Applied Nuclear Physics Efficiency of Gamma Ray Detectors

Amanda Barnett

Rose-Hulman Institute of Technology & Purdue University July 30, 2009

Advisor: Prof. Koltick

Nuclear Physics

- Neutron source, Cf-252
- Neutrons captured in nucleus
- Unstable nucleus created
- Nucleus decays (in picoseconds)
- Gamma ray emitted
- Energy spectrum unique to isotope

Gamma Ray Interactions

Photoelectric Effect

Compton Scattering

Pair Production

High-Purity Germanium Detectors

- Ge crystal semiconductor
- X-cooler

HPGe Detectors

How Semiconductor Detectors Work

- Crystal lattice with electron band structure
- Charge Carriers
 - Charge is carried via electrons and holes
 - Electrons are promoted from the valence band to the conduction band
 - Holes are electron vacancies in the crystal lattice, behave similarly to electrons

How Semiconductor Detectors Work

Thermal Excitation

Probability of promoting an electron to the conduction band

$$p(T) = CT^{3/2}e^{\left(-\frac{E_g}{kT}\right)}$$

- Reduced by cooling crystal
- $\,$ p(100K)/p(300K) $\sim 10^{\text{-24}}$, cooling to 100K reduces noise by 24 orders of magnitude

Drawbacks

- Cooling necessary
- More costly than other detectors
- Radiation damage
 - Particle bombardment causes dislocations in lattice
 - Dislocations degrade detector performance by capturing charge carriers before they are collected

Sample Spectra

What Peaks are Seen

Energy varies based on Isotope

Photoelectric Absorption

- Dominates up to 150keV in Ge
- All photon energy deposited
- Electron promoted to the conduction band
- Electron deposits energy, creating additional electrons and holes

Compton Scattering

- Dominates from 150keV to 8MeV
- Photon loses energy, changes direction
- Electron promoted to conduction band
- This process may continue until...
 - Photon loses enough energy for photoelectric absorption
 - Photon escapes the crystal before depositing all of its energy

Pair Production

- Dominates at greater than 8MeV
- Photon creates electron-positron pair
- Electron loses energy by creating additional electrons and holes
- Positron annihilates with electron
- Annihilation creates two 511keV photons
 - Both Absorbed: full photopeak energy recorded
 - One Absorbed: photopeak energy minus 511 keV (1st escape peak)
 - Neither Absorbed: photopeak energy minus 1022 keV (2nd escape peak)

Efficiency Study Setup

- Neutron Guide
- o NH₄NO₃, MgCl₂
- o Cf-252
- HPGe detectors

Efficiency

$$\varepsilon(E) = \frac{S_{Obs}(E)}{N_{\gamma,Incident}(E)}$$

$$\varepsilon = \frac{S}{N_{sim}R_{Cf}t_{live}}f_{\phi}$$

where:

S = photopeak signal from experiment

 N_{sim} = the number of gamma's crossing the detector from simulation normalized per starting neutron

 R_{Cf} = neutron emission rate from Cf source

 t_{live} = detector live time

 f_{ϕ} = scaling factor which accounts for inaccuracies in placing Cf source

Efficiency Study Results

Efficiency Study Paper

- Found CorrectionFactors
 - Volume/ Density
 - Plastic Skin
 - Cf Placement
 - Sample Placement

Tasks

- Locate relevant files
- Interpret files
- Contact grad students
- Verify calculations

To Complete the Paper

- New Data
 - 87% Detector
 - Exact Cf placement
- MCNP simulations
- Writing
 - Organize Results
 - Make conclusions
- Publish in NIM

Sandbox Update

Purpose: Detect IED's

- o Progress:
 - Sand!
 - Waiting for funding

Basic Concept

- Send neutrons into ground
- Excite material underground
- Measure emitted gamma rays
- Examine spectrum to determine if

material is explosive

- Device must be
 - Fast
 - Accurate
 - Durable

Future Work

- Explosives
- Track system over sandbox for generator, detectors
- Computer Program

Acknowledgments

- Dr. David Koltick
- Tony Clevenger
- Matt Marziale
- Steve Kane