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Photonics Applications
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Photonics could impact all of these.
But today costs are prohibitive.




Processor History
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Intel co-founder G. Moore predicted doubling of transistors approximately

every 2 years (Electronic Magazine, 1965)
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Electronics:
Economics of Moore’s Law.

SCALING + WAFER SIZE + HIGH VOLUME = LOWER COST
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Tera-leap to Parallelism:
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of cores 4 —> FEraof
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More performance

Dual Core Using less energy

- Hyper-Threading
The days of
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All this compute capability may require
high speed optical links




Future Physical 1/0 for a Tera-scale Servers

Core-Core: On Die Memory: Package Chip-Chip: Fast Copper
Interconnect fabric 3D Stacking FR4 or Flex cables

Tb/s of I/O

Tera-scale CPU

Integrated Th/s Optical Chip?
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Moving to Interconnects

Optical ;: Copper
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Drive optical to high
volumes and low costs
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Photonics Evolution

o
P
e

! Optoelectronic

; Integration

. (Optics and Electronics

Hybrid :
Integration " ad -

_ {(Optics and

Electronics)
Daciate frm— — .
Components { Hybrid

|Integration

What could

Integrated
Photonics Deliver?




Silicon Photonics

Motivation & applications

History & progress
Intel’s Research Program
Future work

Summary.




The Opportunity of Silicon Photonics

Enormous ($ billions) CMOS infrastructure, process
learning, and capacity

— Draft continued investment in Moore’s law

Potential to integrate multiple optical devices
Micromachining could provide smart packaging
Potential to converge computing & communications

N7

To benefit from this optical wafers
must run alongside existing product.




Silicon as an Optical Material

<« |ntel Litho Silicon Opaque SIII Trans__

"'4 F"P";| Red (IR)
: _ Far IR

Photon Energy (eV)

v'Transparent > ~1.1 um
v'High index
v'CMOS Compatible

v'Low cost material

@ Low light emission efficiency
® No electro-optical effect

@ No detection in 1.3-1.6 um

Silicon traditionally NOT
optical material of choice




S1 Photonics Recent Progress

*This is not exhaustive
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Intel’s Silicon Photonics Research
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Intel’s Silicon Photonics Research

Continuous Wave ) Photo-detection
Silicon Raman :
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Integration Vision
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Integrated in Silicon

First: Prove Silicon good
optical material

Recelver
Chip

FUTURE

oA Monolithic?

Next Integration: silicon devices
into hybrid modules

INncreasing silicon
integration over time




Building Block Research
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Guiding Light with Si Waveguides

Ex: Rib waveguide

 Proven area for silicon
e High index = small structures
— Strip and Photonic crystals for further scaling

o Splitters, couplers, gratings, AWGs, MMIs
have all been demonstrated

Continue to reduce size while
maintaining performance




Options for Integrating Light Sources

Bonded é E g

Hybrid
Laser Attached
Laser

= -

Hybrid Silicon Laser Off-chip
= Bond InP based material laser Ofif-chip Laser
to Silicon = High power laser required
= No alignment = Requires fiber attach
= Many lasers with one = Non-integrated solution
bonding step Direct Attached Laser = Expensive
= Amenable to high =Tight alignment tolerances
Integration =Requires gold metal bonding
= Potentially lowest cost  <pgssijve alignment challenges
e[ ess Expensive




Hybrid Silicon Laser

Collaboration with UCSB :

*The Indium Phosphide emits
the light into the silicon
waveguide

* The silicon acts as laser cavity:
e Silicon waveguide routes the light
 End Facets or gratings are reflectors/mirrors

e Light bounces back and forth and gets amplified by InP
based material

e Laser performance determined by Silicon waveguide

No alignment needed
10’s if not 100’s of lasers with ONE bond




Hybrid Laser Process

1) A waveguide is etched in silicon 2) The Indium phosphide is processed
to make it a good light emitter

l

3) Both materials are exposed to the 4) The two materials are bonded
oxygen plasma to form the “glass-glue” together under low heat

(intel) ..




Hybrid Laser Process

5) Th_e Indium phosphide is etched and 6) Photons are emitted from the
electrical contacts are added Indium Phosphide when a voltage
Is applied

7) The light is coupled into the
silicon waveguide which forms the
laser cavity. Laser light emanates
from the device.




Hybrid Laser Structure
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SEM (Scanning Electron Microscope) Photograph




Silicon Hybrid Laser

7 lasers outputting simultaneously

T ST




Modulation

* Direct or External modulation
e External used for 10G at —12km-+

Direct Modulation

dispersion

) chirp
"A - .- m Data rate limited
. Fiber

External Modulation

%
- s = = | |

No electro-optic effect
use free carriers
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Intel’s Second Generation: Silicon Modulator
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SEM picture of p-n phase shifter -Optimized optical & electrical RF




Recent Results: 40Gb/s Data Transmission

Optical Roll-off

~30 GHz roll-off )'
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Photodetection

e Silicon does not absorb IR well
» Using SiGe to extend to 1.3um-+

e \ust overcome lattice mismatch

Bulk Films of Si and Ge Strained Si,,Ge, on Si Relaxed Si, ,Ge, on Si
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misfit
ag ~.543 nm dislocation

Misfit dislocations typically create threading dislocations which degrade device
performance - dark current (I;) goes up.

Must simultaneously achieve required
speed, responsivity, & dark current.




Waveguide Photodetector Design
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Experimental Results: 40Gb/s

Presented Sept 20™: Group IV conference Tokyo Japan
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95% efficient (up to A ~1.56um)
< 200nA of dark current




_Low Cost Assembly

U-ropves V.Grooves

Testing
1/3

Use passive alignment
and lithographically
defined silicon
micromachining

45° Mirrors Facek Pieparation

(intel) ..
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Challenge: Packaging

Example: Optical Interface

Monolithic
Package topside Integration?
Connection?

[ —

@ @ ® (ORCORCORCORORORMONC)
ORGANIC PACKAGE

FIBERS

[ —

®®
Board connection?

Issues: Connector cost, assembly cost, testing, reliability
and compatibility with existing electrical packages

Multiple approaches. Must balance performance,
flexibility and feasibility

Leap ahead™




CMQOS Intelligence

* Electronics are needed to control
photonics — no optical logic
— Transimpedance & Limiting Amplifiers fo
photodetection
— Drivers for lasers/modulators

— Also Clock Data Recovery,

Sernalzey Serializers/Deserializers, etc.

z %> De-serializer |}

Driver
Control and NN Use hybrid attached

Monitor Microprocessof‘?"ilx_ § ; CMOS electronics.
s EEck Explore monolithic

integration over time




Integration: Hybrid?

Photonics and electronics Example hybrid chip
processed separately Integrated in Silicon

10 Gbps electronics could use < 0.13um
while optics may use older gen. process.

Attachment via bumps or wirebonds. Reccﬁiver
Ip

Integration of passive and active silicon
devices reduces assembly & cost.

Driver
Chip

External Ill1-Vs: require coupling and
alignment (vertical & horizontal) or
direct wafer bonding to waveguides.

Both monolithic and hybrid chips will need
to couple light to the outside world.

Hybrid will offer the best
price-performance near term




Integration: Monolithic?

: : Example monolithic chi
Photonics and electronics processed P P

together on a single wafer ECL

Modulator
Filter _ £ Multiple
\ % - P

& Channels

sMotivations: S -" SRS

» Performance, e.g. a Photodetector ﬁi,,M g
with a Trans-impedance amp Ty Y

» Reduced form factor 7 o

* Cost?

Photodetector

But many challenges for achieving high yield:
Tighter thermal budgets, topology, metrology, complexity, etc.

Yield issues make monolithic
a longer term proposition
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Where are we going?
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Optical Fiber

Multiplexor

25 modulators at 40Gb/s

25 hybrid lasers

An future integrated 1 Tb/s optical link

on a single chip




Integrating Iinto a Tera-scale System
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Which could then be built into an
iIntegrated, silicon photonic chip!!




Integrating Into a Tera-scale System
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chip could then be integrated
into computer boards And thls board could be
iIntegrated Into a Tera-

scale system

=

Leap ahead™




Summary

e Long term, convergence opportunities will be In
silicon

e Silicon photonic device performance advancing at
an accelerated pace.

— Need to continue to push performance (i.e. 40G, 100G...)
 Next phase of challenges will be with integration.

* For Iinterconnects, need to optimize electronics &
photonics

— Packaging, power, signaling, and cost will be key

If successful volume economics could allow silicon photonics to
impact many areas from communications to bio to medicine




Silicon Photonics:
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