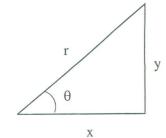
Physics 241 – Exam #1

February 24


2005

This exam consists of 13 problems on 9 pages. Please check that you have them all. Each problem is worth 8 points unless otherwise noted.

All of the formulas that you will need are given below. You may also use a calculator.

$$\sin \theta = y/r$$

 $\sin \theta = y/r$ $\cos \theta = x/r$ $\tan \theta = y/x$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$k = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$$

$$e = 1.6 \times 10^{-19} \text{ C}$$
 $k = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$ $\epsilon_0 = 8.9 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$

$$F = \frac{kq_1q_2}{r^2} = \frac{q_1q_2}{4\pi\epsilon_0 r^2} \qquad E = \frac{kq}{r^2} \qquad \Phi = \int \vec{E} \cdot \vec{dA} = \frac{q}{\epsilon_0} \qquad \text{charged plane} : E = \frac{\sigma}{2\epsilon_0}$$

$$E = \frac{kq}{r^2}$$

$$\Phi = \int \vec{E} \cdot \vec{dA} = \frac{q}{\epsilon_0}$$

$$\Delta V = \frac{\Delta U_E}{q} = -\int \vec{E} \cdot \vec{dl} \qquad dV = -\vec{E} \cdot \vec{dl} \qquad \text{point charge} : V = \frac{kq}{r} \qquad U_E = q_0 V = \frac{kqq_0}{r}$$

$$dV = -\vec{E} \cdot \vec{dl}$$

point charge :
$$V = \frac{\kappa q}{r}$$

$$U_E = q_0 V = \frac{kqq_0}{r}$$

$$E_x = -\frac{\partial V}{\partial x}$$

$$1 \text{ Volt} = 1 \text{ J} / C$$

$$E_x = -\frac{\partial V}{\partial x}$$
 1 Volt = 1 J / C 1 Volt/m = 1 N / C $U_E = \frac{1}{2}qV$ $C = \frac{q}{V}$

$$U_E = \frac{1}{2}qV$$

$$C = \frac{q}{V}$$

Surface area(sphere) =
$$4\pi R^2$$
 capacitor : $U_E = \frac{1}{2} \frac{q^2}{C} = \frac{1}{2} qV = \frac{1}{2} CV^2$ $u_E = \frac{1}{2} \epsilon_0 E^2$

$$u_E = \frac{1}{2}\epsilon_0 E^2$$

parallel plate capacitor : $C = \frac{\epsilon_0 A}{d}$ isolated spherical capacitor : $C = 4\pi\epsilon_0 R$

capacitors in parallel : $C = C_1 + C_2 + C_3...$ capacitors in series : $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2}...$

$$C = \kappa C_0$$
 $I = \frac{\Delta q}{\Delta t}$ $R = \frac{V}{I}$ $R = \rho \frac{L}{A}$ $V = IR$

$$P = IV = I^2R = \frac{V^2}{R}$$
 $P = \mathcal{E}I$ resistors in series : $R = R_1 + R_2 + R_3...$

resistors in parallel :
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots \qquad q(t) = q_0 e^{-t/(RC)} = q_0 e^{-t/\tau}$$

$$I(t) = \frac{V}{R}e^{-t/(RC)} = I_0e^{-t/\tau} \qquad \tau = RC$$

$$q(t) = C\mathcal{E}(1 - e^{-t/(RC)}) = q_0(1 - e^{-t/\tau})$$
 $I(t) = \frac{\mathcal{E}}{R}e^{-t/(RC)} = I_0e^{-t/\tau}$

1. A point charge $q_1 = -1.5$ C is at the origin, and a second point charge $q_2 = +5.0$ C is at the point x = 1.2 m, y = 2.5 m. Find the x and y coordinates of the position at which an electron would be in equilibrium.

(a)
$$x = -3.3 \text{ m}, y = -2.7 \text{ m}$$

(b)
$$x = -1.4 \text{ m}, y = -3.0 \text{ m}$$

(c)
$$x = -3.3 \text{ m}, y = 0.0 \text{ m}$$

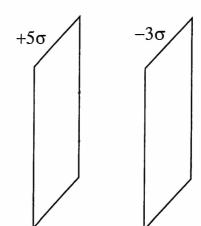
(d)
$$x = +1.4 \text{ m}, y = +3.0 \text{ m}$$

(e)
$$x = -0.62$$
 m, $y = -1.3$ m

2. A metal sphere of radius r is placed at the center of a cubical box with a side length of L (and with $L \gg r$). If 10 excess electrons are placed on the sphere, what is the magnitude of the electric flux through one face of the box?

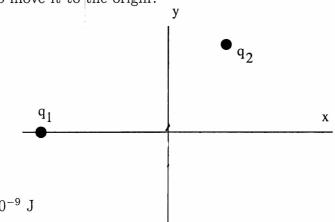
(a)
$$3.0 \times 10^{-8} \text{ N} \cdot \text{m}^2/\text{C}$$

(b)
$$5.9 \times 10^{-8} \text{ N} \cdot \text{m}^2/\text{C}$$


(c)
$$1.8 \times 10^{-7} \text{ N} \cdot \text{m}^2/\text{C}$$

(d)
$$1.8 \times 10^{-8} \text{ N} \cdot \text{m}^2/\text{C}$$

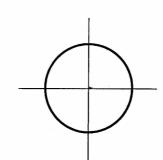
(e) zero


- 3. A parallel plate capacitor is connected to a battery of unknown voltage for a very long time. The capacitor is then disconnected and the separation between its plates is increased by a factor of 3. It is then found that the charge on the plates is $\pm 35~\mu\text{C}$, while the final capacitance is $2000 \times 10^{-12}~\text{F}$. What was the battery voltage?
 - (a) 110 V
 - (b) 70 V
 - (c) 58 V
 - (d) 5800 V
 - (e) 1700 V

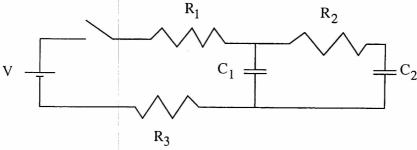
4. Two infinite charged planes have charge densities $+5\sigma$ and -3σ . If $\sigma > 0$, what is the electric field between the planes?

- (a) $4\sigma/\epsilon_0$ directed to the left
- (b) $\sigma/2\epsilon_0$ directed to the right
- (c) $4\sigma/\epsilon_0$ directed to the right
- (d) $2\sigma/\epsilon_0$ directed to the right
- (e) σ/ϵ_0 directed to the right

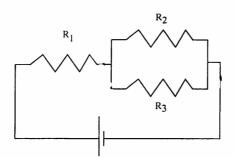
5. Two point charges are located as shown below. $q_1 = +2.5$ C and is at x = -3.0 m, y = 0, while $q_2 = +4.0$ C and is at x = +1.0 m, y = +2.0 m. An electron is now taken from a point very far away and placed at the origin. How much work must be done on the electron to move it to the origin?


- (a) $-6.6 \times 10^{-9} \text{ J}$
- (b) $6.6 \times 10^{-9} \text{ J}$
- (c) $-5.5 \times 10^{-9} \text{ J}$
- (d) $-3.8 \times 10^{-9} \text{ J}$
- (e) $-1.6 \times 10^{-9} \text{ J}$
- 6. Consider again the two point charges in Problem 5. What are the components the electric field at x = +1.0 m, y = 0?
 - (a) $E_x = 5.6 \times 10^9 \text{ V/m}, E_y = -4.5 \times 10^9 \text{ V/m}$
 - (b) $E_x = 5.6 \times 10^9 \text{ V/m}, E_y = 1.4 \times 10^9 \text{ V/m}$
 - (c) $E_x = 1.4 \times 10^9 \text{ V/m } E_y = -9.0 \times 10^9 \text{ V/m}$
 - (d) $E_x = -3.9 \times 10^9 \text{ V/m}, E_y = -7.2 \times 10^9 \text{ V/m}$
 - (e) $E_x = 5.6 \times 10^9 \text{ V/m}, E_y = -1.8 \times 10^{10} \text{ V/m}$

7. A circular ring of charge has a radius R and a charge per unit length λ . What is the electric potential at the center of the ring? Take V=0 at infinity.

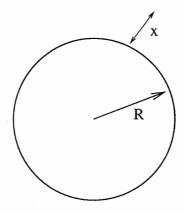


- (c) $2\pi\lambda/R$
- (d) zero
- (e) $2\pi\lambda k$



8. The switch in this R-C circuit is initially open and the capacitors are uncharged. What is the current through R_1 immediately after the switch is closed? Assume that $R_1 = 1500 \ \Omega$, $R_2 = 2500 \ \Omega$, $R_3 = 4500 \ \Omega$, $C_1 = 2.5 \ F$, and $C_2 = 1.5 \ F$, and that the battery has an emf $V = 3.0 \ V$.

- (a) $3.5 \times 10^{-4} \text{ A}$
- (b) $2.0 \times 10^{-3} \text{ A}$
- (c) $5.0 \times 10^{-4} \text{ A}$
- (d) zero
- (e) $7.5 \times 10^{-4} \text{ A}$


9. Consider the circuit shown below. The resistors are identical with $R_1=R_2=R_3=2.0~\mathrm{k}\Omega,$ and the battery voltage is $V=9.0~\mathrm{V}.$ What is the current through resistor R_1 ?

- (a) 3.0×10^{-3} A
- (b) $2.3 \times 10^{-3} \text{ A}$
- (c) 9.0×10^{-3} A
- (d) $6.0 \times 10^{-3} \text{ A}$
- (e) $4.5 \times 10^{-3} \text{ A}$

- 10. Suppose that three capacitors with $C_1 = 1.5 \ \mu\text{F}$, $C_2 = 1.5 \ \mu\text{F}$, and $C_3 = 3.0 \ \mu\text{F}$ are connected in parallel. If the total charge on all three capacitors is 25 μ C, what is the voltage across the capacitors?
 - (a) 8.3 V
 - (b) 42 V
 - (c) 25 V
 - (d) 1.2 V
 - (e) 4.2 V

11. A spherical metal shell has a charge per unit area σ and a radius R. What it the magnitude of the electric field at a distance x from the surface of the sphere?

- (a) $k\sigma R$
- (b) $k\sigma R^3/[R+x]$
- (c) $4\pi k\sigma/[3(R+x)^2]$
- (d) $k\sigma R^3/[(R+x)^2]$
- (e) $4\pi k\sigma R^2/[(R+x)^2]$

Note: Problems 12 and 13 are both worth 6 points.

- 12. A 5.5 μ F capacitor is connected in series with a switch, a 25 k Ω resistor and a 9 V battery. The capacitor is initially uncharged and the switch is open. The switch is then closed at t=0. What is the charge on the capacitor after a very long time?
 - (a) $5.5 \times 10^{-6} \text{ C}$
 - (b) 5.0×10^{-5} C
 - (c) 9.0×10^{-5} C
 - (d) zero
 - (e) 2.5×10^{-5} C

- 13. For the R-C circuit in problem 12, how long does it take after the switch is thrown until the capacitor is charged to 50% of its final value?
 - (a) 0.050 s
 - (b) 0.28 s
 - (c) 0.069 s
 - (d) 0.095 s
 - (e) 0.14 s

Physics 241 Exam 1 1. B 2. A 3. D 4. C 5. D 6. C 7. E 8. C 9. A 10. E

- 10. E
- 11. E 12. B 13. D