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ABSTRACT

A survey of binary systems containing pulsars was conducted, with the intention of detecting Galactic
sources of very high energy ~-ray emission. Observations were carried out with the Whipple 10 m imaging at-
mospheric Cerenkov telescope. Standard analysis techniques were applied to these sources to search for
steady, unpulsed emission. Periodic tests were also performed to search for emission correlated with both the
orbital and spin phases, where appropriate. Analyses indicate that the binaries in this study do not emit
detectable levels of very high energy photons within the sensitivity of our instrument. The flux upper limits
presented here fail to seriously constrain emission models.

Subject headings: gamma rays: observations — pulsars: general

1. INTRODUCTION ond binary, the Be X-ray binary PSR 1259—63, was
reported by the CANGAROO collaboration, although only
at the 4 o confidence level (Kifune 1996); however, later
observations failed to confirm these results. These systems
were both reported as steady sources of VHE ~-ray radia-
tion. Emission from both sources is believed to originate at
a location away from the neutron star, possibly at a shock

Pulsar-powered binary systems (gravitationally bound
systems containing at least one pulsar) represent a class of
objects thought to be sources of Galactic TeV emission. In
the youth of modern very high energy (VHE) astronomy,
many groups reported detecting the emission of photons at

those energies from binaries. These detections were usually . . X S
made by observing a periodic emission of ~-rays, corre- front created by the interaction of the pulsar’s relativistic

sponding to the spin or orbital period of the neutron star wind with its companion. Although the central engine

(for a review, see Chadwick, McComb, & Turver 1990 and powering these systems is a neutron star, there have been no
Weekes 1 992’ and referencés therein)’ More recently, as confirmed detections of periodic emissions from one. These

larger and more sensitive telescopes have come into use reports do not ipdicate that binary systems are conqlusive
these emissions have not been confirmed ’ TeV photon emitters. However, they do present evidence

Of the known emitters of VHE ~-rays, four are associated the%ﬁhese s;)lurges wafrrant f1t1.r tlh er 1nvle SU%.a tion. bi

with systems containing pulsars. One of these sources, the ¢ mechanisms for particic acce.cration 1n binary sys-
high-mass X-ray binary Centaurus X-3, is the only binary tems are uncertain, b.ut models expl;unmg and predicting
so far identified as a source of high-energy radiation, being Tev emission do exist. For accretion-p Qwered systems,
detected at GeV (Vestrand, Sreekumar, & Mori 1997) and these; include relativistic partlcle beams interacting with
TeV (Chadwick et al. 1998) energies. Emission from a sec- moving gas targets_(Ahar onian & Atoyan 1.991) and acceler-

’ ’ ation of protons via resonant absorption in the outer mag-
netosphere (Katz & Smith 1988). Shock acceleration models
of Harding & Gaisser (1990) predict detectable levels of
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Galbraith & Jelley (1953) proposed that the Cerenkov radi-
ation emitted by the charged particle components of the air
showers could be used to detect VHE photons striking the
atmosphere. Unlike for other energy regimes of astrophy-
sics, which regard the atmosphere as a hindrance, it is pos-
sible to use the Earth’s atmosphere as a Cerenkov detector
medium so that these VHE photons can be detected. Since
its inception over 30 years ago, the atmospheric Cerenkov
technique remains the most sensitive technique available to
effectively study photons with energies of 0.1-10.0 TeV.

The observations of pulsar-powered systems presented
here were made with the 10 m imaging atmospheric Ceren-
kov telescope located at the Fred L. Whipple Observatory
in southern Arizona. The camera consists of an array of
photomultiplier tubes (PMTs) mounted at the focal plane of
the reflector. The camera records images of atmospheric
Cerenkov radiation initiated by high-energy photons and
cosmic rays. The data in this study were collected with a 331
pixel camera, which has a field of view of approximately 5°.
The telescope and its properties are discussed in more detail
elsewhere (Cawley et al. 1990).

2.1. Unpulsed Analysis

These data were collected during the 1997/1998 and
1998/1999 observing seasons. The data acquisition system
utilized a twofold coincidence prior to 1999 (see Cawley et
al. 1990 for details), and a twofold pattern selection trigger
(Bradbury et al. 1999) was implemented in the spring of
1999. The events passing the triggering criteria were ana-
lyzed off-line, using a moment analysis routine (Reynolds et
al. 1993). Each event is parameterized with a shape (length
and width), orientation (alpha), and light distribution (con-
centration, asymmetry, and tube brightness). Hadronic and
~-ray—induced showers have distinct differences in the angu-
lar distribution of light and the orientation of their images.
Using these differences, we are able to extract y-ray signals
from a large hadronic background (see Jelley & Porter 1963
and Jelley 1967 for a more detailed discussion). Using con-
temporaneous data of the Crab Nebula (a standard candle
in TeV astronomy), we optimize the cuts made on the above
parameters to identify candidate y-rays.

The data in this study were collected using two modes of
operation: ON/OFF and TRACKING. In the ON/OFF
mode, an ON run tracks the candidate source position at
the center of the field of view for 28 sidereal minutes. The
ON run is followed by an OFF (control) run, which tracks
the same azimuth and elevation as the ON run, enabling any
biases due to terrestrial or atmospheric effects to be elimi-
nated. Differences in night-sky brightness and star fields are
eliminated with software padding (Cawley 1993), in which
Gaussian noise is added to equalize the noise in the PMTs.

The majority of the observations utilized for this report
were made in TRACKING mode. When observing in this
manner, the telescope tracks only the putative source posi-
tion for 28 sidereal minutes, with no control observations
being made. The standard analysis method for TRACK-
ING observations (Catanese et al. 1998) makes use of the
alpha parameter’s distribution. Events with small values of
alpha (0°-10°) are considered ~-ray-like, and those with
large alpha angles (20°—65°) are assumed to be background
and independent of ~-ray emission. A large collection of
contemporaneous nonsource data is analyzed, giving the
shape of the alpha distribution in the absence of a source of
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FIG. 1.—Alpha distribution of events passing shape and light distribu-
tion cuts from the direction of the Crab Nebula. The solid and dashed lines
indicate ON- and OFF-run alpha distributions, respectively. The source
and background regions used in the tracking analysis are indicated.

~-rays. A tracking ratio is determined, which converts the
number of events in the background region to the number
of background events in the source region (see Fig. 1).

A tracking ratio (p) and its uncertainty (Ap) are given by

. we |1 1
pt Ap = e . N + (1)
kag kag Nsrc kag

where Ny, is the number of events in the source region and
Ny 1s the number of events in the background region. The
tracking ratios used for the data sets presented here were
determined using the above method. The ratios were deter-
mined to be 0.2215 £ 0.0053 for the 1997/1998 data set and
0.2277 £ 0.0047 for the 1998 /1999 data set. The significance
of any excess was calculated using a simple propagation of
errors,

_ Ny — prkg
\/Nsrc + pszkg + ApzNgkg

S (2)

with upper limits derived using the method of Helene (1983)
and determined to a confidence level of 99.9%.

2.2. Periodic Analysis

Before any attempt at detecting periodicity in a system is
made, it is crucial to remove any contributions to the arrival
times that have been introduced by the time-dependent rela-
tive motions of the source and the observatory. For accurate
phase alignment to be carried out over long periods of time,
the arrival times of Cerenkov events must be corrected to
the solar system barycenter, considered here as an inertial
reference point. The arrival times of Cerenkov events were
registered by a GPS clock and an oscillator calibrated by a
GPS second mark to achieve an absolute time resolution of
0.1 us. All arrival times were then transformed to the solar
system barycenter using the JPL DE200 planetary ephemer-
ides (Standish 1982).

Just as the Earth’s orbit induces timing errors, the orbit of
a potential source in a binary system also produces timing
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errors. In order to make these corrections, we must deter-
mine the time of flight from the source position to the pro-
jected plane of the orbit. This procedure is relatively simple
for binary systems with circular orbits; however, for systems
whose eccentricity is not small, the procedure is more com-
plicated, requiring precise measurements of the orbital
parameters and the source location in the orbit.

The orbital parameters are determined at a time of refer-
ence (epoch of observations) and can be used to predict the
orientation of the orbit and the location of the secondary in
the orbit at any time. Once the exact positions are known,
the time correction is taken to be the time of flight from the
position of the source in its true orbit to its position in its
projected orbit (for a rigorous treatment of the procedure,
see Blandford & Teukolsky 1976).

After all time corrections have been applied, the events
have the appearance of originating and being recorded in an
inertial reference frame. These corrected event times can
then be tested for the presence of signals that arise from
processes that depend on the spin or orbital dynamics of the
suspected source.

Calibration of the timing systems at the Whipple Obser-
vatory was accomplished with optical observations con-
ducted in 1996 December using the 10 m reflector
(Srinivasan et al. 1997). The Crab pulsar was observed with
an aperture on the central phototube, allowing the telescope
to operate as an optical telescope with a photometer at its
focus. The phase analysis of the event arrival times yielded a
clear detection of pulsed optical emission from the Crab
pulsar, thereby demonstrating the validity of the timing,
data acquisition, and analysis software in the presence of a
pulsed signal (Srinivasan et al. 1997; Lessard et al. 2000).

The corrected event times (7) were phase (¢) folded mod-
ulo the frequency (v) relevant to the epoch (zyp) and the
source under study, according to

¢=do+v(t—1to) + 1ot — ) +1i(t— 1) . (3)

The x?2 test was applied to the resulting histogram to meas-
ure the deviation of the folded data from that expected for a
distribution in which there is no periodic signal. The results
of any tests that rely on binned data are dependent on the
binning process (i.e., the number of bins used).

In order to remove bias resulting from the binning of the
data, the Z3, test (Buccheri et al. 1983) was performed. This
test has the disadvantage that the optimal number of har-
monics (m) that should be used is dependent on the pulse
shape, which is unknown. Sums of a small number of har-
monics are more sensitive to broad, sinusoidal pulses,
whereas sums of a large number of harmonics are most sen-
sitive to narrow features in the light curve. Sources in this
study were subjected to the x2, Z3, and Z7, tests.

The data sets were searched for evidence of emission
modulated at the orbital period. Standard analysis techni-
ques were independently conducted on those data near
phases 0.00, 0.25, 0.50, and 0.75. The 99.9% confidence level
flux upper limits from each of the orbital phases were
derived using the method of Helene (1983).

3. OBSERVATIONS AND RESULTS

A set of six binaries were observed for this study. These
include two X-ray sources (LS T +61°303 and 2A 1704+241)
and four millisecond radio pulsars (PSR B1257+12, PSR
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B1534+12, PSR B1639+436B, and PSR B1957+20). The
data sets for each object were tested for the presence of a
steady, unpulsed ~-ray signal and periodic emission at the
orbital and pulsar period, when possible. All upper limits
reported here have a peak energy response at 500 GeV,
except LS I +61°303, which incorporates an earlier data set
with a peak energy response of 350 GeV. Upper limits are
reported at the 99.9% confidence level for both steady and
periodic emission.

3.1. LSI+61°303

LS T +61°303 is an X-ray—emitting binary system con-
taining a 10 M, Be star and a compact object, most likely a
neutron star (Frail & Hjellming 1991). This binary exhibits
bright radio outbursts with a period of approximately 26.5
days (Taylor & Gregory 1984). It is likely that the X-ray flux
results from inverse Compton scattering of stellar photons
off a relativistic electron population produced at a shock
resulting from the interaction of the relativistic wind of a
young pulsar with the stellar wind of the Be companion
(Maraschi & Treves 1981; Tavani 1995). The observed lumi-
nosity and the featureless power-law spectrum (Strickman
et al. 1998) are both consistent with the shock interpreta-
tion. The luminosity of LS T +61°303 is comparable to that
observed from PSR B1259—63 (Kaspi et al. 1995), for which
a similar mechanism has been invoked (Tavani, Arons, &
Kaspi 1994). This interpretation is supported by the lack of
observed X-ray pulsations, since the X-ray emission will be
produced well outside of the neutron star’s magnetosphere.
In this scenario, the X-ray peak should occur near
periastron and the radio outburst should be shifted by
approximately 50% in phase. This shift has been reported
by Harrison et al. (2000), suggesting this as a plausible
model.

This system is of particular interest because it is one of a
very few radio-emitting X-ray binaries (Gregory & Taylor
1978; Taylor & Gregory 1982). The interest in LS I +61°303
is also reinforced by the fact that it has been identified as a
likely counterpart to the COS B and EGRET ~-ray source
2CG 135401 (= 2EG J0241+46118; Bignami & Hermsen
1983; Kniffen et al. 1997). The ~-ray source 2CG 135401
displays slight variability (Tavani et al. 1998; McLaughlin et
al. 1996), with an integral flux of 9.2 x 107 cm~2 s~! and
spectral index of approximately 2 for energies above 100
MeV (Kniffen et al. 1997). Extrapolating the spectrum to
an energy of 500 GeV yields a flux well above our detection
sensitivity.

If 2CG 135401 is associated with the radio-loud X-ray
binary LS I +61°303, various models have been put forth to
explain the high-energy emission. One of these models uti-
lizes a shock front formed by the interaction of the relativis-
tic wind of a rapidly rotating neutron star with the gaseous
material outflowing from the massive companion. Variabil-
ity of high-energy emission is expected because of the chang-
ing hydrodynamic and radiative conditions of the pulsar, as
well as the time variability of the mass outflow from the stel-
lar companion (Tavani et al. 1998). The extent of the time
variability and spectrum depends on the details of the mod-
els; however, an increased high-energy emission is expected
at periastron, when the magnetic field at the shock is
enhanced. To date, no evidence has been found for an
enhancement of the high-energy emission at the orbital
period of LST+61°303.
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TABLE 1

RESULTS OF THE SEARCH FOR STEADY, UNPULSED, HIGH-ENERGY
EmissioN FROM LS I +61°303

Exposure  Significance  Flux Upper Limit

Data Set (minutes) (o) (x10~11ecm=2571)
1994-1996......ccoveeenne. 1397.5 1.39 <0.922
1998 oo 424.7 1.50 <1.23b
Combined data sets ... 1822.2 0.78 <0.88°

a Energy threshold of 350 GeV.
b Energy threshold of 500 GeV.

The database used in this study consists of archival obser-
vations made during the years 1994-1996, as well as obser-
vations made in 1998. A total of 25 ON/OFF pairs and 69
TRACKING runs were combined in this analysis. These
data were searched for a steady, unpulsed TeV emis-
sion using the standard analysis methods described in § 2.
Parameter cuts were applied to the archival data set (1994—
1996) yielding an energy threshold of approximately 350
GeV. Parameter cuts were independently applied to the
1998 data set. The results of these analyses are given in
Table 1. In order to maximize our time on source and to
more completely sample the orbital period, the data sets
were combined. This was accomplished by applying a set of
size-dependent cuts, Extended Supercuts (Mohanty et al.
1998; Lessard et al. 2000), to the archival data in order to
match their energy response to that of the 1998 data set. The
results of the unpulsed analysis and the derived 99.9% confi-
dence level flux upper limits are presented in Table 1. No
evidence of TeV emission was seen in the combined data set
or in the data from individual years.

There are no predictions of emission from the X-ray
binary LS T +61°303 with which to compare our derived
flux upper limits. However, our upper limit requires that
LST+61°303 convert less than 1.3 x 1032 ergs s—! into VHE
~-rays. We can make extrapolations from the flux emitted
by 2CG 135401 at EGRET energies to the TeV regime. The
flux upper limit above 500 GeV reported here requires an
exponential high-energy cutoff of less than 200 GeV. Using
the flux upper limit derived from the archival data set (350
GeV), the resulting high-energy cutoff must be less than 140
GeV (see Fig. 2).

3.2. PSR BI257+12

The millisecond pulsar PSR B1257+12 was discovered in
1990 February (Wolszczan 1990) with the 305 m Arecibo
radio telescope. With a growing time span of pulse arrival
times, it gradually became clear that the arrival times exhib-
ited an unusual variability. Other millisecond pulsars
observed with the same equipment and analyzed by the
same methods did not show such effects in their timing.
Analysis of the period variability led to the detection and
confirmation that this pulsar is the central object of the first
extrasolar planetary system to be discovered (Wolszczan &
Frail 1992).

Observations of the planetary system PSR B1257+12
were made with the EGRET detector on board the CGRO
satellite. No emission was detected in the EGRET energy
regime (30 MeV-10 GeV). Based on this nondetection, a
flux upper limit was determined to be 4.0 x 10~% cm—2 s~
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FiG. 2.—Fluxes of 2CG 135401 seen at EGRET energies (circles) and
the flux upper limits of LS T +61°303 reported here (diamonds). The solid
line represents an extrapolation of the flux from EGRET energies with a
spectral index of 2.05 (Kniffen et al. 1997). The dashed line represents a
power-law spectrum with a high-energy cutoff at 140 GeV.

above 100 MeV (Fierro et al. 1995). No pulsed flux upper
limits were reported for the EGRET observations.

Even though this pulsar is characterized as a solitary
millisecond pulsar, it is included in this study, since the pul-
sar wind can interact with the planets in the system, forming
a shock front. This shock front is predicted to produce
~y-rays with an integral flux of 5.5 x 10712 cm~2 s~ ! above 1
TeV (Harding & de Jager 1998).

The database used for the study of PSR B1257+12 con-
sists of one ON/OFF and eight TRACKING observations
obtained in 1998 and two ON/OFF and 46 TRACKING
observations collected in 1999, all using the 331 pixel cam-
era. These data were searched for unpulsed, steady emission
using the standard analysis method. No steady emission
from PSR B1257412 is evident in either the combined or
individual data sets. These results and the 99.9% confidence
level flux upper limits are presented in Table 2.

3.3. PSRBI534+12

The millisecond pulsar PSR B15344-12 was discovered in
1990 February (Wolszczan 1991) using the 305 m Arecibo
radio telescope to survey high Galactic latitudes. The nar-
row peak in the pulse profile allowed very accurate timing
measurements to be made. These timing measurements indi-
cated that PSR B1534+12 is in an eccentric, close orbit with
another compact object of roughly the same mass.

TABLE 2

RESULTS OF THE SEARCH FOR STEADY, UNPULSED EMISSION FROM
PSR B1257+12 AT ENERGIES ABOVE 500 GEV

Exposure  Significance  Flux Upper Limit

Data Set (minutes) (0) (x10~ " em—2s1)
1998 oo, 179.5 0.88 <1.65
1999 oo 967.6 0.56 <0.70
Combined data sets ... 1147.1 0.85 <0.68
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TABLE 3

RESULTS OF THE SEARCH FOR STEADY, UNPULSED EMISSION FROM
PSR B1534+12 AT ENERGIES ABOVE 500 GEV

Exposure  Significance  Flux Upper Limit

Data Set (minutes) (o) (x10~11ecm=2571)
1998 .o 274.2 1.02 <1.37
1999 i 288.0 0.11 <0.97
Combined data sets ... 562.2 0.83 <0.87

Moreover, the small spin-down rate of the pulsar implies
that it is old and has a weak magnetic field. These character-
istics are typical of pulsars spun up to millisecond periods
by the accretion of matter from their binary companions.

PSR BI1534+12 was included as part of our survey of
binary systems based on predictions made by Harding &
Gaisser (1990), which indicate that this system could emit
detectable levels of TeV v-rays. These «-rays are theorized
to be created in a shock front as the pulsar wind interacts
with the companion neutron star’s wind and magneto-
sphere. Harding & de Jager (1998) predict that such an
interaction will produce an integral flux of 1.4 x 10~!2 cm~2
s~labove 1 TeV.

The database used in this study consists of one ON/OFF
and 10 TRACKING observations obtained in 1998 and 13
TRACKING observations collected in 1999, all with the
331 pixel camera. These data were searched for unpulsed
steady emission using standard parameter cuts. No evidence
of TeV emission was detected from either the individual or
combined data sets. The results of the analysis and the
99.9% confidence level flux upper limits are presented in
Table 3.

3.4. PSR B1639+36B and M13

The detection of the pulsar PSR B1639+36B was first
reported in 1992 (Deich et al. 1992). This binary pulsar was
discovered in the globular cluster M13 as part of a search
for pulsars in globular clusters with the 305 m Arecibo radio
telescope. The parameters of this binary system were
obtained by observing Doppler-shifted pulse periods
sampled over 2 yr.

This pulsar was included in this study to test whether a
conglomeration of pulsar systems could be detected in the
cores of globular clusters (Smith 1993). Considering that
some of the more dense globular clusters may contain hun-
dreds of millisecond pulsars, it is not unreasonable to specu-
late that their net ~-ray emission may be detectable by
current atmospheric Cerenkov telescopes. Assuming that
the energy source that powers TeV emission in a millisecond
pulsar is the rotational energy loss of a spinning-down pul-
sar, it is a straightforward matter to estimate the flux from a
collection of pulsars. It has been estimated (Smith 1993) that
if there were N pulsars in a globular cluster, each with mass
M, radius R, period P, and period derivative P, then there
should be an integral flux, Fc, above E., given by

M N DR
_ 2 M 53 y
Fgc=16x10 @RP PlTeV
aN cm 2 s !, 4)

><1kpc
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TABLE 4

RESULTS OF THE SEARCH FOR STEADY, UNPULSED EMISSION FROM
PSR B1639+36B AT ENERGIES ABOVE 500 GEV

Exposure Significance Flux Upper Limit
Data Set (minutes) (o) (x10~"em=2s71)
1998......... 2449 0.51 <1.08

where d is the distance to the globular cluster and « is the
efficiency of converting rotational energy to ~y-rays.

The TeV database used in the analysis of PSR
B1639+4-36B consisted of nine TRACKING observations
obtained with the 331 pixel camera in 1998. No observations
of this source were conducted during the 1999 observing
season. The analysis of these data using standard analysis
techniques yields no evidence of steady TeV emission from
the position of PSR B1639+-36B as shown in Table 4.

3.5. 24 1704+241

Although there is no direct evidence for this system’s
being a binary, Garcia et al. (1983) speculate that since the
X-ray emission from this system is higher than that expected
from coronal emission from a solitary M giant star, the
emission must be from a compact object. Although this sys-
tem is believed to be a low-mass X-ray binary (LMXB),
uncertainty in the mass of the M giant does not allow this
classification to be certain. Optical observations preclude
the possibility that part of the optical flux of this system
comes from an accretion disk, thus implying that the X-ray
emission is due to a more windlike accretion. This emission
is reasoned to arise from a nebula which is being formed
around the M giant from the slow dense wind, typical of the
red giant phase (Gaudenzi & Polcaro 1999). This nebula
enables the neutron star to undergo low-level accretion, giv-
ing rise to the observed X-rays, and can be used to explain
the spectral peculiarities observed from the companion.

This source was included in our survey as a sample of an
LMXB. It specifically was chosen because of its proximity
and the fact that it has no evidence of large-scale accretion.
This characteristic is desired, since the most probable mod-
els of TeV v-ray production favor systems undergoing little
or no accretion.

The TeV database used in the analysis of 2A 1704+241
consisted of 14 TRACKING observations obtained in 1998
and an additional four TRACKING observations obtained
during the 1999 observing season, all made with the 331
pixel camera. No evidence of steady emission was detected
from the putative source position in either the individual or
combined data sets. These results are shown in Table 5.

TABLE 5

RESULTS OF THE SEARCH FOR STEADY, UNPULSED EMISSION FROM
2A 1704+241 AT ENERGIES ABOVE 500 GEV

Exposure  Significance  Flux Upper Limit

Data Set (minutes) (0) (x10~ " em—2s1)
1998 ..o 352.3 -0.72 <0.72
1999 i 93.2 0.54 <1.71
Combined data sets ... 445.5 —-0.42 <0.67
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3.6. PSR B1957+20

The eclipsing millisecond pulsar PSR B1957+20 was dis-
covered during a general survey for millisecond pulsars at
the 305 m Arecibo radio telescope (Fruchter, Stinebring, &
Taylor 1988). This pulsar was found to have the smallest
spin-down rate and the second smallest period of all known
pulsars. For a few minutes before and for more than 20
minutes after the eclipse, the radio pulses were delayed by
up to 400 us, presumably because of propagation through
an ionized gas surrounding the companion. It was further
speculated that this plasma may be the result of the evapora-
tion of the companion by the pulsar’s wind (Fruchter et al.
1988).

PSR B1957+420 has been the focus of high-energy (from
MeV to GeV) observations as well. The balloon-borne
MPE Compton Telescope observed the region containing
PSR B1957+20 (Brink et al. 1990), and the resulting data
were searched for «-ray emission correlated with the 9 hr
orbital period. No detection was reported in the energy
range 1-10 MeV, and an upper limit of the luminosity of less
than 1033 ergs s—! was established. The region containing
the pulsar was also searched several times by the COS B sat-
ellite (Brink et al. 1990). A histogram analysis showed no
significant effect when the arrival times were folded with the
orbital period. A bin-free cluster analysis was applied to the
data set. Two clusters of data points were observed near
the Lagrangian point L4, having a chance occurrence of
less than 1073, The corresponding flux, if the detection is
assumed real, is 4.0 x 10-% cm~2 s~!, resulting in a luminos-
ity of 5.8 x 103! ergs s~! in the energy range 50 MeV-5
GeV. The most recent high-energy observations have been
carried out by EGRET. An unpulsed analysis resulted in a
flux upper limit of 16.8 x 108 cm~2 s~! (Fierro et al. 1995)
for energies greater than 100 MeV. A search for emission
from the L4 point in the EGRET energies (50-5000 MeV)
resulted in a flux upper limit of 4.2 x 10-8 cm~2 s~! (Buc-
cheri et al. 1996), significantly lower than the result from the
COS B observations.

The pulsar PSR B19574-20 has been observed by a num-
ber of groups at energies similar to those in this study. The
Potchefstroom group (Brink et al. 1990) reported a mar-
ginal detection from the L4 point with a flux of 1.6 x 1010
cm~2 s~! above 2.7 TeV. However, a later report by the
same group failed to confirm this detection. Other groups,
including the Haleakala (Finley 1990), Pachmarhi (Acharya
et al. 1990), and Durham (Brazier et al. 1990) collabora-
tions, have all observed PSR B1957+-20, with no significant
detections of either unpulsed emission or emission corre-
lated to the spin or orbital phases.

According to the model of Harding & Gaisser (1990),
PSR B1957420 should have the highest flux of TeV ~-rays
from any millisecond pulsar in a binary system observable
with our instrument. Although PSR B1957+20 has been
observed by many groups, the published flux levels cannot
interestingly constrain the predictions of the shock model.

TABLE 6
RESULTS OF THE SEARCH FOR STEADY, UNPULSED TEV EMISSION
FROM PSR B1957+20
Exposure Significance Flux Upper Limit
Data Set (minutes) (o) (x10~"em2s71)
1998......... 149.1 0.89 <1.13
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The pulsar PSR B19574-20 was only observed during the
1998 observing season. Only six TRACKING runs were
obtained during this time. The standard analysis was
applied to these data and yielded no evidence of steady TeV
emission from the position of PSR B1957+20. The results
of this analysis, along with the 99.9% confidence level flux
upper limit, are given in Table 6.

4. SUMMARY AND CONCLUSIONS

This study was conducted to determine if pulsars in
binary systems produce detectable levels of VHE photons,
as has been reported in the past. A subset of binary systems
containing pulsars was studied as part of an ongoing pro-
gram to detect sources of Galactic TeV emission. These sys-
tems included two X-ray binaries and four millisecond
radio pulsars. The radio pulsar PSR B1257+12 is a plane-
tary system. The data used in this study were collected with
the 331 pixel camera during the 1997/1998 and 1998/1999
observing seasons. Table 7 summarizes the results of the
search for steady, unpulsed emission from the sources
included in this study. No steady emission was detected at a
significant level from any system within the sensitivity of the
Whipple 10 m imaging atmospheric Cerenkov telescope.

LS T +61°303 is a peculiar, high-mass X-ray source,
exhibiting emission from radio to X-ray energies. This
object is also positionally coincident with the high-energy ~-
ray source 2CG 135401 (Thompson et al. 1995; Lamb &
Macomb 1997; Hartman et al. 1999). The low flux and the
lack of pulsations at X-ray energies are consistent with emis-
sion from a shock front formed by the interaction of a
pulsar’s wind with the companion’s stellar wind and
magnetosphere. Assuming that LS I +61°303 is the high-
energy source 2CG 135401, this shock is thought to be
responsible for powering the high-energy emission position-
ally coincident with this binary system. This shock may also
produce emission at TeV energies; however, no evidence of
emission was detected from the position of LS I +61°303 at
flux levels within the sensitivity of our instrument. The flux
upper limit reported here requires a high-energy cutoff in
the EGRET spectrum to be less than 140 GeV.

Three of the systems in this study (PSR B1257+12, PSR
B1534+12, and PSR B1957+20) were predicted to be sour-
ces of TeV ~-rays powered at shock fronts in the pulsar sys-
tem. These shocks are suspected to accelerate protons to
very high energies, at which point they interact with mate-
rial in the system to produce ¥ particles that decay into

TABLE 7

SUMMARY OF THE RESULTS OF THE SEARCH FOR STEADY, UNPULSED TEV
EMIss1oN FROM BINARY SYSTEMS CONTAINING PULSARS

Exposure Significance Flux Upper Limit

Source (minutes) (0) (x1071Tem=2571)
LST+61°303 ........ 1822.2 0.78 <0.88
LST+61°303%....... 1397.5 1.39 <0.92
PSR B1257+12..... 1147.1 0.85 <0.68
PSR B1534+12...... 562.2 0.83 <0.87
PSR B1639+36B... 2449 0.51 <1.08
2A 17044241 ........ 4455 -0.42 <0.67
PSR B1957+20..... 149.1 0.89 <1.13

Note.—Energy threshold over 500 GeV, except where noted.
2 Energy threshold of 350 GeV.
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TABLE 8
SUMMARY OF THE RESULTS OF THE SEARCH FOR PULSED EMISSION ABOVE 500 GEV

Exposure Flux Upper Limit

Source (minutes)  x2/dof z; z (x10 " em2s71)
PSR B1534+12..... 562.2 5.80 19.4 <1.02
PSR B1639+36B... 244.9 2.83 232 <1.36
PSR B1957+20..... 149.1 1.77 222 <1.36

VHE ~-rays. No evidence of emission was detected from
these three objects, and the flux upper limits derived for
PSR BI12574+12 and PSR B1957+20 are both approxi-
mately half the predicted fluxes, requiring the combined effi-
ciency of proton acceleration and «-ray production to be at
least a factor of 2 smaller than the modeled values. The flux
upper limits for the source PSR B1534+12 were larger than
the predicted flux, preventing us from constraining the
model.

The pulsar PSR B1639+36B has shown no evidence of
emission above 500 GeV. Although there are no predictions
for emission from this pulsar, it can be used to place an
upper limit of 2 on the value of a/N (efficiency of converting
spin-down energy to y-rays times the number of pulsars in
the globular cluster) for the globular cluster M 13.

Periodic analyses were also conducted on the data, where
appropriate. Those analyses included searches for emission
modulated at the spin period of the pulsar and the orbital
period of the binary system. PSR BI1534+12, PSR
B1639+36B, and PSR B1957+20 were the only sources
searched for spin-modulated emission, owing to the pres-
ence of a known pulsar and the availability of accurate orbi-
tal parameters. No evidence of emission correlated to spin
periods was detected from the timing analysis carried out on
the subgroup of pulsars in this study. Pulsed flux upper lim-
its were determined to a confidence level of 99.9%. The
results of these analyses are provided in Table 8.

LS I +61°303, PSR B1534+12, PSR B1639+36B, and
PSR B1957+4-20 were searched for emission modulated at
the orbital periods in those systems. No evidence of orbi-
tally modulated emission was detected within the sensitivity
of our instrument. Flux upper limits were determined to a
confidence level of 99.9% for each of the phase groups
studied. The results of the search for signals modulated at
the orbital period are summarized in Table 9.

We conclude that the binary systems in this study do not
emit TeV v-rays within the sensitivity of the Whipple 10 m
imaging atmospheric Cerenkov telescope. We were unable
to place strict constraints on the emission models of TeV
photons from millisecond pulsars in binaries or globular
clusters. In order to place more restrictive constraints on
these models, instruments such as VERITAS (Weekes et al.
1997), HESS (Hermann 1997), MAGIC (Bradbury et al.
1995), STACEE (Chantell et al. 1997), and CELESTE (Gie-
bels 1997), with greater sensitivity and the ability to operate
at lower energy thresholds, are required.

The authors would also like to thank Z. Arzoumanian, A.
Lyne, and D. Nice for providing radio ephemerides for the
pulsars presented in this report. We would also like to
acknowledge Kevin Harris and Emmet Roach for their
technical assistance. This research was supported by the
US Department of Energy, PPARC (UK), and Enterprise
Ireland.

TABLE 9

SUMMARY OF THE RESULTS OF THE SEARCH FOR TEV EMISSION
MODULATED AT THE ORBITAL PERIODS

Phase Range Exposure Significance Flux Upper Limit
Source (¢) (minutes) (o) (x10~"em—2s71)
LST+61°303 ........ 0.90-0.10 460.5 1.32 <1.37
0.15-0.35 3274 —0.18 <1.70
0.40-0.60 511.8 1.26 <1.79
0.65-0.85 138.7 1.00 <2.31
PSR B1534+12...... 0.90-0.10 82.8 1.74 <2.66
0.15-0.35 158.5 —0.02 <1.22
0.40-0.60 449 0.39 <2.87
0.65-0.85 190.8 -0.27 <I1.11
PSR B1639+36B... 0.90-0.10 80.2 1.27 <2.59
0.15-0.35 27.6 —0.72 <1.97
0.40-0.60 81.9 0.74 <1.81
0.65-0.85 55.2 —1.53 <1.13
PSR B1957+20..... 0.90-0.10 27.7 0.56 <3.44
0.15-0.35 0.0
0.40-0.60 0.0 . o
0.65-0.85 93.7 0.24 <0.66
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