Biophysics: Diffusion through Biological Tissue

Andrew McElroy
Summer REU 2011
Purdue University

Diffusion

- What is it?
 - The net movement of particles from an area of high concentration to an area of low concentration.
 - Constant random motion:
 - Brownian motion
 - "Random Walk"

Why study it?

- Diffusion is well defined for simple systems.
- There is a lot to be learned about more complex systems.

Research Applications

- Understanding of the transport properties of a cell
 - Perception of a cell:
 - Water sack with stuff floating around inside
 - Not true
 - By studying diffusion we can gain a better knowledge of the true characteristics of cells

Research Applications

- Cancer treatment
 - Nanoparticles are becoming a hot bed of research.
 - Supposed better drug transportation and targeting.

Experiment

- Cell Design needs:
 - Two connected chambers.
 - High concentration and low concentration
 - Ability to hold a sample between the chambers
 - Interchangeability
 - Way to measure the concentration changes.

Cell:

Two connected chambers

- Holding a sample/interchangeability
 - Compress a plug of a sample between the cells

Making Measurements

- Needed a way to measure concentration changes without disturbing the system.
 - Use fluorescing dyes

 Rhodamine and other fluorophores can easily be detected and can be used to tag other larger molecules

• System works on our nifty scanner:

Problem

- After all the simple problems (leaking, etc)
 appeared to be solved in the system, the
 experiments were still not acing like they
 should.
- There was consistently a bulk amount of dye entering the system early in the experiment.

Problem

- Inherent problem in diffusion measurements:
 - Diffusion is a very slow process that is often drowned out by convection currents and other forces

Problem Solving

-Let it sit and added membranes to both ends of the "tunnel" to hopefully stop these convection currents

Problem Solving

Need to change our approach

System 2.0

Density issues?

- Solved by making the bottom solution more dense than the dye

DATA!

Rate of change (slope):

trial 1: .43uM/hr

trial 2: .41uM/hr

Steady State Model

$$\frac{\partial C}{\partial t} = \frac{DAC_0}{VL} \left(\frac{1}{1 + \frac{2\Delta x}{Lf}} \right)$$

 This gives an expected rate value which makes the measured value factor of 3 too slow.... Not sure why

Conclusion

 Successfully made a cell which can make diffusion measurements through biological tissue and gells

Begin measuring the diffusion rate through agarose gel

 Move on to measuring diffusion through biological tissue