore space contains the w and n fluid

phases, each of which may be incompressible or com-

pressible. Two-dimensional interfaces within X form

the boundaries between pairs of immiscible phases and

are denoted as wn, ws, and ns interfaces with the designa-

tions referring to the phases involved. One-dimensional
common curves may be identified as the location where

three different interfaces or three different phases meet,

here denoted as the wns common curve. In general, com-

mon curves that could be formed at a juncture of more

than three interfaces are not considered in our analysis.

Zero-dimensional common points could exist where four

common curves, six interfaces, or four phases meet.

Common points at the junction of more than four phases
are not considered. Since Fig. 1 depicts a system with

only three phases, no common points exist. We also

exclude from our general discussion common curves

and common points that form in foam systems. Inter-

faces, common curves, and common points are ideal-

izations that account for regions of transition in

physicochemical characteristics between or among dis-

tinct phases. Transfer of mass, momentum, energy, and
entropy between phases occurs at these locations. We

refer to the collection of phase volumes, interfaces, com-

mon curves, and common points as entities.

We can cast this system description into a more com-

plete, precise set of formal definitions for a domain and

the entities within that domain. We identify a domain as

a region of study along with its boundary according to

the following definition:

Definition 1 (Domain). The domain of interest is

X � R3 with boundary C, and the external closure of

the domain is X ¼ X [ C. The extent of X has a measure

of volume denoted as V.

A phase volume is next defined as occupying a dis-

tinct portion of the domain, X. The boundary of the

phase volume may consist of a portion of the external
boundary of the domain along with the interface of

the phase with all other phases in the interior of X.
For a system consisting of only one phase, no internal

boundaries exist, and the domain boundary will be the

boundary of the phase volume. A phase volume is de-

fined as follows:

Definition 2 (Phase volume). Phase volumes are
regions occupied by a distinct material (either fluid or

solid) denoted as Xa � X � R3 for material a where nP is

the number of distinct materials or phase volumes. The

set of all types of phase volumes is denoted as

EP ¼ fXi j i 2 IPg, and IP is the index set of all types

phase of volumes with individual entries consisting of an

index corresponding to a phase volume of the form a
and having nP members. The closure of Xa is denoted as
Xa ¼ Xa [ Cae [ Cai, where the external boundary
Cae ¼ Xa \ C, and the internal boundary

Cai ¼
S

b 6¼aXa \ Xb. The extent of Xa has a measure of

volume denoted as Va or La.

An interface between phase volumes within the

domain will be modeled as a surface between phase vol-

umes. The properties of an interface depend, at least

in part, on the chemical constituents making up the

phases on each side of the interface. Thus, the different

interfaces between a fluid and solid or between a pair

of fluids must be stipulated. The boundary of an inter-
face is a common curve on the interior where three

phases come together along with the common curve

formed by the intersection of the interface with the

external boundary of the domain. The interface may

be defined as follows:

Definition 3 (Interface). Interfaces are regions within X
formed by the intersection of two distinct phase volumes
and denoted as Xab ¼ Xa \ Xb � R2. The set of all types

of interfaces is denoted as EI ¼ fXi j i 2 IIg, and II is

the index set of all types of interfaces with individual

entries consisting of an index corresponding to a pair of

phase volumes of the form ab and having nI 6 nP
2

� �
members, where the order of the phase volume qualifiers

comprising an interface qualifier is irrelevant. The closure

of Xab is denoted as Xab ¼ Xab [ Cabe [ Cabi, where the
external boundary Cabe ¼ Xa \ Xb \ C, and the internal

boundary Cabi ¼
S

c 6¼a;bXa \ Xb \ Xc. The extent of Xab

has a measure of area denoted as Aab or Lab.

The location where three different phase volumes
come together, or three different interfaces have a com-

mon boundary, will be modeled as an entity called a

common curve. At least three distinct phases must be

present if a common curve is to be formed, unless a

foam is being considered. The boundary of a common

curve is composed of the points at its ends where either

a different common curve is encountered or the curve

intersects the boundary of the system domain. The com-
mon curve is thus defined:

Definition 4 (Common curve). Common curves are

regions within X formed by the intersection of three

distinct phase volumes and denoted as

Xabc ¼ Xa \ Xb \ Xc � R1. The set of all types of

common curves is denoted as EC ¼ fXi j i 2 ICg, and
IC is the index set of all types of common curves with
individual entries consisting of an index corresponding

to a group of three phases of the form abc and having

nC 6
nP
3

� �
members, where the order of the phase volume

qualifiers comprising a common curve qualifier is

irrelevant. The closure of Xabc is denoted as

Xabc ¼ Xabc [ Cabce [ Cabci, where the external boundary

Cabce ¼ Xa \ Xb \ Xc \ C, and the internal boundary

Cabci ¼
S

d6¼a;b;cXa \ Xb \ Xc \ Xd. The extent of Xabc

has a measure of length denoted as Labc or Labc.
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Those ends of the common curves that are on the

interior of the domain of study are referred to as com-

mon points. They are the locations where four different

phase volumes come together. Their definition is along

the same lines as those of phase volumes, interfaces,

and common curves except that a common point does
not have a boundary:

Definition 5 (Common points). Common points are

regions within X formed by the intersection of four

distinct phase volumes and denoted as

Xabcd ¼ Xa \ Xb \ Xc \ Xd � R0. The set of all types of

common points is denoted as EPt ¼ fXi j i 2 IPtg, and
IPt is the index set of all types of common points with

individual entries consisting of an index corresponding

to a group of four phases of the form abcd and having

nPt 6 nP
4

� �
members, where the order of the phase

volume qualifiers comprising a common point qualifier

is irrelevant. The extent of Xabcd has a measure of

number denoted as Nabcd or Labcd.

It will prove convenient to have one term that refers

to the collection of phase volumes, interfaces, common

curves, and common points within the system. These

are collectively referred to as entities, which are defined
as follows:

Definition 6 (Entities). The set of all types of entities is

denoted as E ¼ EP [ EI [ EC [ EPt, and the index set of

all types of entities is I ¼ IP [II [IC [IPt, giving

E ¼ fEi j i 2 Ig ¼ fXi j i 2 Ig.

Many possible types of multiphase systems exist.

Variations among these systems include the number of

fluid and solid phases as well as the variations in the

physicochemical properties of the resulting entities.
For example, a strict order of wettability can exist and

dictate the type of interfaces, common curves, and com-

mon points that may occur in a given system. Not all

possible types of interfaces will necessarily form. The

physical properties of a specific system under consider-

ation will thus dictate the entities that may exist within

that system. The actual number of entities may be less

than the maximum possible number of entities that
could exist based upon combinatorial considerations

alone.

Generally speaking, this work is concerned primarily

with two distinct length scales: the microscale, ‘mi, and

the macroscale, ‘ma, both of which are much longer than

the molecular scale, characterized by the mean free path

between molecular collisions. The microscale is often

referred to as the pore scale, and it is a scale at which
all the entities are resolved and the laws of continuum

mechanics apply to an individual entity. An example

of the microscale perspective would be the flow of water

in a saturated porous medium where individual solid

particles are described and resolved. The particle sur-
faces are treated as boundaries of the fluid phase such

that the gradients in fluid velocities between particles

can be described.

The macroscale is often referred to as the porous

medium continuum scale. It is a scale at which the de-

tails of microscale phase boundaries are not explicitly re-
solved. Rather, descriptions of the system are expressed

in terms of entity properties that are averaged over suf-

ficiently large microscale regions pertaining to that en-

tity. The macroscale has also been referred to as the

Darcy scale, corresponding to the nature of the scale

and intent of the original experiments of Darcy [11,12].

For purposes of this work, we restrict ourselves to

deterministic systems for which all entity boundaries
are completely described at the microscale ‘mi. At the

macroscale, ‘ma, all important properties of the system

are well-defined and insensitive with respect to small

changes in the length scale. This representation is consis-

tent with the classical definition of a so-called representa-

tive elementary volume or REV [5]. The actual physical

size of ‘ma, and even the existence of an REV according

to the requirements posed above, depends upon the char-
acteristics of the physical system of concern.

We can employ these notions of different spatial

scales more completely and precisely by the following:

Axiom 1 (Hierarchical spatial scales). A clear hierar-
chy of separate length scales exists and is of the form

‘mo � ‘mi � ‘rr � ‘ma � ‘me where the five scales are,

respectively, the molecular scale, the microscale, the

resolution scale, the macroscale, and the megascale.

Although a clear discrete set of separated length

scales has been stipulated, we note that most natural

porous medium systems consist of a hierarchy of many

different length scales that may not have a clear separa-

tion [10]. While such systems occur routinely and are

important, these systems are outside the scope of our

current focus. However, we believe that the TCAT ap-

proach can be employed for the study of such systems.
The scales appearing in Axiom 1 have the following

definitions:

Definition 7 (Molecular scale). The molecular length

scale, ‘mo, is defined as the length scale for molecular

collisions for a phase in a system of concern.

As a point of reference, the length scale of molecular

collisions for a gas is the mean free path, which at stan-

dard pressure and temperature is approximately 10�7 m.

For a liquid, the scale of molecular collisions is the

diameter of the molecule, which is on the order of

3 · 10�10 m.

Definition 8 (Microscale). The microscale, ‘mi, is the

smallest length scale at which laws of continuum

mechanics can be developed with j½Pið‘mi þ d‘miÞ�
Pið‘miÞ�j 6 emi, "i, where Pið‘Þ is a microscale property
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estimated by a well-defined average over length scale ‘,
d‘mi is a change in the length scale, and �mi is a specified

precision of the estimate of Pi.

According to this definition, quantities appearing in

microscale continuum equations involve a length scale

large enough that averages over molecular interactions

are stable with respect to perturbations in the size of

the averaging region. A minimum length scale for such

an average is typically an order of magnitude larger than

the molecular interaction scale. Thus, for a gas the
microscale is larger than 10�6 m (1 lm), while a liquid

microscale is roughly 2.5 orders of magnitude smaller.

Definition 9 (Resolution scale). The resolution scale,

‘rr, is the length scale needed to resolve features related
to transport phenomena for the system of concern.

The resolution scale is particularly important for por-

ous media as it relates to the natural length scales of the
system. For a natural system, the average diameter of a

sand grain is typically on the order of 102 lm. If the

grains are well sorted, this would be the resolution scale.

However, granular porous systems may contain solid

particles ranging in size from approximately 1 lm to

10�1 m or larger. The features of a general porous sys-

tem may include small pores, fractures that are evident

on a larger scale, boulders, and, perhaps, caves formed
by a karstification process. Thus, although the molecu-

lar scale and the microscale can be defined within an eas-

ily reasoned length, identification of the resolution scale

is complicated by the features one wishes to study. The

resolution scale will vary widely depending on the prob-

lem of interest.

Definition 10 (Macroscale). The macroscale, ‘ma, is the

length scale at which the set of averaged properties of

concern for the system can be rigorously defined and

j½Pið‘ma þ d‘maÞ �Pið‘maÞ�j 6 ema, "i, where Pið‘Þ is a

macroscale property estimated by a well-defined average

over length scale ‘, d‘ma is a change in the length scale,
and �ma is a specified precision of the estimate of Pi.

The macroscale is implicitly employed for the descrip-

tion of porous medium systems in defining average geo-
metric properties such as the fractional volume of the

porous medium occupied by each phase volume or the

amount of interfacial area between phases per volume.

These quantities do not exist at the microscale but be-

come important at the macroscale in much the same

way that mass densities do not exist at the molecular

scale but become important at the microscale. The mac-

roscale must be larger than the resolution scale to incor-
porate a region of the porous medium large enough that

the volume fractions will be insensitive to small pertur-

bations in the size of the length scale. At a minimum,

the macroscale should be roughly 10 times the resolution

scale with more stable averages obtained if the macro-
scale is on the order of 102 times the resolution scale.

For a well-sorted sample with grain sizes on the order

of 102 lm, these considerations seem to result in a mac-

roscale of approximately 10�2 m. However, depending

upon how the fluids are distributed within the porous

medium system, the macroscopic length scale might
have to be increased to obtain stable values of interfacial

areas per volume [23]. Within the mathematical frame-

work to be developed here, we implicitly assume that

all macroscale variables are specified at the same macro-

scopic length scale. This assumption, of course, raises

concerns about the stability of all macroscale quantities

with respect to changes in length scale. Additionally, in

some systems there will be more than one identifiable
macroscopic length scale. For example, in a system com-

posed of a fractured porous medium, one macroscale

may be employed relative to the pore diameter or grain

size while a larger macroscale can be identified relative

to the fractures. Modeling of the whole system requires

that techniques be employed that couple these two

domains.

Definition 11 (Megascale). The megascale, ‘me, is the

length scale corresponding to the domain of interest X.

This scale must be much larger than ‘ma because mac-

roscale quantities may be defined only at points farther

than half ‘ma from the boundary of the domain. There-

fore, if variations in properties and gradients of vari-

ables are to be defined meaningfully in most of the

domain, its length scale must be much larger than the

macroscale. Note that in some cases, it is useful to aver-
age from the microscale over a full system dimension. In

that case, it is not possible to account for variations over

that dimension. For example, in modeling nearly hori-

zontal flow in an aquifer, it may be possible to neglect

vertical gradients of properties. Thus the averaging em-

ployed might be macroscopic in the lateral direction

(i.e., using a length scale ‘ma such that

‘rr � ‘ma � ‘me), whereas the averaging would be over
the full vertical length scale of the system. Such a

description can also be obtained by three-dimensional

averaging to the macroscale followed by integration

over the vertical. In our exposition, we will be concerned

only with averaging to obtain the macroscale equations.

A wide range of temporal scales occur in porous med-

ium systems, just as is the case for spatial scales. The

temporal scales of concern are related to the spatial scale
of concern and to the particular phenomena to be mod-

eled. For example, one can consider the time required

for equilibrium to be obtained for various physical

and chemical processes, such as thermal equilibrium or

equilibrium of chemical potentials. In addition, time

scales are often described relative to certain physico-

chemical characteristics of a system, such as advection,

diffusion, dispersion, a chemical or biological reaction
rate, or a rate of mass exchange between phases. Eluci-
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dation of time scales and comparison of time scales are

valuable approaches from which considerable insight

can be obtained about a given problem. We define two

types of time scales, a thermodynamic equilibrium time

scale and a general time scale. The former is related to a

thermodynamic property of the system and the latter is
related to a transport or reaction property of the system,

which may be described by a parameter used to charac-

terize a conservation equation or a closure relation.

Definition 12 (General time scale). The general time
scale sg ¼ sgð‘;PiÞ is the time scale related to a general

property Pi with respect to length scale ‘.

Definition 13 (Thermodynamic time scale). The ther-

modynamic time scale st ¼ stð‘;PiÞ is the time scale

needed to approach the equilibrium value of thermody-

namic property Pi for a system of length scale ‘ within
some small measure of distance of equilibrium.

Difficulties in defining precisely when an equilibrium

state is reached motivates the definition of thermody-

namic time scale as, essentially, a measure of the time

to reach equilibrium for practical purposes. If rates of
evolution of a system are to be considered, a general

time scale must be chosen that is less than the equilib-

rium time scale. Many interesting and useful time scales

exist when one considers porous medium systems. For

example, recharge to the subsurface may be modeled

in terms of decades if one is interested in long-term

groundwater depletion. Annual models are of interest

if the infiltration is related to recent trends. Monthly val-
ues can be important for crop growth. Daily or hourly

values of infiltration in response to a storm event are

modeled when one considers watershed response. In lab-

oratory studies or in consideration of the initiation of

infiltration into a dry soil, a time scale on the order

of minutes or seconds may be appropriate. Studies of

unsaturated flow often involve column studies in which

small changes in pressure are imposed on the system
sequentially, with the system relaxing to equilibrium be-

tween each step (e.g. [25]). In such cases, the dynamics

within a step occur at a smaller interval than the time re-

quired for equilibrium to be achieved.

In the study of porous medium systems, it is interest-

ing to note that length scales relate to the physical prop-

erties of the system. Selection of various length scales

can result in the system being modeled as heterogeneous,
for example, with flow in pores within the solid, or as

homogeneous, for example, with the system being

viewed with all entities existing at a point but with differ-

ent densities. The boundaries between entities must be

accounted for. Conversely, the time domain is continu-

ous without heterogeneities. There are no boundaries

in the time domain. Therefore, averaging over time as

well as space does not alter the form of the equations
in comparison to averaging only over space, although
it does alter the meaning of the terms that appear in

the equation. For this reason, time averaging is not

explicitly applied in the subsequent formulations; but

one must consider the meanings of the various terms

as averages over space and time when employing the

resulting formulas.
3. Macroscale properties

System properties are members of the set P, with

members of the set denoted as Pi. Macroscale system

properties are obtained as averages of microscale prop-

erties or as averages of combinations of microscale
properties. The macroscale properties are constructed

using a variety of averaging approaches. In some

instances, a macroscale property is conveniently ex-

pressed as a combination of other macroscale properties

that have been obtained directly from averaging. Of

course, these combination properties may also be

obtained as averages of combinations involving micro-

scale variables. Considerable relevant foundational effort
has been invested in the development of macroscale aver-

aging theory for multiphase porous medium systems (e.g.

[1,3,4,6,7,9,13,15–18,20–22,24,26]). Rather than repro-

ducing these notions in detail, we summarize briefly in

this section a few key definitions needed to establish

our notation and to develop the theorems that follow.

We define an averaging operator (AO):

Definition 14 (Averaging operator).

hPiiXj;Xk ;w
¼
R
Xj
wPi drR

Xk
wdr

; ð1Þ

where Pi is a property to be averaged to the macroscale,

and the subscripts on the operator correspond, respec-
tively, to the domain of integration of the numerator,

the domain of integration of the denominator, and a

weighting function applied to the integrands in the def-

inition of the averaging process. Omission of the third

subscript on the averaging operator implies a weighting

of unity. If the domain over which the averaging is being

performed is a set of common points, the integral is re-

placed by a discrete summation over all points in the
specified entity set.

The averaged quantity on the left-hand side of Eq. (1)

is a member of P. Because of the variety of ways that

averaging of a microscale quantity may be performed
through selection of averaging regions and weighting

functions (i.e., through selection of Xj, Xk, and w), a

number of different averages of a single microscale

quantity or combination of microscale quantities may

be defined.

This averaging operator provides an unambiguous

notation for defining many macroscale variables that

will be important for model description. However, use
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of this notation for all variables for purposes such as

specifying conservation-equation-based models is cum-

bersome. Because of this, we will rely upon a shorthand

notation for commonly used quantities, which is much

more compact than the fully specified averaging opera-

tor. In doing so, we will be careful to identify macroscale
variables not readily defined unambiguously using an

abbreviated notation, since our ultimate objective is to

define complete, consistent models of multiphase porous

medium systems.

Some specific and common examples of the applica-

tion of Eq. (1) can be shown to connect to common

notions. As a first case, consider the notation that will

be employed for the various geometric densities. Define
these densities, �i, as averages by setting Pi ¼ 1 accord-

ing to

�i ¼ h1iXi;X
¼
R
Xi
drR

X dr
¼ Li

V
: ð2Þ

Specification of values of i that correspond to common

entity types, such as phase volumes, interfaces, or com-

mon curves, leads to the common geometric quantities
of �a, the volume fraction of the a phase volume; �ab,
the specific interfacial area of the ab interface; and �abc,
the specific common curve length of the abc common

curve. None of these common geometric quantities ex-

ists at the microscale.

A second example is an entity average of a microscale

variable, an average that has traditionally been referred

to as an intrinsic average. Let Pi ¼ fi, where the sub-
script i denotes that the variable is a microscale property

of entity i. The intrinsic average, fi is given by

f i ¼ hfiiXi;Xi
¼
R
Xi
fi drR

Xi
dr

¼ 1

Li

Z
Xi

fi dr: ð3Þ

The macroscale variables of the form fi are routinely

used for all entity types, leading to phase volume intrin-

sic averages fa, interface intrinsic averages fab, and com-
mon curve intrinsic averages fabc.

A third average that is often employed is that ob-

tained by using the microscale density as the weighting

function. This intrinsic mass average for the case where

the microscale property of interest in entity i is the mem-

ber of P denoted as Pi ¼ fi is indicated as f �i and is de-

fined according to

f �i ¼ hfiiXi;Xi ;qi
¼
R
Xi
qifi drR

Xi
qi dr

¼ 1

qiLi

Z
Xi

qifi dr; ð4Þ

where qi is the microscale mass density of entity i, and qi

is the intrinsic average mass density in the entity domain

Xi. When the entity is a phase volume, qi has the stan-

dard meaning of mass per volume. The generalization

of this notion leads to mass per area and mass per length

for interfaces and common curves, respectively. These

quantities have been previously used in multiphase
model formulation work [15,16]. The following identi-

ties may also be shown to apply:

qif �i ¼ qihfiiXi;Xi;qi
¼ hqifiiXi;Xi

¼ ðqifiÞ
i
; ð5Þ

where the last expression on the RHS of Eq. (5) is a

short-hand notation that implies the averaging domains.

In some cases, the averaging that is performed is done
with a weighting that involves the properties of a chem-

ical species, k. For example, if the microscale mass frac-

tion of species k in entity i is denoted as xki, the species

weighted average of the velocity of species k in entity i is

hvkiiXi;Xi;qixki
¼
R
Xi
qixkivki drR

Xi
qixki dr

¼ 1

qixk�iLi

Z
Xi

qixkivki dr ¼ vki: ð6Þ

Of notational significance is the extension of the overline

over the superscripts in various terms. The notation em-

ployed indicates that xk�i is the macroscale intrinsic mass

average of the mass fraction of species k obtained from

xk�i ¼ hxkiiXi;Xi;qi
¼
R
Xi
qixki drR

Xi
qi dr

¼ 1

qiLi

Z
Xi

qixki dr: ð7Þ

In the notation for the macroscale velocity of species k
in entity i, the overline extends over both the species

qualifier, k, and the entity qualifier, i, indicating that

the weighting function is the mass density of species k

in entity i.
Since the macroscale properties are independent of

microscale coordinates, they are unchanged when aver-

aged over microscale coordinates. Operationally, this

means they can be moved in and out of an averaging
integral without error. For example, if fi is an intrinsic

average of some microscale quantity fi, then

hf iiXj;Xk ;w
¼ f ih1iXj;Xk ;w

: ð8Þ

Some macroscale properties are not obtained directly

as averages of a single microscale quantity but are actu-

ally averages of combinations of microscale and other

macroscale quantities. One example of this type of mac-

roscale quantity is the macroscale stress tensor for an
entity that is sometimes defined in terms of the average

of the microscale stress tensor in combination with the

microscale density and deviations of the microscale

velocity from a macroscale value. The reason for this

combination will become apparent in subsequent

papers, but for now it is adequate to simply assert that

we can define such a macroscale quantity. Introduction

of special abbreviated notation for each special case of
Eq. (1) would be impractical. Therefore, we will use a

single special abbreviated notation, a double overbar

in the superscript of the macroscale quantity, to desig-

nate a specially defined average. The precise meaning

of the double-barred notation will vary depending on

the macroscale quantity considered. Thus, the double-
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bar can be considered to be an alert that indicates the

macroscale variable is not just a direct average of its

microscale counterpart. As an example of the use of this

notation, one form of the macroscale stress tensor may

be designated as t��i and defined as

t
��i ¼ hti � qiðvi � v�iÞðvi � v�iÞiXi;Xi

: ð9Þ

Let us emphasize that if the double-bar notation is

encountered in an equation, it means that the macro-

scale quantity under consideration is an average other

than an intrinsic average or an intrinsic mass average.

The actual definition of that double-bar average will

be supplied in the notation section for each quantity.
However, for purposes of continuing with the deriva-

tions of equations of interest, the precise definition of

the macroscale quantity in terms of its microscale roots

is less important than the fact that it represents a macro-

scale variable. For instance, once the transformation of

microscale conservation equations to the macroscale has

been carefully completed, it is more important in subse-

quent mathematical manipulations to recognize t��i as the
macroscale stress tensor for entity i than to recall its pre-

cise definition as given in Eq. (9). We emphasize, none-

theless, that precise knowledge of the definition of a

macroscale quantity in terms of microscale precursors

and other macroscale properties is essential for devising

meaningful connections between microscale and macro-

scale theoretical formulations and for utilization of data

measured at one scale in conjunction with the system
description at another scale.
4. Averaging theorems

4.1. Overview

The development of macroscale conservation equa-

tions and macroscale thermodynamic expressions that

are both consistent with the microscale and cast in terms

of precisely defined variables can be facilitated by a set

of theorems that support change of scale operations.
The fundamental function of such theorems is straight-

forward: to transform the integrals of space and time

derivatives to derivatives of integral quantities. Since

macroscale variables developed using Definition 14 are

composed of integrals of microscale quantities, or more

generally combinations of microscale and macroscale

quantities, derived macroscale equations should be

expressed in terms of these averaged quantities and their
derivatives. Averages of microscale temporal and spatial

derivatives arise when the microscale conservation equa-

tions are averaged to the macroscale. These average

derivatives are generally not readily accessible quanti-

ties. Averaging theorems provide a means to formulate

rigorous models in which the derivatives have been con-

verted to accessible quantities.
Some of the averaging theorems needed to facilitate

the development of TCAT-based multiphase models

are available, either existing through classical work in

vector calculus or fluid mechanics (e.g. [27]), or through

relatively recent focused work on the development of

a large set of such theorems for a variety of entities
[18]. For example, a collection of useful theorems

for the transformation of surface and curve integral

terms has been derived using generalized functions and

tabulated. The most often used of these theorems are

briefly summarized below and put into context of this

work.

Recent work to extend microscale thermodynam-

ics consistently to the macroscale [19] leads to new
classes of integral expressions for which transforma-

tions to more common macroscale averaged forms is

desirable. However, theorems to guide such transfor-

mations have not been published to the best of our

knowledge. The lack of such theorems is an impedi-

ment to the development of rigorous closed macroscale

models of multiphase transport phenomena based

upon averaged microscale thermodynamics and thus
is an impediment to the derivation of TCAT-based

models. We summarize several types of expressions aris-

ing in such applications, and list and prove theorems to

accomplish a useful set of transformations. Of course,

the theorems developed may have utility beyond the

immediate motivating set of applications.
4.2. Available theorems

Common textbooks dealing with vector calculus,

fluid mechanics, and transport phenomena include

Gauss� theorem, also commonly known as the diver-

gence theorem, and various forms of the transport theo-

rem (e.g. [8,27]). These common theorems are

introduced and will be used as a point of departure for

the discussion central to this work:

Theorem 1 (Gauss� divergence theorem). For a smooth

continuous and differential vector function f defined over a

domain X � R3 that may deform with time t due to

boundary velocity w with closed boundary C and outward
normal from the boundary nZ
XðtÞ

r � f dr ¼
Z
CðtÞ

n � f dr: ð10Þ

Theorem 2 (Transport theorem). For a smooth contin-

uous and differential scalar function f defined over a
domain X � R3 that may deform with time t due to bound-

ary velocity w with closed boundary C and outward

normal n

d

dt

Z
XðtÞ

f dr ¼
Z
XðtÞ

of
ot

drþ
Z
CðtÞ

fw � ndr ð11Þ
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Theorems 1 and 2 are used classically in fluid

mechanics and transport phenomena to transform inte-

gral statements of conservation principles into local con-

servation equations expressed in terms of differential

operators. A similar but more comprehensive set of the-

orems is needed for the two-scale multiphase systems of
interest in TCAT-based models. Specifically, the follow-

ing classes of desirable transformations of integrals over

a domain (phase volume, interface, or common curve)

arise routinely in TCAT-based models:

• transformations of gradients, divergences, curls, and

temporal derivatives of microscale functions to simi-

lar differential macroscale operators applied to inte-
grals of functions over the domain and internal

boundary terms;

• transformations of gradients, divergences, curls, and

temporal derivatives of microscale functions to simi-

lar differential microscale operators applied at inter-

nal and external boundaries of the domain; and

• transformations of various derivatives of a deviation

of a microscale scalar, vector, or tensor function from
its macroscale counterpart to forms involving differ-

entials of integrals of microscale functions, macro-

scale quantities, and boundary terms.

The first two classes of these transformations are well

defined with each class having a total of 12 members

(four derivative types for each of three entities) for a

total of 24 transformations. All of these transformations
have been developed and published as theorems and

proved using generalized functions [18]. The generalized

function approach has also been used to generate a vari-

ety of other theorems, including theorems involving

three-scale averaging (microscale, macroscale, and

megascale). Proofs of some subset of these theorems

have appeared in the literature as well [18]. The existence

of this large set of theorems is important because: (1) the
development of TCAT-based models routinely requires

the application of such transformations, and (2) theo-

rems for the third class of transformations can be built

upon these extant theorems. Examples of these first

two classes of theorems and the details of how these

existing theorems can be used to help prove certain

important members of the third class of transformation

are given in Section 4.3.
The third class of transformations has neither been

precisely defined nor developed into a set of proven the-

orems. Because these transformations involve the evalu-

ation of integrals of differential operators of the

deviation between microscale and macroscale quantities,

we collectively refer to this set of expressions as multi-

scale deviation transformations. To the best of our

knowledge, this is the first work to catalog formally this
important class of transformations that are essential

tools in the development of rigorous models of transport
phenomena in porous medium systems. The need to deal

with deviation terms can arise, for example, when mod-

els based upon microscale thermodynamics are, in turn,

averaged up to the macroscale and used to formulate an

entropy inequality. This averaging of thermodynamics is

a critical component of the TCAT approach [19].

4.3. Multiscale deviation theorems

In multiscale porous medium analysis, terms involv-

ing integrals of differential operators applied to proper-

ties of entity i, which may be a phase volume, interface,

or common curve, of the form fi � fi and fi � f �i arise.
The subscript denotes that fi is a microscale property
of entity i and the superscript i or �i is used to indicate

a macroscale average as defined in the last section. Dif-

ferences between microscale values and their macroscale

counterparts arise for scalars, vectors, and tensors, as

well as for a variety of different functional forms involv-

ing differential operators of multiscale deviations. Com-

binatorial considerations result in a large set of potential

transformations. Since the need for such transforma-
tions will arise in TCAT model formulation, theorems

are needed to facilitate the transformations of deriva-

tives between scales. In this section, we focus on a subset

of this class of transformations that arise frequently in

TCAT-based model formulations.

Specifically, we focus on three types of transforma-

tions: products of microscale quantities with material

derivatives of multiscale deviations of microscale and
macroscale quantities for phase volumes, interfaces,

and common curves. As mentioned in the previous sec-

tion, the ability to refer to an existing set of multiscale

theorems [18] will streamline the derivation of transfor-

mations from the microscale to the macroscale. We con-

sider three specific theorems and a set of corollaries for

each of these theorems.

4.3.1. Multiscale deviations for a phase volume

The following theorems will be of subsequent use

with multiscale deviations involving phase volume

entities:

Theorem 3. (G[3, (3,0),0])Z
Xa

rfa dr ¼ r
Z
Xa

fa drþ
X
b6¼a

Z
Xab

nafa dr: ð12Þ

Theorem 4. (T[3, (3,0), 0])

Z
Xa

ofa
ot

dr ¼ o

ot

Z
Xa

fa dr�
X
b6¼a

Z
Xab

na � vabfa dr: ð13Þ

Where integration is performed over all the a phase

volume within macroscale volume X, na is the outward

normal vector from phase a, and na Æ vab is both the nor-

mal component of the velocity of the ab interface and
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the normal component of the velocity of the material in

the ab interface. The summation in these equations indi-

cates that the surface integrations are performed over all

interfaces between the a phase and other phases.

These two theorems are most commonly known as the

spatial averaging theorem and the temporal averaging

theorem, respectively [2,17,26]. The seemingly cryptic

notation for naming these theorems used here corre-

sponds to the carefully defined labels introduced when

they were presented in the context of a collection of inte-
gration and averaging theorems for various entities [18].

These labels refer to the type of differential operator and

dimensions considered at the microscale, the macroscale,

and the megascale. A complete explanation of this label-

ing convention is available in the original work.

We extend this original notation to include the new

class of multiscale deviation theorems considered in this

work, which we will denote by a leading M in the nam-
ing convention for a multiscale deviation. We note that

the M theorems are different from their predecessors in

that they involve two functions, a material derivative

based on a macroscale velocity, and both microscale

and macroscale functions within the integrand.

Theorem 5. (M[3, (3,0),0]) The volume average of a

product of a microscale quantity ga with a material

derivative referenced to the macroscale mass average

velocity of an entity i of the difference between a microscale
quantity fa and its macroscale weighted average f ��a can be

expressed as a function of relative velocities at interfacial

boundaries and macroscale quantities of the form

1

V

Z
Xa

ga
D�i fa � f ��a
� �
Dt

dr

¼
D�i �a ðgafaÞ

a � gaf ��a
� �� �

Dt
þD�i �agað Þ

Dt
f ��a

� 1

V

Z
Xa

D�iga
Dt

fadrþ
X
b6¼a

1

V

Z
Xab

na � v�i � vab
� �

gafadr;

ð14Þ
where v�i is the macroscale mass averaged velocity of entity

i, na is the microscale normal vector pointing outward from
the a phase, na Æ vab is the component of the microscale
velocity of the ab interface normal to the interface, V is

independent of time and position and is the measure of

the averaging domain X, Xa � X is the phase volume of

phase a, Xab is the interface between the a and b phases,

and the material derivative is defined as

D�i

Dt
¼ o

ot
þ v�i � r: ð15Þ

Although Theorem 5 and the material derivative are

written explicitly in terms of the mass average velocity
for entity i, v�i, in fact, anymacroscale velocity may be em-

ployed, such as the intrinsic phase average, vi, or the mass

average velocity of chemical species i in entity i, vii. In
actuality, the macroscale quantity denoted as f ��a may be

selected to be any useful macroscale function. For the

context of porous medium modeling, it is typically some

weighted average of the microscale quantity fa.

Proof. Note that

1

V

Z
Xa

ga
D�i fa � f ��a
� �
Dt

dr ¼ 1

V

Z
Xa

ga
D�ifa
Dt

dr

� 1

V

Z
Xa

ga
D�if ��a

Dt
dr: ð16Þ

The product rule may be employed to rearrange Eq. (16)

to

1

V

Z
Xa

ga
D�i fa � f ��a
� �
Dt

dr

¼ 1

V

Z
Xa

D�iðgafaÞ
Dt

dr� 1

V

Z
Xa

D�i gaf
��a

� �
Dt

dr

� 1

V

Z
Xa

D�iga
Dt

fa drþ
1

V

Z
Xa

D�iga
Dt

f ��a dr ð17Þ

Consider terms from the RHS of Eq. (17) in turn and

simplify. The first term can be written as

1

V

Z
Xa

D�iðgafaÞ
Dt

dr ¼ 1

V

Z
Xa

oðgafaÞ
ot

dr

þ 1

V

Z
Xa

v�i � rðgafaÞdr: ð18Þ

Application of Theorem 4 to the first term on the RHS

of Eq. (18) gives

1

V

Z
Xa

oðgafaÞ
ot

dr ¼ o

ot
1

V

Z
Xa

gafa dr
� �

�
X
b6¼a

1

V

Z
Xab

na � vabgafa dr: ð19Þ

Now employ Theorem 3 to rearrange the second term

on the RHS of Eq. (18) to

1

V

Z
Xa

v�i � rðgafaÞdr ¼ v�i � r 1

V

Z
Xa

gafa dr
� �

þ
X
b6¼a

v�i � 1

V

Z
Xab

nagafa dr

 !
:

ð20Þ

Combining Eqs. (19) and (20) allows Eq. (18) to be writ-

ten as

1

V

Z
Xa

D�iðgafaÞ
Dt

dr

¼ o

ot
1

V

Z
Xa

gafa dr
� �

þ v�i � r 1

V

Z
Xa

gafa dr
� �

þ
X
b6¼a

1

V

Z
Xab

na � v�i � vab
� �

gafa dr: ð21Þ
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Next consider the second term on the RHS of Eq. (17),

which can be expanded to

1

V

Z
Xa

D�i gaf
��a

� �
Dt

dr ¼ 1

V

Z
Xa

o gaf
��a

� �
ot

dr

þ 1

V

Z
Xa

v�i � r gaf
��a

� �
dr: ð22Þ

Applying Theorems 3 and 4 to the RHS of Eq. (22) and

rearranging gives

1

V

Z
Xa

D�i gaf
��a

� �
Dt

dr ¼ o

ot
1

V

Z
Xa

gaf
��a dr

� �

þ v�i � r 1

V

Z
Xa

gaf
��a dr

� �

þ
X
b6¼a

1

V

Z
Xab

na � v�i � vab
� �

gaf
��a dr

ð23Þ

or

1

V

Z
Xa

D�i gaf
��a

� �
Dt

dr ¼
D�i �agaf ��a
� �
Dt

þ
X
b6¼a

1

V

Z
Xab

na � v�i � vab
� �

gaf
��a dr:

ð24Þ

The third term on the RHS of Eq. (17) is the product of

a microscale quantity and the material derivative of a

microscale quantity, which cannot be simplified in any

obvious manner.

Finally, consider the fourth term on the RHS of Eq.

(17), which can be written as

1

V

Z
Xa

D�iga
Dt

f ��a dr ¼ 1

V

Z
Xa

oga
ot

f ��a drþ 1

V

Z
Xa

v�i � rgaf
��a dr:

ð25Þ
Application of Theorems 3 and 4 to the RHS of Eq. (25)

gives

1

V

Z
Xa

D�iga
Dt

f ��a dr

¼ o

ot
1

V

Z
Xa

ga dr
� �

f ��a þ v�i � r 1

V

Z
Xa

ga dr
� �

f ��a

þ
X
b 6¼a

1

V

Z
Xab

na � ðv�i � vabÞgaf
��a dr ð26Þ

or

1

V

Z
Xa

D�iga
Dt

f ��a dr ¼ D�ið�agaÞ
Dt

f ��a

þ
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞgaf
��a dr:

ð27Þ
Substituting Eqs. (21), (24), and (27) into Eq. (17) yields

1

V

Z
Xa

ga
D�iðfa � f ��aÞ

Dt
dr

¼ o

ot
1

V

Z
Xa

gafa dr
� �

þ v�i � r 1

V

Z
Xa

gafa dr
� �

þ
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞgafa dr�
D�ið�agaf ��aÞ

Dt

� 1

V

Z
Xa

D�iga
Dt

fa drþ
D�ið�agaÞ

Dt
f ��a: ð28Þ

The fact that

o

ot
1

V

Z
Xa

gafa dr
� �

þ v�i � r 1

V

Z
Xa

gafa dr
� �

¼ D�i �aðgafaÞ
a½ �

Dt
; ð29Þ

allows for rearrangement of Eq. (28) to

1

V

Z
Xa

ga
D�iðfa � f ��aÞ

Dt
dr

¼
D�i �a ðgafaÞ

a � gaf ��a
� �� �

Dt
þD�ið�agaÞ

Dt
f ��a

� 1

V

Z
Xa

D�iga
Dt

fa drþ
X
b 6¼a

1

V

Z
Xab

na � ðv�i � vabÞgafa dr

ð30Þ

which is the identity given in Theorem 5. h

Several corollaries to Theorem 5 can be proven. A

subset of these will be used routinely in deriving

TCAT-based models.

Corollary 1. (MC[3, (3,0),0]) The volume average of a

material derivative referenced to the macroscale mass

average velocity of an entity i of the difference between a

microscale quantity fa and its intrinsic volume average fa

can be expressed as a function of relative velocities at

interfacial boundaries and macroscale quantities of the

form

1

V

Z
Xa

D�iðfa � f aÞ
Dt

dr

¼
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞðfa � f aÞdr

¼
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞfa drþ f a D
�i�a

Dt
; ð31Þ

where v�i is the macroscale mass averaged velocity of entity
i, na is the microscale normal vector pointing outward from
the a phase, na Æ vab is the component of the microscale

velocity of the ab interface normal to the interface, V is

independent of time and position and is the measure of

the averaging domain X, Xa � X is the phase volume of
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phase a, and Xab is the interface between the a and b
phases.

Proof. Theorem 5 is

1

V

Z
Xa

ga
D�iðfa � f ��aÞ

Dt
dr

¼
D�i �a ðgafaÞ

a � gaf ��a
� �� �

Dt
þD�ið�agaÞ

Dt
f ��a

� 1

V

Z
Xa

D�iga
Dt

fadrþ
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞgafadr;

ð32Þ

If ga is a constant then ga = ga = g, and its derivative will

be zero. Eq. (32) may then be divided by g to eliminate it
and obtain

1

V

Z
Xa

D�i fa � f ��a
� �
Dt

dr ¼
D�i �a f a � f ��a

� �� �
Dt

þD�i�a

Dt
f ��a

þ
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞfa dr;

ð33Þ

where use has been made of the fact that (fa)
a is the

intrinsic volume average fa. Now consider the case
where the macroscale quantity f ��a is the intrinsic volume

average fa and rearrange the order of the terms so that

Eq. (33) simplifies to

1

V

Z
Xa

D�i fa � f að Þ
Dt

dr ¼
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞfa dr

þ f a D
�i�a

Dt
ð34Þ

which is the second identity in Corollary 1.
The last term on the RHS of Eq. (34) can be written

as

f a D
�i�a

Dt
¼ f a o�a

ot
þ v�i � r�a

� �
: ð35Þ

From Theorems 3 and 4 note that

f av�i � r�a ¼ f av�i � r 1

V

Z
Xa

dr

� �

¼ �f av�i �
X
b6¼a

1

V

Z
Xab

na dr

 !
ð36Þ

and

f a o�
a

ot
¼ f a o

ot
1

V

Z
Xa

dr

� �
¼ f a

X
b6¼a

1

V

Z
Xab

na � vab dr
 !

:

ð37Þ
Combining Eqs. (34)–(37) gives
1

V

Z
Xa

D�i fa � f að Þ
Dt

dr¼
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞðfa � f aÞdr

ð38Þ
which is the first identity in Corollary 1, and this com-
pletes the proof. h

Corollary 2. (MV[3, (3,0), 0]) The volume average of a

vector product of a microscale vector quantity ga with a

material derivative referenced to the macroscale mass

average velocity of an entity i of the difference between

a microscale vector quantity fa and a macroscale vector

quantity f
��a can be expressed as a function of relative

velocities at interfacial boundaries and macroscale quanti-

ties of the form

1

V

Z
Xa

ga �
D�iðfa � f

��aÞ
Dt

dr

¼
D�i �a ðga � faÞ

a � ga � f��a
h in o

Dt
þD�ið�agaÞ

Dt
� f��a

� 1

V

Z
Xa

D�iga
Dt

� fadrþ
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞga � fadr

ð39Þ

where v�i is the macroscale mass averaged velocity of entity
i, na is the microscale normal vector pointing outward from
the a phase, na Æ vab is the component of the microscale

velocity of the ab interface normal to the interface, V is

independent of time and position and is the measure of

the averaging domain X, Xa � X is the phase volume of

phase a, andXab is the interface between the a and b phases.

Proof. Proof of this corollary follows directly from the
proof of Theorem 5 by extension to vector

quantities. h

Corollary 3. (MT[3, (3,0), 0]) The volume average of a

tensor product of a second-rank microscale tensor quan-

tity ga with a material derivative referenced to the macro-

scale mass average velocity of an entity i of the difference
between a second-rank microscale tensor quantity fa and a
second-rank macroscale tensor quantity f

��a can be

expressed as a function of relative velocities at interfacial

boundaries and macroscale quantities of the form

1

V

Z
Xa

ga :
D�iðfa � f

��aÞ
Dt

dr

¼
D�i �a½ðga : faÞ

a � ga : f
��a�

n o
Dt

þD�ið�agaÞ
Dt

: f
��a

� 1

V

Z
Xa

D�iga
Dt

: fa dr

þ
X
b6¼a

1

V

Z
Xab

na � ðv�i � vabÞga : fa dr ð40Þ
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where v�i is the macroscale mass averaged velocity of entity

i, na is the microscale normal vector pointing outward from
the a phase, na Æ vab is the component of the microscale

velocity of the ab interface normal to the interface, V is

independent of time and position and is the measure of

the averaging domain X, Xa � X is the phase volume of
phase a, and Xab is the interface between the a and b
phases.

Proof. Proof of this corollary follows directly from the

proof of Theorem 5 by extension to tensor

quantities. h
4.3.2. Multiscale deviations for an interface

Next we consider transformations of multiscale devi-

ations for interface quantities. To aid the development

of the theorem and corollaries of interest, the following

previously derived theorems are of use [18]:

Theorem 6. (G[2, (3,0),0])Z
Xab

r0fabdr¼r
Z
Xab

fabdr�r �
Z
Xab

nanafabdr

þ
Z
Xab

ðr0 � naÞnafabdrþ
X
c 6¼a;b

Z
Xabc

mabfabdr;

ð41Þ

where

r0 ¼ r � nana � r: ð42Þ

Theorem 7. (T[2, (3,0), 0])

Z
Xab

o0fab
ot

dr ¼ o

ot

Z
Xab

fab drþr �
Z
Xab

nana � vabfab dr

�
Z
Xab

ðr0 � naÞna � vabfab dr

�
X
c 6¼a;b

Z
Xabc

mab � vabcfab dr; ð43Þ

where

o0

ot
¼ o

ot
þ vab � nana � r: ð44Þ

Where integration is performed over all the ab inter-

face within macroscale volume X, na is the outward nor-

mal vector from the a phase on the ab interface, mab is

orthogonal to na and is the outward normal vector from
the ab interface along its edge, $ 0 is the microscale sur-

ficial del operator on the ab interface, f 0ab ¼
fab � nana � fab is a microscale vector that is tangent to

the ab interface, the operator o 0/ot denotes the partial

derivative with respect to time for a point fixed to a

moving interface, and mab Æ vabc is both the component

of the velocity of the abc common curve bounding the
ab interface in the direction tangent to the interface

but normal to its edge and the component of the velocity

of the material in the abc common curve in the same

direction. The summation in these equations indicates

that the common curve integrations are performed over

all curves forming the boundary of the ab interface.

Theorem 8. (M[2, (3,0), 0]) The volume average of a

product of a microscale quantity gab with a material

derivative, referenced to the macroscale mass average

velocity of an entity i, restricted to a position on a

potentially moving interface ab of the difference between a

microscale quantity fab and a macroscale quantity f ab can

be expressed as a function of relative velocities and

macroscale quantities of the form

1

V

Z
Xab

gab
D0�iðfab � f abÞ

Dt
dr

¼
D�i �ab ðgabfabÞ

ab � gabf ab
h in o

Dt
þD�ið�abgabÞ

Dt
f ab

þr � 1

V

Z
Xab

nana � ðvab � v�iÞgabðfab � f abÞdr
 !

þr � 1

V

Z
Xab

nana � vab � v�i
� �

gab dr

 !
f ab

� 1

V

Z
Xab

ðr0 � naÞna � ðvab � v�iÞgabfab dr

þ 1

V

Z
Xab

gabfabnana dr

 !
: d

��i

�
X
c 6¼a;b

1

V

Z
Xabc

mab � ðvabc � v�iÞgabfab dr

� 1

V

Z
Xab

D0�igab
Dt

fab dr; ð45Þ

where v�i is the macroscale mass averaged velocity of entity

i, �ab is the specific interfacial area of the ab interface, na
is the microscale unit vector normal to the ab interface

pointing outward from the a phase, na Æ vab is the compo-
nent of the microscale velocity of the ab interface normal

to the interface, d
��i is the macroscale rate of strain tensor

of entity i, mab is a unit vector normal to the common

curve edge of ab and tangent to ab, V is independent of

time and position and is the measure of the averaging do-

main X, Xab is the ab interface within X, Xabc for all c is

the common curve that bounds Xab within X, andD0�i=Dt is
a material derivative referenced to v�i and restricted to the
interface ab defined as

D0�i

Dt
¼ o

0

ot
þ v�i � r0 ð46Þ



C.T. Miller, W.G. Gray / Advances in Water Resources 28 (2005) 181–202 195
Proof. Note that

1

V

Z
Xab

gab
D0�iðfab � f abÞ

Dt
dr

¼ 1

V

Z
Xab

gab
D0�ifab
Dt

dr� 1

V

Z
Xab

gab
D0�if ab

Dt
dr; ð47Þ

where, based on definitions (42), (44) and (46),

D0�i

Dt
¼ o

ot
þ ðvab � v�iÞ � nana � r þ v�i � r

¼ D�i

Dt
þ ðvab � v�iÞ � nana � r: ð48Þ

The first term on the RHS of Eq. (47) will be addressed

first. Application of the product rule gives

1

V

Z
Xab

gab
D0�ifab
Dt

dr ¼ 1

V

Z
Xab

D0�iðgabfabÞ
Dt

dr

� 1

V

Z
Xab

D0�igab
Dt

fab dr: ð49Þ

Expand the derivative in the first term on the RHS mak-

ing use of Eq. (46). Also, since v�i is a macroscale quan-

tity, it may be moved outside the integral such that Eq.

(49) becomes

1

V

Z
Xab

gab
D0�ifab
Dt

dr ¼ 1

V

Z
Xab

o0ðgabfabÞ
ot

dr

þ v�i � 1
V

Z
Xab

r0ðgabfabÞdr

� 1

V

Z
Xab

D0�igab
Dt

fab dr: ð50Þ

Applying Theorem 7 to the first integral and Theorem 6

to the second integral on the RHS of Eq. (50) yields

1

V

Z
Xab

gab
D0�ifab
Dt

dr

¼ o

ot
1

V

Z
Xab

gabfab dr

 !
þr � 1

V

Z
Xab

nana � vabgabfab dr

� 1

V

Z
Xab

ðr0 � naÞna � vabgabfab dr

�
X
c 6¼a;b

1

V

Z
Xabc

mab � vabcgabfab dr

þ v�i � r 1

V

Z
Xab

gabfab dr

�r � 1

V

Z
Xab

nanagabfab dr

 !
� v�i

þ 1

V

Z
Xab

ðr0 � naÞna � v�igabfab dr

þ
X
c 6¼a;b

1

V

Z
Xabc

mab � v�igabfab dr�
1

V

Z
Xab

D0�igab
Dt

fab dr:

ð51Þ
Apply the product rule to the third from the last term in

Eq. (51) and make use of the fact that the macroscale

velocity v�i may be moved inside the integral such that

r � 1

V

Z
Xab

nanagabfab dr

 !
� v�i

¼ r � 1

V

Z
Xab

nana � v�igabfab dr
 !

� 1

V

Z
Xab

nanagabfab dr

 !
: d

��i; ð52Þ

where d
��i is the rate of strain tensor defined as

d
��i ¼ 1

2
rv�i þ rv�ið ÞT
h i

: ð53Þ

Substitution of Eq. (52) into Eq. (51) and collection of

terms provides

1

V

Z
Xab

gab
D0�ifab
Dt

dr

¼
D0�i �ab gabfab

� �abh i
Dt

þr � 1
V

Z
Xab

nana � ðvab � v�iÞgabfab dr

� 1

V

Z
Xab

ðr0 � naÞna � ðvab � v�iÞgabfab dr

�
X
c 6¼a;b

1

V

Z
Xabc

mab � ðvabc � v�iÞgabfab dr

� 1

V

Z
Xab

D0�igab
Dt

fab drþ
1

V

Z
Xab

nanagabfab dr

 !
: d

��i:

ð54Þ
Next consider the second term on the RHS of Eq. (47).

Since the derivative is of a macroscale quantity, it may

be expanded using the second equality in Eq. (48) giving

1

V

Z
Xab

gab
D0�if ab

Dt
dr¼ 1

V

Z
Xab

gab
D�if ab

Dt
dr

þ 1

V

Z
Xab

gabðvab � v�iÞ � nana � rf abdr:

ð55Þ
The material derivative in the first integral on the RHS
and the gradient in the second integral are macroscopic

expressions. Therefore, they may be moved outside the

integrals. The remaining part of the first integral defines

a surficial average such that the equation becomes

1

V

Z
Xab

gab
D0�if ab

Dt
dr

¼ �abgab
D�if ab

Dt
þ 1

V

Z
Xab

gabðvab � v�iÞ � nanadr
 !

� rf ab:

ð56Þ
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Then the product rule may be applied to both terms to

obtain

1

V

Z
Xab

gab
D0�if ab

Dt
dr

¼
D�i �abðgabf abÞ
h i

Dt
� f ab D

�ið�abgabÞ
Dt

þr � 1

V

Z
Xab

nana � ðvab � v�iÞgabf ab dr

 !

�r � 1

V

Z
Xab

nana � ðvab � v�iÞgab dr
 !

f ab; ð57Þ

where f ab has been moved inside the integral in the third

term on the RHS.

Subtraction of Eq. (57) from Eq. (54) and collecting
terms yields

1

V

Z
Xab

gab
D0�iðfab � f abÞ

Dt
dr

¼
D�i �ab ðgabfabÞ

ab � gabf ab
h in o

Dt
þD�ið�abgabÞ

Dt
f ab

þr � 1

V

Z
Xab

nana � ðvab � v�iÞgabðfab � f abÞdr
 !

þr � 1

V

Z
Xab

nana � ðvab � v�iÞgab dr
 !

f ab

� 1

V

Z
Xab

r0 � nað Þna � ðvab � v�iÞgabfab dr

þ 1

V

Z
Xab

gabfabnana dr

 !
: d

��i

�
X
c 6¼a;b

1

V

Z
Xabc

mab � ðvabc � v�iÞgabfab dr

� 1

V

Z
Xab

D0�igab
Dt

fab dr ð58Þ

which completes the proof. h

Corollary 4. (MC[2, (3,0), 0]) The surface average of a

material derivative referenced to a macroscale mass aver-
aged velocity for entity i and restricted to a position on a

potentially moving interface ab of the difference between a

microscale quantity fab and its intrinsic average fab can be

expressed as a function of relative velocities at interfacial

boundaries and macroscale quantities of the form

1

V

Z
Xab

D0�iðfab � f abÞ
Dt

dr

¼ r � 1

V

Z
Xab

nana � ðvab � v�iÞðfab � f abÞdr
 !
� 1

V

Z
Xab

ðr0 � naÞna � ðvab � v�iÞðfab � f abÞdr

þ 1

V

Z
Xab

ðfab � f abÞnana dr
 !

: d
��i

�
X
c 6¼a;b

1

V

Z
Xabc

mab � ðvabc � v�iÞðfab � f abÞdr; ð59Þ

where v�i is the macroscale mass averaged velocity of entity

i, �ab is the specific interfacial area of the ab interface, na
is the microscale unit vector normal to the ab interface

pointing outward from the a phase, na Æ vab is the compo-

nent of the microscale velocity of the ab interface normal

to the interface, d
��i is the macroscale rate of strain tensor

of entity i, mab is a unit vector normal to the common

curve edge of ab and tangent to ab, V is independent of

time and position and is the measure of the averaging do-

main X, Xab is the ab interface within X, Xabc for all c is

the common curve that bounds Xab within X, andD0i=Dt is
a material derivative referenced to v�i and restricted to the

interface ab.

Proof. Proof of this corollary follows directly from the

proof of Theorem 8 with gab = 1. Use is also made of

Theorems 6 and 7 with fab = 1. h

Corollary 5. (MV[2, (3,0),0]) The volume average of a

product of a microscale vector quantity gab with a material

derivative, referenced to the macroscale mass average

velocity of an entity i, restricted to a position on a poten-
tially moving interface ab of the difference between a

microscale vector quantity fab and a macroscale vector

quantity fab can be expressed as a function of relative

velocities and macroscale quantities of the form

1

V

Z
Xab

gab �
D0�iðfab � fabÞ

Dt
dr

¼
D�i �ab ðgab � fabÞ

ab � gab � fab
	 
� �

Dt
þD�ið�abgabÞ

Dt
� fab

þr � 1

V

Z
Xab

nana � ðvab � v�iÞgab � ðfab � fabÞdr
 !

þr � 1

V

Z
Xab

nana � ðvab � v�iÞgab dr
 !

� fab

� 1

V

Z
Xab

r0 � nað Þna � ðvab � v�iÞgab � fab dr

þ 1

V

Z
Xab

gab � fabnana dr
 !

: d
��i

�
X
c 6¼a;b

1

V

Z
Xabc

mab � ðvab � v�iÞgab � fab dr

� 1

V

Z
Xab

D�igab

Dt
� fab dr; ð60Þ
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where v�i is the macroscale mass averaged velocity of entity

i, �ab is the specific interfacial area of the ab interface, na
is the microscale unit vector normal to the ab interface

pointing outward from the a phase, na Æ vab is the compo-

nent of the microscale velocity of the ab interface normal

to the interface, d
��i is the macroscale rate of strain tensor

of entity i, mab is a unit vector normal to the common

curve edge of ab and tangent to ab, V is independent of

time and position and is the measure of the averaging do-

main X, Xab is the ab interface within X, Xabc for all c is

the common curve that bounds Xab within X, and D0�i=Dt is
a material derivative referenced to v�i and restricted to the

interface ab.

Proof. Proof of this corollary follows directly from the
proof of Theorem 8 by extension to vector

quantities. h

Corollary 6. (MT[2, (3,0),0]) The volume average of a

product of a second-rank microscale tensor quantity gab
with a material derivative, referenced to the macroscale

mass average velocity of an entity i, restricted to a posi-

tion on a potentially moving interface ab of the difference
between a second-rank microscale tensor quantity fab and

a second-rank macroscale tensor quantity fab can be

expressed as a function of relative velocities and macro-

scale quantities of the form

1

V

Z
Xab

gab :
D0�iðfab � fabÞ

Dt
dr

¼
D�i �ab ðgab : fabÞ

ab � gab : fab
	 
� �

Dt
þD�ið�abgabÞ

Dt
: fab

þr � 1

V

Z
Xab

nana � ðvab � v�iÞgab : ðfab � fabÞdr
 !

þr � 1

V

Z
Xab

nana � vab � v�i
� �

gab dr

 !
: fab

� 1

V

Z
Xab

ðr0 � naÞna � ðvab � v�iÞgab : fab dr

þ 1

V

Z
Xab

gab : fabnana dr

 !
: d

��i

�
X
c 6¼a;b

1

V

Z
Xabc

mab � ðvab � v�iÞgab : fab dr

� 1

V

Z
Xab

D�igab

Dt
: fab dr; ð61Þ

where v�i is the macroscale mass averaged velocity of entity

i, �ab is the specific interfacial area of the ab interface, na
is the microscale unit vector normal to the ab interface

pointing outward from the a phase, na Æ vab is the compo-

nent of the microscale velocity of the ab interface normal
to the interface, d

��i is the macroscale rate of strain tensor
of entity i, mab is a unit vector normal to the common

curve edge of ab and tangent to ab, V is independent of

time and position and is the measure of the averaging do-

main X, Xab is the ab interface within X, Xabc for all c is

the common curve that bounds Xab within X, and D0�i=Dt is
a material derivative referenced to v�i and restricted to the
interface ab.

Proof. Proof of this corollary follows directly from the

proof of Theorem 8 by extension to tensor

quantities. h
4.3.3. Multiscale deviations for a common curve

Next we consider transformations of multiscale devi-

ations for common curve quantities. To aid the develop-

ment of the theorem and corollaries of interest, the

following previously derived theorems are of use [18].

Theorem 9. (G[1, (3,0),0])Z
Xabc

r00fabcdr¼r
Z
Xabc

fabcdr�r�
Z
Xabc

ðI� labclabcÞfabcdr

�
Z
Xabc

labc �r00labcfabcdr

þ
X

d6¼a;b;c

ðeabcfabcÞjabcd; ð62Þ

where

r00 ¼ labclabc � r: ð63Þ

Theorem 10. (T[1, (3,0), 0])

Z
Xabc

o
00fabc
ot

dr

¼ o

ot

Z
Xabc

fabc drþr �
Z
Xabc

ðI� labclabcÞ � vabcfabc dr

þ
Z
Xabc

labc � r00labc � vabcfabc dr

�
X

d6¼a;b;c

ðeabc � vabcdfabcÞjabcd; ð64Þ

where

o
00

ot
¼ o

ot
þ vabc � ðI� labclabcÞ � r: ð65Þ

Where integration is performed over all the abc com-

mon curve within macroscale volume X, labc is the unit

vector tangent to the abc common curve, eabc is the unit

vector tangent to the abc common curve oriented to be

positive outward from the curve at its endpoints, $00 is

the microscale curvilinear del operator along the abc
common curve, f 00abc ¼ labclabc � fabc is the microscale vec-
tor component, tangent to the abc common curve, of a

general microscale vector fabc, vabcd is the microscale

velocity of the abcd common point at the end of the
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common curve, the operator o00/ot denotes the partial

derivative with respect to time at a point fixed on the

moving abc common curve, and (I � labclabc) Æ vabc is

both the velocity of the abc common curve normal to

the curve, and the velocity of the material in the abc com-

mon curve normal to the curve. The summation in these
equations indicates that the evaluations are performed at

all the common points at the ends of common curves.

Theorem 11. (M[1, (3,0), 0]) The volume average of a

product of a microscale quantity gabc with a material

derivative referenced to the macroscale mass average

velocity of an entity i restricted to a position on a

potentially moving curve abc of the difference between a

microscale quantity fabc and a macroscale quantity f abc

can be expressed as a function of relative velocities and

macroscale quantities of the form

1

V

Z
Xabc

gabc
D00�iðfabc� f abcÞ

Dt
dr

¼
D�i �abc ðgabcfabcÞ

abc�gabcf abc
h in o

Dt
þD�ið�abcgabcÞ

Dt
f abc

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabcðfabc� f abcÞdr
 !

þ 1

V

Z
Xabc

ðlabc �r00labcÞ � ðvabc� v�iÞgabcfabcdr

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabcdr
 !

f abc

� 1

V

X
d 6¼a;b;c

½eabc � ðvabcd� v�iÞgabcfabc�jabcd

� 1

V

Z
Xabc

D00�igabc
Dt

fabcdr

þ 1

V

Z
Xabc

ðgabcfabcÞðI� labclabcÞdr
� �

: d
��i; ð66Þ

where v�i is the macroscale mass averaged velocity of entity

i, �abc is the specific length of the abc common curve, labc is
the microscale unit vector tangent to the abc common

curve, (I � labclabc) Æ vabc is the component of the micro-

scale velocity of the abc common curve normal to the

curve, d
��i is the macroscale rate of strain tensor of entity

i, eabc is a unit vector tangent to common curve abc at
its endpoints and positive outward from the curve, V is

independent of time and position and is the measure of

the averaging domain X, Xabc is the abc common curve

within X, Xabcd for all d is the set of end points of the Xabc

common curve within X, and D00�i=Dt is a material deriva-

tive referenced to v�i and restricted to the common curve

abc defined as

D00�i

Dt
¼ o00

ot
þ v�i � r00: ð67Þ
Proof. Note that

1

V

Z
Xabc

gabc
D00�iðfabc � f abcÞ

Dt
dr

¼ 1

V

Z
Xabc

gabc
D00�ifabc
Dt

dr� 1

V

Z
Xabc

gabc
D00�if abc

Dt
dr:

ð68Þ

Based on Eqs. (63), (65) and (67)

D00�i

Dt
¼ o

ot
þ ðvabc � v�iÞ � ðI� labclabcÞ � r þ v�i � r

¼ D�i

Dt
þ ðvabc � v�iÞ � ðI� labclabcÞ � r: ð69Þ

Application of the product rule to the first term on the

RHS of Eq. (68) yields

1

V

Z
Xabc

gabc
D00�ifabc
Dt

dr ¼ 1

V

Z
Xabc

D00�iðgabcfabcÞ
Dt

dr

� 1

V

Z
Xabc

D00�igabc
Dt

fabc dr: ð70Þ

Expand the derivative in the first term on the RHS mak-
ing use of Eq. (67). Also, since v�i is a macroscale quan-

tity, it may be moved outside the integral, such that Eq.

(70) becomes

1

V

Z
Xabc

gabc
D00�ifabc
Dt

dr ¼ 1

V

Z
Xabc

o
00ðgabcfabcÞ

ot
dr

þ v�i � 1
V

Z
Xabc

r00ðgabcfabcÞdr

� 1

V

Z
Xabc

D00�igabc
Dt

fabc dr: ð71Þ

Apply Theorems 10 and 9 to the first and second inte-

grals on the RHS of Eq. (71), respectively, to obtain

1

V

Z
Xabc

gabc
D00�ifabc
Dt

dr

¼ o

ot
1

V

Z
Xabc

gabcfabcdr

 !

þr � 1
V

Z
Xabc

ðI� labclabcÞ � vabcgabcfabcdr

þ 1

V

Z
Xabc

ðlabc � r00labcÞ � vabcgabcfabcdr

� 1

V

X
d6¼a;b;c

ðeabc � vabcdgabcfabcÞjabcd

þ v�i � r 1

V

Z
Xabc

gabcfabcdr

 !
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�r � 1

V

Z
Xabc

I� labclabc
� �

gabcfabcdr

 !
� v�i

� 1

V

Z
Xabc

ðlabc � r00labcÞgabcfabcdr
 !

� v�i

þ 1

V

X
d 6¼a;b;c

eabcgabcfabc
� �

jabcd � v�i �
1

V

Z
Xabc

D00�igabc
Dt

fabcdr:

ð72Þ

Apply the product rule to the third from the last term in

Eq. (72) and make use of the fact that the macroscale

velocity v�i may be moved inside the integral, such that

r � 1

V

Z
Xabc

ðI� labclabcÞðgabcfabcÞdr
 !

� v�i

¼ r � 1

V

Z
Xabc

ðI� labclabcÞ � v�iðgabcfabcÞdr
 !

� 1

V

Z
Xabc

ðI� labclabcÞðgabcfabcÞdr
 !

: d
��i; ð73Þ

where d
��i is the rate of strain tensor defined as

d
��i ¼ 1

2
rv�i þ ðrv�iÞT
h i

: ð74Þ

Substitution of Eq. (73) into Eq. (72) and collection of

terms gives

1

V

Z
Xabc

gabc
D00�ifabc
Dt

dr

¼
D�i �abcðgabcfabcÞ

abc
h i

Dt

þr � 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc � v�iÞgabcfabc dr
 !

þ 1

V

Z
Xabc

ðlabc � r00labcÞ � ðvabc � v�iÞgabcfabc dr

� 1

V

X
d6¼a;b;c

½eabc � ðvabcd � v�iÞgabcfabc�jabcd

� 1

V

Z
Xabc

D00�igabc
Dt

fabc dr

þ 1

V

Z
Xabc

ðI� labclabcÞðgabcfabcÞdr
 !

: d
��i: ð75Þ

Next consider the second term on the RHS of Eq. (68).
Since the derivative is of a macroscale quantity, it may

be expanded using the second equality provided in Eq.

(69) to obtain
1

V

Z
Xabc

gabc
D00�if abc

Dt
dr

¼ 1

V

Z
Xabc

gabc
D�if abc

Dt
dr

þ 1

V

Z
Xabc

gabcðvabc � v�iÞ � ðI� labclabcÞ � rf abc dr:

ð76Þ

The material derivative in the first integral on the RHS
of Eq. (76) and the gradient in the second integral are

macroscopic expressions. Therefore, they may be moved

outside the integral. The remaining part of the first inte-

gral defines an average over the common curve such that

the equation becomes

1

V

Z
Xabc

gabc
D00�if abc

Dt
dr

¼ �abcgabc
D�if abc

Dt

þ 1

V

Z
Xabc

gabcðvabc � v�iÞ � ðI� labclabcÞdr
 !

� rf abc:

ð77Þ

Then the product rule may be applied to both terms on

the RHS of Eq. (77) to obtain

1

V

Z
Xabc

gabc
D00�if abc

Dt
dr

¼
D�i �abcðgabcf abcÞ
h i

Dt
� f abc D

�ið�abcgabcÞ
Dt

þr � 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc � v�iÞgabcf abc dr

 !

�r � 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc � v�iÞgabc dr
 !

f abc;

ð78Þ

where the macroscale quantity f abc has been moved in-
side the integral in the third term on the RHS. Subtrac-

tion of Eq. (78) from Eq. (75) and collection of terms

gives

1

V

Z
Xabc

gabc
D00�iðfabc� f abcÞ

Dt
dr

¼
D�i �abc½ðgabcfabcÞ

abc�gabcf abc�
n o

Dt
þD�ið�abcgabcÞ

Dt
f abc

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabcðfabc� f abcÞdr
 !
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þ 1

V

Z
Xabc

ðlabc �r00labcÞ � ðvabc� v�iÞgabcfabcdr

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabcdr
 !

f abc

� 1

V

X
d 6¼a;b;c

eabc � ðvabcd� v�iÞgabcfabc
� �

jabcd

� 1

V

Z
Xabc

D00�igabc
Dt

fabcdr

þ 1

V

Z
Xabc

ðgabcfabcÞðI� labclabcÞdr
 !

: d
��i; ð79Þ

which completes the proof. h

Corollary 7. (MC[1, (3,0), 0]) The volume average of a

material derivative referenced to the macroscale mass

average velocity of an entity i of the difference between

a microscale quantity fabc and its intrinsic volume average

fabc can be expressed as a function of relative velocities

and macroscale quantities of the form

1

V

Z
Xabc

D00�iðfabc � f abcÞ
Dt

dr

¼ r � 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc � v�iÞðfabc � f abcÞdr
 !

þ 1

V

Z
Xabc

ðlabc � r00labcÞ � ðvabc � v�iÞðfabc � f abcÞdr

� 1

V

X
d6¼a;b;c

½eabc � ðvabcd � v�iÞðfabc � f abcÞ�jabcd

þ 1

V

Z
Xabc

ðI� labclabcÞðfabc � f abcÞdr
 !

: d
��i; ð80Þ

where v�i is the macroscale mass averaged velocity of entity

i, �abc is the specific length of the abc common curve, labc is
the microscale unit vector tangent to the abc common
curve, (I � labclabc) Æ vabc is the component of the micro-

scale velocity of the abc common curve normal to the

curve, d
��i is the macroscale rate of strain tensor of entity

i, eabc is a unit vector tangent to common curve abc at

its endpoints and positive outward from the curve, V is

independent of time and position and is the measure of

the averaging domain X, Xabc is the abc common curve

within X, Xabcd for all d is the set of end points of the Xabc

common curve within X, and D00�i=Dt is a material deriva-

tive referenced to v�i and restricted to the common curve

abc.

Proof. This corollary follows directly from the proof of

Theorem 11 with gabc = 1. Use is also made of Theorems

9 and 10 with fab = 1. h
Corollary 8. (MV[1, (3,0),0]) The volume average of a

product of a microscale vector quantity gabc with a mate-

rial derivative referenced to the macroscale mass average

velocity of an entity i restricted to a position on a poten-

tially moving curve abc of the difference between a micro-

scale vector quantity fabc and a macroscale vector quantity

fabc can be expressed as a function of relative velocities

and macroscale quantities of the form

1

V

Z
Xabc

gabc �
D00�iðfabc� f abcÞ

Dt
dr

¼
D�i �abc ðgabc � fabcÞ

abc�gabc � f abc
h in o

Dt

þD�ið�abcgabcÞ
Dt

� f abc

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabc � ðfabc� f abcÞdr
 !

þ 1

V

Z
Xabc

ðlabc �r00labcÞ � ðvabc� v�iÞgabc � fabcdr

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabcdr
 !

� fabc

� 1

V

X
d6¼a;b;c

eabc � ðvabcd�v�iÞgabc � fabc
� �

jabcd

� 1

V

Z
Xabc

D00�igabc

Dt
� fabcdr

þ 1

V

Z
Xabc

ðgabc � fabcÞðI� labclabcÞdr
 !

:d
��i; ð81Þ

where v�i is the macroscale mass averaged velocity of entity

i, �abc is the specific length of the abc common curve, labc is
the microscale unit vector tangent to the abc common

curve, (I � labclabc) Æ vabc is the component of the micro-

scale velocity of the abc common curve normal to the

curve, d
��i is the macroscale rate of strain tensor of entity

i, eabc is a unit vector tangent to common curve abc at
its endpoints and positive outward from the curve, V is

independent of time and position and is the measure of

the averaging domain X, Xabc is the abc common curve

within X, Xabcd for all d is the set of end points of the Xabc

common curve within X, and D00�i=Dt is a material deriva-

tive referenced to v�i and restricted to the common curve

abc.

Proof. Proof of this corollary follows directly from the

proof of Theorem 11 by extension to vector

quantities. h

Corollary 9. (MT[1, (3,0), 0]) The volume average of a

product of a second-rank microscale tensor quantity gabc
with a material derivative referenced to the macroscale

mass average velocity of an entity i restricted to a position
on a potentially moving curve abc of the difference
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between a second-rank microscale tensor quantity fabc and
a second-rank macroscale tensor quantity fabc can be

expressed as a function of relative velocities and macro-

scale quantities of the form

1

V

Z
Xabc

gabc :
D00�iðfabc� fabcÞ

Dt
dr

¼
D�i �abc ðgabc : fabcÞ

abc�gabc : fabc
	 
� �

Dt

þD�ið�abcgabcÞ
Dt

: fabc

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabc : ðfabc� fabcÞdr
 !

þ 1

V

Z
Xabc

ðlabc �r00labcÞ � ðvabc� v�iÞgabc : fabcdr

þr� 1

V

Z
Xabc

ðI� labclabcÞ � ðvabc� v�iÞgabcdr
 !

: fabc

� 1

V

X
d6¼a;b;c

eabc � ðvabcd� v�iÞgabc : fabc
� �

jabcd

� 1

V

Z
Xabc

D00�igabc

Dt
: fabcdr

þ 1

V

Z
Xabc

ðgabc : fabcÞðI� labclabcÞdr
 !

: d
��i; ð82Þ

where v�i is the macroscale mass averaged velocity of entity

i, �abc is the specific length of the abc common curve, labc is
the microscale unit vector tangent to the abc common

curve, (I � labclabc) Æ vabc is the component of the micro-

scale velocity of the abc common curve normal to the

curve, d
��i is the macroscale rate of strain tensor of entity

i, eabc is a unit vector tangent to common curve abc at

its endpoints and positive outward from the curve, V is

independent of time and position and is the measure of

the averaging domain X, Xabc is the abc common curve

within X, Xabcd for all d is the set of end points of the Xabc

common curve within X, and D00�i=Dt is a material deriva-

tive referenced to v�i and restricted to the common curve

abc.

Proof. Proof of this corollary follows directly from the

proof of Theorem 11 by extension to tensor

quantities. h
5. Discussion

The description of scales, averaging operators, sum-

mary of existing theorems, and proof of a new set of

deviation theorems and corollaries has laid the founda-
tion for a consistent, first-principles-based formulation

of closed models that describe multiphase flow and
transport phenomena. Future work will refer to the re-

sults collected in this paper and in the preceding paper

in this series [19] as new closed models are built. The de-

tailed calculations presented here will not be repeated in

future works; rather, we will simply rely upon the final

results.
As the goal of this series is to formulate a novel set of

closed models, it seems reasonable to take stock of the

work needed to do so. The work performed to date,

along with previous efforts to derive conservation equa-

tions, is a sufficient foundation for a rather detailed

exploration of single- and two-fluid-phase models. How-

ever, the additional work required to complete the anal-

ysis is nontrivial. For example, the application of this
work to single-phase flow will require significant de-

tailed calculations regarding the conversion of micro-

scale thermodynamics to an appropriate macroscale

form and the closure of the resultant model. Our preli-

minary efforts along these lines have revealed the neces-

sity of utilizing some mathematical manipulations that

are codified in this paper as theorems and their corollar-

ies. This preliminary work has also shown conditions
under which traditional models provide reasonable

descriptions of the physics, when the models will be

inadequate, and how more complete models can be for-

mulated. We will report the details of this work in the

near future.
6. Summary and conclusions

This work focused on the development of fundamen-

tal notions and basic mathematical identities needed to

advance the TCAT approach. Specific items accom-

plished include the following:

• the systems of concern were described as determinis-

tic systems with two distinct scales, a microscale, or
pore scale, and a macroscale, or porous medium con-

tinuum scale;

• the entities involved in these systems were described

to include phase volumes, interfaces, common curves,

and common points;

• basic definitions and systems properties were

summarized;

• a compact notation was introduced to enable concise
model development and closure and was related to

traditional notation for clarity;

• key available averaging theorems needed to produce

models were summarized;

• several new averaging theorems and corollaries that

can be used to developed TCAT-based models were

listed and proven; and

• the current status of this work was placed in the con-
text of future steps needed to produce complete, con-

sistent, well-posed models of porous medium systems.
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