- 1. (10 points) Identical point charges are located at two vertices of an equilateral triangle.

 A third charge is placed so the electric field at the third vertex is zero. The third charge must:
 - (A)() be on the perpendicular bisector of the line joining the first two charges
 (B)() be on the line joining the first two charges
 (C)() be identical to the first two charges
 - (D)() have the same magnitude as the first two charges but may have a different sign (E)() be at the center of the triangle
 - (10 points) A spherical shell has an inner radius of 3.7 cm and an outer radius of 4.5 cm. If charge is distributed uniformly throughout the shell with a volume density of 6.1 × 10⁻⁴ C/m³ the total charge is:

1 × 10 · C/m · the total charge	s 18:	$Q = \rho \left(\frac{4}{3} \pi r_2^2 - \frac{4}{3} \pi r_1^3 \right)$
$(A)()$ 1.0×10^{-7} C	((() () () () () () () () ()	$=\frac{4\pi\rho}{3}(c^3-c^3)$
(B)() 1.3×10^{-7} C (C)() 2.0×10^{-7} C	(\cup)	= 等(6.1×10+ 条)(.04530373)
(D)() 2.3×10^{-7} C (E)() 4.0×10^{-7} C		= 1.03 × 10-7 C

3. (10 points) Two identical charges q are placed on the x axis, one at the origin and the other at x = 5 cm. A third charge -q is placed on the x axis so the potential energy of the three charge system is the same as the potential energy at infinite separation. Its x coordinate is:

4. (10 points) The two capacitors shown each have a capacitance of 1μ F. Their total stored energy is: $U = \frac{1}{2}CV^2 + \frac{1}{2}CV^2 = CV^2 + (\frac{1}{2}(10^{-6})^2)(100)^2 = .04$ J

(A)(-)	0.01 J	20	0 v =		
(B)(ϟ	0.02 J		Ť	T	T
(D)(′	0.06 J		<u> </u>	<u> </u>	
$(\mathbf{E})($	}	none of these				

5. (10 points) Two identical batteries, each with an emf of 18 V and an internal resistance of 1 Ω , are wired in parallel by connecting their positive terminals together and connecting their negative terminals together. The combination is then wired across a

6. (10 points) A certain capacitor, in series with a 720 Ω resistor, is being charged. At the end of 10 ms its charge is half the final value. The capacitance is about:

 (10 points) A proton (charge ε), traveling perpendicular to a magnetic field, experiences the same force as an α particle (charge 2e) which is also traveling perpendicular to the same field. The ratio of their speeds, $v_{\text{proton}}/v_{\alpha}$, is:

$$|\overrightarrow{F}_{proton}| = e |\overrightarrow{V}_{proton} \times \overrightarrow{B}| = e \, v_{proton} \, B$$

$$\Rightarrow e \, v_{proton} = 2e \, v_{old} \times \overrightarrow{B}| = 2e \, v_{old} \, B$$

$$|\overrightarrow{C}| = |\overrightarrow{C}| = |\overrightarrow{V}_{old} \times \overrightarrow{B}| = 2e \, v_{old} \, B$$

$$\Rightarrow \frac{v_{proton}}{v_{old}} = 2e \, v_{old} \, B$$

$$|\overrightarrow{F}_{old}| = |\overrightarrow{V}_{old} \times \overrightarrow{B}| = 2e \, v_{old} \, B$$

8. (10 points) The figure shows a uniform magnetic field \vec{B} directed to the left and a wire carrying a current into the page. The magnetic force acting on the wire is:

		<u></u>		
(A)(1	toward the top of the page	-	₽₽₹₹₽₽
(B)(}	toward the bottom of the page		
(C)()	toward the left	⊋	À :
(D)(Ś	toward the right	В	· · · · · · · · · · · · · · · · · · ·
(E)(í	zero	-	
. , ,	•		_	
			-	

(10 points) Two long parallel straight wires carry equal currents in opposite directions. At a point midway between the wires, the magnetic field they produce is:

mire
$$0 - - 1 - - 3$$

- (A)(zero non-zero and along a line connecting the wires (B)(non-zero and parallel to the wires
- non-zero and perpendicular to the plane of the two wires in which the two wires benone of the above
- 10. (10 points) A solenoid is 3.0 cm long and has a radius of 0.50 cm. It is wrapped with 500 turns of wire carryying a current of 2.0 A. The magnetic field in tesla at the center of the solenoid is:

$$B_{\text{inside}} = \mu_0 i_n = \mu_0 i_{\frac{N}{4}} = (4\pi \times 10^{-7} \frac{T \cdot m}{A})(2 A) \frac{(500 \text{ turns})}{3 \times 10^{-2} \text{ m}} = 4.14 \times 10^{-3} T$$
(A)() 9.9×10^{-8}

- 1.3×10^{-3} (B)(4.2×10^{-2}
- (E)() none of these
- 11. (10 points) An 8.0 mH inductor and a 2.0 Ω resistor are wired in series to a 20 V ideal battery. A switch in the circuit is closed at time 0. After a long time the potential difference across the resistor and the emf of the inductor are:

12. (10 points) A capacitor in an LC oscillator has a maximum potential difference of 15 V and a maximum energy of 360 μ J. At a certain instant the energy in the capacitor is 40 μJ. At that instant what is the emf induced in the inductor?

13. (10 points) An ac generator producing 10 V (rms) at 200 rad/s is connected in series with a 50 Ω resistor, a 400 mH inductor, and a 200 μF capacitor. The rms voltage (in volts) across the capacitor is: \(\frac{1}{2} \in \mathbb{Q} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \).

14. (10 points) In a stack of three polarizing sheets the first and third are crossed while the middle one has its axis at 45° to the axis of the other two. The fraction of the intensity of an incident unpolarized beam of light that is transmitted by the stack is:

15. (10 points) The critical angle for total internal reflection at a diamond air interface is 25° . Suppose light is incident at an angle of θ with the normal. Total internal reflection will occur if the incident medium is:

(E)() no answer: the farther away she stands the smaller the required mirror length

17. (10 points) A concave spherical mirror has a focal length of 12 cm. If an object is placed 18 cm in front of it the image position is:

			tels cu balle cu
			+++=+ →+=+-+
(A)()	1.2 cm bemind the million	•
(B)()	7.2 cm in front of the mirror	サント 十十 - 1 - 1 = 36 cm
(C)(j	00 0000	T P TT TB
(D)()	36 cm in front of the mirror	i > 0 => image is real (accors in front of mirror)
(E)()	at infinity	• • • • • • • • • • • • • • • • • • • •

18. (10 points) In a Young's double-slit experiment the center of a bright fringe occurs wherever waves from the slits differ in the distance they travel by a multiple of:

(A)()	a fourth of a wavelength
(B)(a half a wavelength
(C)(a wavelength
(D)(7	three-fourths of a wavelength
(E)()	none of the above

19. (10 points) A glass (n = 1.6) lens is coated with a thin film (n = 1.3) to reduce reflection of certain incident light. If λ is the wavelength of the light in the film, the least film thickness is:

20. (10 points) Monochromatic light is normally incident on a grating that is 1 cm wide and has 10,000 slits. The first order line is deviated at a 30° angle. What is the wavelength, in nm, of the incident light?