Nitrogen Tanks Installed

We use liquid and gaseous nitrogen for a variety of things: Liquid nitrogen is used to initially liquefy the xenon and to keep the xenon cold in case of power failures. Gaseous nitrogen is mainly used as a blanket on top of the water inside the muon veto in order to keep radioactive radon gas out. Our two nitrogen storage tanks have been delivered, installed, and tested:

Nitrogen Tanks

Dr. Marcello Messina (from Columbia University) and Dr. Domenico Franco (from Zürich University) underground in front of the two XENON nitrogen storage tanks.

 

Cryogenic Pipe Installed

The XENON1T detector sits in the center of a large water tank. All the signal and high voltage cables, pipes for liquid and gaseous xenon, vacuum piping and various other lines get there via one large pipe.

Installation of the cryogenic pipe inside the XENON1T water tank, July 2014

Installation of the cryogenic pipe inside the XENON1T water tank, July 2014

We have just finished the installation of this pipe. It’s actually a quite fascinating piece of engineering. In it, there are all the signal and high voltage cables for the photomultiplier tubes. There are pipes to recirculate the xenon for purification in the adjacent building, which are themselves inside a vacuum-insulated pipe that in turn runs inside this pipe. The large diameter pipe is also used to evacuate the cryostat, as well as the heat insulation of the cryostat. And it holds a bunch of extra cables and wires for various other sensors. So, it’s really much more than just a pipe. It’s the lifeline to the detector. And it’s pretty cramped:

Cable bunches

These are the signal wires, bunched together into a single pipe inside the cryogenic pipe. They are PTFE-insulated, low-radioactivity wires with custom-made connectors.

 

Support structure completed

Inside the XENON Water Tank, May 2014

Inside the XENON Water Tank, May 2014

After seven days of hard work the support structure for the XENON1T cryostat has been finished this month. The photo shows this support structure which sits inside the massive water tank. A total of 8.5 tons of steel with an ultra low radioactive background have been used for this construction. The cryostat vessel, weighting itself one tonne not counting the xenon, will hang inside this support structure. This work has been done by technicians and students from Nikhef and LNGS.

First axion results from the XENON100 experiment

E. Aprile et al. (XENON100), First Axion Results from the XENON100 Experiment, Physical Review D 90, 062009 (2014) and arXiv:1404.1455.

Is it better a dark matter WIMP or the Imp from GoT? I don’t know, but I would rather advice you to not forget the axions from GUT – Grand Unification Theories. Axions, if they exist, could solve several yet unsolved problems in understanding our Universe and in the description of the forces that govern the subatomic world. The axions have been postulated by Roberto Peccei and Helen Quinn in 1977 to explain the discrepancy between theory and observation in Quantum Chromodynamics for what concern the Charge-Parity Violation. They could be an excellent dark matter candidate and solve at the same time the CPV problem. What does this mean?

In the Standard Model of particle physics, the fundamental force that regulates the interaction among the quarks is called the Strong Force. Let me remind you that the quarks are thought to be the fundamental constituent of the hadrons, among which we have the nucleons, i.e. the protons and neutrons which made the atoms. We know that the quarks come with a colour. To be clear, this colour is just a conventional name without implying that quarks are literally red, green or blue. It’s just a way to distinguish different kinds of quarks. Because of these colours, the quantum theory formalism that describes the quarks gets the name of chromo: Quantum Chromo Dynamics or QCD.

Now, in the Standard Model we have another force, called the Weak Force. This Weak Force is responsible of the decay of the nuclei; and whenever a neutrino is involved. Why do we care about Weak Interaction if the axons deal with Strong one? This is because of the CP symmetry violation.

Already in 1964 it was found that the Weak Interaction violates the CP symmetry. The fundamental particles may come with a charge (C), like the electron, and with a parity (P), which can be seen as a spatial symmetry. Like the human face which is symmetric (although not perfectly symmetric) between left and right. Before 1964 it was expected that by changing the charge of a particle (performing a so called charge conjugation) you get something different from what you had at the beginning: a positron is not an electron, but it is its charged-conjugated partner. The same thing was expected to happen with the parity conjugation: imagine to put a particle in front of a mirror, the mirrored particle won’t be the same as the original one.

However, it was believed that if you combine these two transformations (if you make a CP conjugation) you obtain the same situation as the one present at the beginning of the process. Well, in 1964, it was proven that this is not the case for the Weak Interactions, that is to say: Weak Interactions violate the CP symmetry. Nowadays we understand this process better and we can precisely describe this violation within the Standard Model of particle physics.

This CP symmetry violation, although perfectly fine with the Standard Model, has not been observed in the Strong Interaction. Imagine that you see a leaf that is about to fall from a branch, but never falls. The fall is predicted by the gravity, but it doesn’t happen. There must be something wrong! Or maybe we must be missing something. Like, the leaf being stuck to the branch. So, what is it happening to the Strong Interactions? Why haven’t we yet observed the CP violation in the Strong sector of the Standard Model?

We don’t know… yet. To solve this problem, Peccei and Quinn have introduced this new particle, the axion, that takes away the CP violation in the Strong Interaction processes, restoring the symmetry. It is like preventing the leaf to fall, and making the violation invisible. Why is this important for us?

Simple: now that the Higgs boson has been discovered and we have a clearer idea on how the particles acquire the mass they have, we are still unable to explain why we are living in a matter-dominated universe rather than an antimatter-dominated one. The definition of what is matter and what is antimatter is a purely human artifact: the two options, matter or antimatter universes, would be completely indistinguishable in terms of the laws of nature. The only difference you might experience is that instead of switching on the light letting the electrons flowing, you would do the same using positrons instead. So why the Nature has chosen the matter (electron) instead of the antimatter (positron)?

We think that the solution lies in understanding the CP violation. And the axion is one of the keystones in the building of this cathedral. There are several experimental groups searching for these particles, and many theoretical physicists are working on various axion models (oscillating between predictions and readjustment, once experimental results get published).

Concerning the experimental searches, it was recently realized that the dark matter detectors (like CDMS, EDELWEISS or xenon-based instruments) can be particularly suitable for such a challenge. About one year ago, we understood that XENON100 could play in the world championship of this competition, maybe winning the AC (not the America’s Cup, but the Axion’s Cup). So we have involved ourselves in this venture.

Supported by several theoretical models (also arising from Grand Unification Theories) we expect the axions to interact with the normal matter by coupling  either to photons, nucleon or electrons. By normal baryonic matter we mean the building blocks that constitute the Universe to which we naturally interacts. Everything you see, everything you touch is normal baryonic matter. Also XENON100 is made only of baryonic matter.

With it we could test the axion-electron coupling. This means that to explore the existence of this very elusive particles, we tried to observe the probability of an axion to kick out an electron from the xenon atoms (see the figure below). This process is called the axio-electric effect.

The axio-electric effect

The axio-electric effect converts an axion A into an electron e-, in the presence of either a nucleus Z+ or another electron e-.

The axio-electric effect is very similar to the photo-electric effect (whose discovery won Albert Einstein the Nobel Prize of Physics in 1921), with a crucial difference though: in our case instead of a photon we consider an axion hitting the electron and ionizing the xenon target. The axio-electric effect was first introduced and formalized by A. Derevianko and others in the late 1990s. What happen when an axion hits our xenon target?

It generates a small spark, which is immediately detected by the photomultiplier tubes, which continuously monitor the situation inside XENON100. XENON100 particularly good in discovering the axions through this effect. The secret lies in the cleanliness of the detector. XENON100 is definitively one of the cleanest places of the Universe. In which sense? Everything that is surrounding us is radioactive, emits radiation which continuously hits us: when you wash your hands you receive quite some amount of radiation, particularly if the washbasin is made of ceramic, because of the cobalt contained in the ceramic. This radiation is completely harmless for your body so we never worry about it. But in contrast, if you put the same amount of ceramic inside XENON100, the whole experiment would be spoiled! Hence, every single component has been carefully selected and the detector is operated in such a way that everything that generates a spark in its interior can be considered as good signal, and not some spurious radiation.

gAe_Galactic_noS2width_sensitivity-exclusion_withCLS

To give you an idea of the cleanliness of the XENON100 detector: imagine that you could sit inside the inner part of the XENON detector (wear the proper clothes, since the temperature is about -100 degrees). That place is so radiation-clean that you will have to wait for about a day between one low-energy event and another. All this means that if we see some light we have quite a good chance that this light is coming from something interesting — such as axions.

We have carefully run our experiment for more than a year, taking care of it like a sacred cow. We then skimmed the data that we collected during that time. At the end of the skimming procedure we have found no evidences of axions, as shown below.

gAe_Solar_noS2width_sensitivity-exclusion

What you see in the plot is the following: on the y-axis we show the coupling of the axion with the electron, i.e. a way to describe the probability they interact with the electrons; on the x-axis we shod the hypothetical mass of the axion. Since we don’t know either the coupling nor the mass, we have to plot them in such a graph, in order to check where they like to live (for a given mass the corresponding coupling and vice-versa). In these so-called exclusion plots, we show different experiments (whose names you can find on the plot) which have excluded certain phase space: each point [coupling, mass] above the line for a particular experiment has been rejected, and if the axion exist, it can be only be in the region below these lines. For example, it is highly impossible that an axion in the galaxy can have a mass of 2 keV and a coupling to the electrons 1E-11 (i.e. one in eight hundredth of millionth), since these characteristic have been excluded by CoGeNT, CDMS, EDELWEISS and more recently by XENON100. An axion with a mass of 2 keV and a coupling of 1E-13 is still possible: we haven’t been able to search for that yet. You can think of it like fishing: we try to go deeper and deeper with our fishing rods in different places of the lake. You can immediately see that the XENON100 has reached the deepest level in this search with respect to the other fishermen.

It has taken 40 years before finding the Higgs boson. The hunt for the axion has just started. We are out in front for tracking down these fundamental, elusive particles.

 

Measuring Kr Contamination with an Atom Trap

 

Prof. Elena Aprile and Graduate Student Luke Goetzke work on the ATTA system at Columbia University

Prof. Elena Aprile and Graduate Student Luke Goetzke work on the ATTA system at Columbia University

The Krypton Problem

One of the many advantages of using xenon as a dark matter target is that xenon has no naturally occurring long-lived radioactive isotopes. However, when xenon is distilled from air, about 1 krypton atom per billion xenon atoms is also gathered. A very small fraction of these krypton atoms, only one in one hundred billion, are the radioactive isotope 85-Kr.

The decay of 85-Kr releases an electron which can then scatter in the xenon detector. These electronic recoil events can potentially obscure even rarer signals from interactions with dark matter. Thus, for dark matter detectors using liquid xenon, the krypton needs to be removed. This is done by passing the xenon through a cryogenic distillation column specifically designed for removing krypton.

After going through the krypton column, the xenon is very clean. For XENON100, there are only ~10 krypton atoms per trillion xenon atoms. Finding one of those krypton atoms is like picking out one single star from the entire Milky Way galaxy. XENON1T has 10 times even less krypton in the xenon.

Measuring the Krypton Contamination

Measuring such a tiny amount of krypton is not trivial. One way is to look for the decay signature of 85-Kr using the XENON detector itself. However, due to its relatively long half life (~11 years), it takes many months to get an accurate estimate with this method. So, how do we measure the tiny amount of krypton relatively quickly and accurately?

An atom trapping device has has been developed by the group at Columbia University to do exactly that (see E. Aprile, T. Yoon, A. Loose, L. W. Goetzke, and T. Zelevinsky, “An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors”, Rev. Sci. Instrum., 84, 093105 (2013), arXiv:1305.6510). The method, called Atom Trap Trace Analysis (ATTA), was originally developed at Argonne National Lab for the purpose of radioactive dating. It has been adapted to measure samples of xenon gas taken directly from the XENON detectors.

All ATTA devices have the same operating principle: traditional laser cooling and trapping techniques are employed to selectively cool and trap the element of interest present in the sample. The trapped atoms emit light which is detected by a photo detector, in our case an avalanche photodiode. The trapped atoms can thus be counted. The Columbia ATTA device is designed to be sensitive to single trapped atoms, since for clean samples the average number of krypton atoms in the trap at any given time is close to zero.

The rate at which the atoms are loaded into the trap is the number we are after. The device is calibrated carefully in order to find the trapping efficiency, i.e. the fraction of krypton atoms that get trapped and counted successfully. Multiplying the measured loading rate for a given sample by the known trapping efficiency gives the total number of krypton atoms flowing through the system. Finally, measuring how many xenon atoms flow through the system at the same time allows the krypton fraction to be calculated. The entire measurement can be completed in one working day.

The Columbia ATTA device allows the xenon used in XENON1T to be assayed for krypton contamination quickly and accurately, thus ensuring that krypton levels are safe before beginning a dark matter run, and during the run itself. And it looks pretty cool, too!

 

XENON100 is most-cited dark matter experiment in 2013

The latest result from XENON100 on spin-independent WIMP-nucleon interactions, derived from 225 live days of data taking, is among the 20 most-cited particle physics papers of the year 2013. According to the new summary of INSPIRE, the high energy physics information system, our result from 2012, published in Physical Review Letters, is the only dark matter-related paper in the top 40, and is surrounded by high-impact results from ATLAS, CMS, Planck, WMAP, Daya Bay, etc.

The XENON Detection Principle

The XENON dark matter experiment is installed underground at the Laboratory Nazionali del Gran Sasso of INFN, Italy. A 62 kg liquid xenon target is operated as a dual phase (liquid/gas) time projection chamber to search for interactions of dark matter particles.

Schema of XENON

Schema of the XENON experiment: any particle interaction in the liquid xenon (blue) yields two signals: a prompt flash of light, and a delayed charge signal. Together, these two signals give away the energy and position of the interaction as well as the type of the interacting particle. (Schema: The XENON collaboration/Rafael Lang)

An interaction in the target generates scintillation light which is recorded as a prompt signal (called S1) by two arrays of photomultiplier tubes (PMTs) at the top and bottom of the chamber. In addition, each interaction liberates electrons, which are drifted by an electric field to the liquid-gas interface with a speed of about 2 mm/μs. There, a strong electric field extracts the electrons and generates proportional scintillation which is recorded by the same photomultiplier arrays as a delayed signal (called S2). The time difference between these two signals gives the depth of the interaction in the time-projection chamber with a resolution of a few mm. The hit pattern of the S2 signal on the top array allows to reconstruct the horizontal position of the interaction vertex also with a resolution of a few mm. Taken together, our experiment is able to precisely localize events in all three coordinates. This enables the fiducialization of the target, yielding a dramatic
reduction of external radioactive backgrounds due to the self-shielding capability of liquid xenon.

In addition, the ratio S2/S1 allows to discriminate electronic recoils, which are the dominant
background, from nuclear recoils, which are expected from Dark Matter interactions. And of course, the more energy a particle deposits in the detector, the brighter both S1 and S2 signals are, hence allowing us to reconstruct the particle’s deposited energy as well.

Dark Matter is Out There

Dark matter has been discovered. We know from measurements of the relic abundance of light elements that were generated just minutes after the Big Bang that the known, baryonic, matter is not sufficient to explain the energy-matter density of the Universe today. A cold dark matter component has been measured from the incredibly accurate observations of the Cosmic Microwave Background, which was emitted just 300,000 years after the Big Bang. And dark matter must exist in order to turn the tiny fluctuations in the Cosmic Microwave Background into the huge density fluctuations that are observed in the Universe today.

Our Milky Way

Our Milky Way contains much more mass in the form of the mysterious dark matter than meets the eye. Picture by Thomas Tuchan.

Gravitational lensing and dispersion measurements of galaxy clusters, the largest bound systems that have been observed, show that dark matter is the dominating mass component. Detailed studies of half a dozen or so merging galaxy clusters have clearly ruled out possible alternative explanations involving modifications of the gravitational law, and are now starting to probe the properties of dark matter itself. We also know that dark matter exists in our own galaxy, the Milky Way, which shows rotational velocities that are independent of radius at high radii, just as in any other spiral galaxy we observe. This flat rotation curve is clearly inconsistent with that expected from Kepler’s laws but is naturally explained by the fact that galaxies are immersed in a halo of dark matter that dominates their mass.

Taken together, we have discovered dark matter with independent measurements spanning vast time scales from a few minutes after the Big Bang all the way to today, and at length scales from the Cosmos as a whole to individual galaxies. Yet, what dark matter is made out of remains entirely unknown. Thus, research into the nature of dark matter is of utmost importance to our view of the Cosmos. It is pursued with a variety of diverse approaches that test dark matter interactions with other known particles, with itself, and at a range of different energies.

Dark matter can be expected to have couplings, albeit weak, to standard matter, so that it can be searched for with laboratory experiments. This direct search for dark matter is pursued with a variety of complementary technologies and experiments. The XENON project in particular is one of the most sensitive direct searches for dark matter.

Like Mushrooms

The XENON1T is shielded from ambient radioactivity by a large water tank that is equipped as a muon veto. The tank has a diameter of 10 meters and is 10 meters high. It is constructed from top to bottom and went up in the Gran Sasso underground laboratory within less than a month: