Quantum Hall Effect

Celia Burstein June 26, 2012

- 2D electron
 system→Integer
 Quantum Hall Effect
- 2D electron system + electron interactions ->
 Fractional Quantum Hall Effect
- Disorder and
 Quantum Hall Effect

Hall Effect

- V=voltage along current path
- V_H=voltage across current path
- V_H caused by Lorentz force
- R_{xx} and R_{xy}

H. L. Stormer, Nobel Lecture, 1999

Quantization

- Energy of electrons is quantized in magnetic field
- Higher magnetic field:
 - Increase degeneracy
 - Lower filling factor, v
- Magnetic Quantum Limit: v=1

Integer Quantum Hall Effect

- Can be described with single electron
- v ≥ 1
- R_{xy} plateaus when R_{xx} minimizes

Hall Resistance

- Does not depend on length or area
- Depends on Fermi Energy Level
- Quantized when Fermi Energy Level lies within landau level at edge states: R_{xy}=h/(ie²)

University of Cambridge, Semiconductor Physics Group, 2012

2D Electron Gas (2DEG)

- Motion in third dimension fills energy gaps (IQHE is less dramatic)
- Molecular Beam Epitaxy to create GaAs/AlGaAs sandwich
- Modulation doping:
 Silicon is source of conduction electrons
- Low temperatures

N. Samkharadze et al, Integrated Electron Transport, 2011

n-body Problems

- 2-body problems with classical mechanics
- 3-body problems with classical mechanics
- n-body problems with quantum mechanics

Klaus von Klitzing

Robert B. Laughlin

Horst L. Störmer

Daniel C. Tsui

Fractional Quantum Hall Effect

- Many-particle effect in which Coulomb interactions play a role
- Flux Quanta attached to carriers to create composite particles
- Composite Fermions and non-Abelian states

Resistance Measurement

- Use He Dewar to cool down AlGaAs/GaAs sample
- 4-probe measurement with lock-in amplifier
- Find correspondence between R_{xx} minima and states
- Determine density of electrons: n=vBe/h

Disorder

- Neutral Disorder Source:
 Alloy scattering can be studied by adding small amount of Al impurities to GaAs
- Different states respond differently to same disorder

W. Li, G. A. Csathy et al, APL, 2003