Russell Goff REU work with Dr. Koltick on Neutron Induced Gamma Ray Spectroscopy for Elemental Analysis

Associated Particle Imaging

- Associated Particle Neutron Elemental Imaging (API)
 - Creates 3-D image of object non-invasively

Power of Elemental Analysis

Associated Particle Imaging

- Associated Particle Neutron Elemental Imaging (API)
 - Creates 3-D image of object non-invasively

Neutron generator

Mf Physics- A-920

DT Fusion Reaction

100keV D in 14.1 MeV neutron & 3.5 MeV alpha out

Neutron Generator Specs.

- D + T $\rightarrow \alpha$ + n
- 14.5 MeV neutrons at around $1x10^8 \frac{\text{nutrons}}{\text{second}}$
- Operator exposed to roughly 0.2 $\frac{mRem}{hour}$ (compared to 0.1 $\frac{Rem}{year}$ NRC general population exposure limit)

Citation 1

Penning Trap

Associated Particle Imaging

- Associated Particle Neutron Elemental Imaging (API)
 - Creates 3-D image of object non-invasively

Scintillation Screen

Energies:
²D 30-70 keV
α 3.5 MeV
n 14.1 MeV

2

1.6 mm thick
Fused Silica

1.6 mm thick
Fused Silica

1 μm Al
overcoat
ZnO(Ga)
coating
Fused Silica

Creation of Elements Location

 α particle & neutron from D-T Fusion travel opposite directions

 Time of flight recorded & used to create image. Estimated by time difference between γ detection and start of α particle logic gate. [Neutron=5cm/ns

Coupling PMT to A-920

Inducing Gamma Rays

- Inelastic Scattering
 - Lifetime of excited state is in range of picoseconds
 - Incoming neutron must exceed unique threshold

Inducing Gamma Rays

- Thermal Capture
 - De-excitation occurs in picoseconds
 - Cross section increases with decreasing energy

Inducing Gamma Rays

- Activation
 - Not as useful since due to seconds long half lives there can be no alpha gating for imaging.

Associated Particle Imaging

- Associated Particle Neutron Elemental Imaging (API)
 - Creates 3-D image of object non-invasively

Gamma ray spectroscopy

Different Gamma ray energies are uniquely associated with different isotopes

Need for Good Energy Resolution

- Energy Resolution: FWHM over the mean pulse height of the photopeak
- 10% compared to 0.1%

HPGe Detectors

- Benefit of great energy resolution
 - 1.07keV resolution with 1.173MeV source
- However...
 - High Maintenance
 - Lower counting efficiency
 - Fragile
 - Operate around 100°K
 - Expensive

Detector cooling & vacuum systems

- Alternative to liquid nitrogen
- Kept at vacuum

HPGe Detectors

- Must be pumped out and annealed occasionally to "erase" neutron damage and renew vacuum
 - Annealing helps vacancies and interstitials, created from neutron damage, recombine

Putting the Pieces Together

- Used α particle and beam spot of neutron generator to tell where gamma was born
 - Used gamma ray to deduce what element was at that position

Counting system with Logic pulse

4omV Discriminator Setting Data

Coincidence

Trouble Shooting

- Why didn't that work?
- Where did that piece go?
- This is too expensive to be broken

Writing Manuals

- Creating documentation on
 - Neutron generators
 - HPGe detectors & associated equipment
 - Data processing tools
 - Maintenance Procedures

Bibliography

- Simpson, American Institute of Physics "Compact accelerator neutron generators" (2002)
- 2)Thermo-Scientific.com (o6/28/11)
- 3) Kane, "Detection of special nuclear materials using prompt gamma-rays from fast and slow neutron induced fission" (2010)
- 4)ORTEC X-Cooler II Owners manual

3 Main Gamma-Ray Interactions

Photo-Electric Effect (PE)

Compton Scattering (CS)

Incoming photon

Scattered photon

atom

Scattered electron

Pair Production (PP)

Appreciation of Time Scale

- A gamma-ray may take multiple interactions to deposit its full energy in a detector
- Photon is traveling speed of light through small distance
- Output response from detector will be same for multiple interactions as it would have been had the photon deposited all its energy in a single interaction due

Causes of different peaks

- Escape of x-ray from PE- A few keV
- Annihilation Radiation-Positron and an electron annihilate and send two 511keV photons in opposite directions. This Results in no shift, a single escape peak, or a double escape peak
- Backscatter peak- Compton scattering in surrounding materials before reaching detector. Creates peak around 200keV.

More examples

- Pair production in surrounding material:
 Creates 511keV peak
- .40 *K* in background: Causes 1460keV peak
- Sum peak from pile-up: Two peaks at close enough time that detector system combines them into peak equal to sum of their energies

Likelihood of each Interaction

Shifts in energy peaks

 Occur when energy carrier escapes from detector

Exploring feasibility of API in medical Diagnostics

- Currently in very infant stages of process
- Would require PPM precision
- Cross sections may be too small for prompt gamma's in elements of interest
- Dose to patient must be kept relatively low
 - Currently PET & CT scans give 1-2 REM dose

Potential Future Uses

- Hypoxia-Deficiency of Oxygen in tissue
- Promotes growth of tumors
- Promotes malignancy
- Greater resistance to treatment

Current Diagnosis Procedure

- Biopsies which spread tumors
- Invasive O_2 needle electrode's
 - $-pO_2 = 40mmHg normal cell$
 - $-pO_2 < 10mmHg$ generally hypoxic
- Oxygen reduced pharmaceuticals
- Anesthetization & other factors throw results