Computational Study of Protein Diffusion in a Membrane

By Kate Schneider Advisor Dr. Ken Ritchie

Cell Membrane

•Red blood cell membrane.

•Membrane protects the cell.

- Lipids have two parts
 - •Head which is hydrophilic
 - •Tail which is hydrophobic
- Not solid structure
- •Moves in an undulating fashion.

Current Assumption

 When protein diffusion is imaged over a range of length (time) scales, cell-type dependent structure is seen in the membrane at specific lengths.

 Could this be caused by the undulation of the membrane?

Predicted and Experimental Results

Project

 Previous experiments were analyzed assuming a flat membrane.

Main Goal

- Determine the effects of membrane undulation on future experiments.
- We wish to determine if we need to include undulations in our analysis.

Project Description

- •Use Brownian Motion to fluctuate a membrane in k-space.
- •Produce a Monte Carlo style random walk on the surface.
- •Display the random walk on a two dimensional plane.
- •Determine the MSD of the projected walk.
- •Analyze the data and determine if we need to take the undulation into account.

Monte Carlo Simulation

- •Like flipping a coin.
- We flip a coin and decide which direction to go.
- •We use it for simulating the walk of a protein.

Monte Carlo on Visual Studio

- •Free range random walk.
- •About 35 steps taken.
- •Good data for a small number of steps.

5,000 Steps in Visual Studio

- •Next move was to add more steps.
- •Graphs deviated from expected results.
- •Data did not change much from run to run.
- •First believed to be the random generator.
- •Changed program to Octave.

Octave Free Range Random Walk

- •This run had fifty steps with 100 sub-steps (equal to 5,000 steps).
 -10 different particles were run at the same time.
- •Graph on the left shows random walk for one of the particles.
- •Graph on the right shows the MSD for each particle.

Brownian Motion –

The random movement of particles when hit by other particles in some fluid.

Particle on a Spring

This particle attached to a spring is the basic concept behind creating the fluctuating membrane surface like the one pictured.

If you place the particle on a spring and analyze it in 1 dimensions it can only go in and out when hit by another particle.

Brownian Motion for a Membrane

•For a normal spring $E \sim \frac{1}{2} k x^2$

•With a bending surface we want an energy in the spring form $E \sim \frac{1}{2} k_b c^2$

- Curvature of a line
$$C=rac{d^2F}{dx^2}$$

•For a two-dimensional surface $E \sim \frac{1}{2} k_b (\nabla^2 f(x,y))^2$

•Change to k-space
$$E_K=rac{1}{2}kq^4f_K^2$$
 The equation for our fluctuation.

Completed Code

- In the beginning we pick a random membrane that has correct energies.
- That membrane is then project forward in time so that it can produce the fluctuations.
 - Each mode has its own persistent time.
- Then we create a real space membrane by doing the inverse transform of the membrane.

- We then take the first and second derivative of the real space membrane.
 - Gives us the slope and curvature.
- Then a random step is taken on the surface using the first and second of the surface topology to determine the size of the step that we will be taking.
- Then the MSD is figured for both X and Y.

Simulations Run

$D_{\left(\frac{cm^2}{s}\right)}$	N	L(cm)	Time
1 * 10 ⁻¹²	32	.375	59 mins
1 * 10 ⁻¹¹	128	.375	1 hr 6 mins
1 * 10 ⁻¹⁰	128	1	1 hr 7 mins
1 * 10 ⁻⁹	128	3	1 hr 7 mins
1 * 10-8	512	3	4 hrs

- •Each simulation was run with 100 particles walking simultaneously.
- •500 steps taken for each particle with 25 sub-steps to equal 1 microsecond.
- •The MSD was figured for each particle.

Results

$$D = 1 * 10^{-8}$$

Percentage of original diffusion coefficient found in the average:

$$X = 85\%$$

MSD of X for all 100 Particles

Results part 2

Average MSD for X

Percentage of original diffusion coefficient found in the average of X:

$$1 * 10^{-11} \rightarrow 85\%
1 * 10^{-10} \rightarrow 84\%
1 * 10^{-9} \rightarrow 94\%$$

Average MSD for X

Average MSD for X

Results

$$D = 1 * 10^{-12}$$

MSD of X for all 100 Particles

Percentage of original diffusion coefficient in the two averages:

$$X = 102\%$$

Average MSD for X

Comparison of all Simulations

- •Shows the slight difference between each simulation produced and the original diffusion coefficient.
- •Only a 10% difference or less.
 - -Very good results and close to what we hoped to see.
- •D is the true diffusion coefficient.
- • τ = 25 microseconds

Stationary Results $D = 1 * 10^{-12}$

$$D = 1 * 10^{-12}$$

 Membrane did not fluctuate during the random walk.

$D(\frac{cm^2}{s})$	N	L(cm)
$1*10^{-12}$	1024	.375

3.50E-014 3.00E-014 2.50E-014 MSD of X (meters) 2.00E-014 1.50E-014 1.00E-014 5.00E-015 0.00E+000 0.000 0.003 0.004 0.005 0.001 0.002 0.006 0.007 Time (seconds)

MSD of X for all 100 Particles

Percentage of original diffusion coefficient found in the average:

$$X = 70\%$$

$$D = 1 * 10^{-8}$$

Previous Experimental Graph

Our Conclusion

 The results show that the undulation of the membrane does not cause an effect on the time scales.

- No compartmentalization with fluctuations.
- Diffusion coefficient is about 90% of what we expected it to be (90% of the values that were put into the simulation).

Questions?