PHYS 234: Recitation 7

(Quiz: Mar 11, 2020)

1. Estimation: In 1774, Ben Franklin observed that a teaspoon of oil $\left(5 \mathrm{~cm}^{3}\right)$, when placed on the surface of a pond, spread out to about half an acre $\left(2000 \mathrm{~m}^{2}\right)$:
"...the oil, though not more than a teaspoonful, produced an instant calm over a space several yards square, which spread amazingly, and extending itself gradually till it reached the leeside, making all that quarter of the pond, perhaps half an acre, as smooth as a looking-glass. "

Use Franklin's observation to estimate the size of an oil molecule. Is your estimate reasonable by modern standards? Clearly state your assumptions and how you came to the numbers you estimate.

2. Essay: Explain how a pair of slits separates the colors of white light, as in the figure to the right.

3. Two coherent sources of radio waves, A and B , are 5 m apart. Each source emits waves with wavelength 6 m along the x axis.
A. At what distance(s) from source A is there constructive interference? Consider only points between A and B on the x axis.
B. At what distance(s) from source A is there destructive interference? Consider only points between A and B on the x axis.
4. A red laser with wavelength $\lambda=630 \mathrm{~nm}$ shines through a pair of small slits. On a screen that is $L=10 \mathrm{~m}$ away, a

pattern of bright fringes appears, as shown. A centimeter ruler is held up to the screen, as shown.
A. Calculate the distance d between the slits in millimeters, to one significant digit.
B. Calculate the width a of each slit in millimeters, to one significant digit.
C. If the screen is moved farther away, does the distance between the fringes increase, decrease, or stay the same?
D. If a green laser is used instead of a red laser, does the distance between the fringes increase, decrease, or stay the same?
5. A laser beam shines through a prism as shown. The laser enters through the air-prism interface without bending, then exits through the prism-air interface at an angle φ from its original path. The prism is a right triangle with upper angle θ. Find an expression for the index of refraction of the prism n_{2} in terms of φ, θ, and the index of refraction of air n_{1}.
Support your calculation with a diagram or written reasoning.

