PHYSICS 306

HOMEWORK #1

ALL PROBLEMS ARE WORTH 10 POINTS

- 1. Starting from first principles derive the rule for the derivative of the quotient of two functions f(x) and g(x): $D[f/g] = (gDf fDg)/g^2$.
- 2. Following the discussion in class derive the "Rule of 72" from first principles: The number of years n required to double an initial principal at an interest rate r is $n \cong 72/R$, where R = 100r. Use this rule to estimate n for r = 5, 7, and compare to the exact result.
- 3. Shankar, problem 1.4.1
- 4. Shankar, problem 1.5.1
- 5. Shankar, problem 1.6.1
- 6. Shankar, problem 1.6.2

PHYSICS 306

HOMEWORK #2

- 1. Text problem 1.6.2.
- 2. Text problem 1.6.3:
 - a) Use the "Rule of 72"
 - b) Follow the solution suggested by the text.
- 3. Text problem 1.6.7
- 4. Text problem 1.6.8
- 5. Text problem 1.6.9
- 6. The volume of a 3-dimensional sphere of radius R is $V(R) = (4/3)\pi R^3$. Suppose that R is increased by ΔR . Calculate the resulting change in the volume.

PHYSICS 306

HOMEWORK #3

ALL PROBLEMS ARE WORTH 10 POINTS

1. Using Tables, guesses, or whatever other means you choose find the anti-derivatives F(x) corresponding to the following functions f(x). Show by explicit differentiation that you have found the correct expression for F(x).

f) tanh x

g) $\frac{1}{\sqrt{x^2 \pm a^2}}$

h) b^{ax} ; b, a are constants i) $\frac{x}{\sqrt{x^2 \pm a^2}}$

- a) lnx
- b) $\frac{1}{x^2 + a^2}$
- c) $\tan x$
- d) $\sin^2 x$
- e) $\cos^2 x$
- 2. Text problem 2.1.3
- 3. Text problem 2.1.4
- 4. Text problem 2.2.1
- 5. Text problem 2.2.2
- 6. Text problem 2.2.6

${\bf PHYSICS~306}$

HOMEWORK #4

ALL PROBLEMS ARE WORTH 10 POINTS

- 1. Text problem 2.2.3
- $2. \ \, {\rm Text \ problem} \,\, 2.2.4$
- 3. Text problem 2.2.8
- 4. Text problem 2.2.9
- 5. Text problem 2.2.10
- 6. Text problem 2.2.11

PHYSICS 306 HOMEWORK #5

ALL PROBLEMS ARE WORTH 10 POINTS

1. (a) Verify the following integral

$$f(x,a) \equiv \frac{1}{a\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2/a^2} dx = 1$$

(b) Show that the function $\delta(x)$ defined by

$$\delta(x) = \lim_{a \to o} f(x, a)$$

has the property that $\delta(x) = o$ when $x \neq o$. $\delta(x)$ is called the Dirac delta function.

- 2. Evaluate $I = \int_{-\infty}^{\infty} e^{-by^2} y^4 dy$
- 3. Consider the function $f(x,y) = \sqrt{R^2 x^2 y^2}$, with $x^2 + y^2 \le R^2$
 - (a) Find the derivatives $f_x, f_y, f_{xx}, f_{yy}, f_{xy}$ and f_{yx} .
 - (b) Show that f(x, y) has a maximum at the origin.
- 4. Fill in the steps leading to Eq.(3.1.25) of the text.

PHYSICS 306 HOMEWORK #6

- 1. Shankar problem P 3.1.4
- 2. Shankar problem P 3.1.6
- 3. Shankar problem P 3.1.7
- 4. Shankar problem P 3.2.1 provide an explanation for every step.
- 5. Shankar problem P 3.2.5
- 6. Shankar problem P 3.2.6

PHYSICS 306 HOMEWORK #7

- 1. Problem 4.2.5.
- 2. Problem 4.2.6
- 3. Equation 4.3.12 fill in all details.
- 4. Problem 4.3.3
- 5. Problem 4.3.4
- 6. Problem 4.3.7

PHYSICS 306 HOMEWORK #8

- 1. Shankar Problem P 6.1.5 show that f(x,y) satisfies the Cauchy-Riemann Conditions
- 2. Consider the function $f(x,y) = x^2 + y^2$:
 - a. Is f(x, y) analytic?
 - b. Perform a change of variables and convert $f(x,y) \longrightarrow f(z,\bar{z})$. Does this function depend on \bar{z} ?
- 3. Shankar Problem 6.4.1
- 4. Shankar Problem 6.4.8