PHYSICS 241

EXAM II

April 03, 1997

Name:	_ID#:	

USEFUL CONSTANTS:

- 1. $\epsilon_o = 8.854 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$
- 2. $\kappa = 8.9875 \times 10^9 \text{ N} \cdot \text{m}^3/\text{C}^3$
- 3. $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$
- 4. Magnitude of charge on an electron $q_s = 1.602 \times 10^{-19}$ C
- . 5. Magnitude of charge on a proton $q_p = 1.602 \times 10^{-19}$ C
 - 6. Mass of an electron $m_e = 9.11 \times 10^{-31}$ kg
 - 7. Mass of a proton $m_a = 1.67 \times 10^{-27} \text{ kg}$

14. (6 points) A circular loop of wire of radius R is placed in a uniform magnetic field B and is then spun at a constant angular velocity ω about an axis through its diameter. If the axis of rotation is perpendicular to B, the magnetic flux through the loop varies with time given by the relation:

$$(A)() \pi R^2 B \cos(\omega t)$$

$$(B)() \pi R^2 B^2 \cos(\omega t)$$

$$(C)() \pi R^2 B \cos(\omega t/2)$$

$$(D)() \pi R^2 B^2 \cos(\omega t/2)$$

$$(E)() 0$$

$$= 8 \pi R^2 \cos(\omega t)$$

÷,

2. (6 points) Two parallel conductors, separated by a distance a = 30 cm, carry currents in the same directions. If $I_1 = 2.0$ A and $I_2 = 7.5$ A. The force per unit length exerted on each conductor by the other is:

(A)()
$$4.4 \times 10^{-4}$$
 N/m attractive
(B)() 4.4×10^{-4} N/m repulsive
(C)() 1.0×10^{-5} N/m attractive
(D)() 1.0×10^{-5} N/m repulsive
(E)() 7.2×10^{-6} N/m repulsive
(E)() 7.2×10^{-6} N/m repulsive

$$F = \frac{M_0 L_1}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q} = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

$$|F| = |L_2 L R_1 = \frac{M_0 L_1 L_2}{2\pi Q}$$

3. (6 points) A small airplane with a wing span of 15 m is flying due north at a speed of 100 m/s over a region where the vertical component of the Earth's magnetic field is 1.2 μT. The potential difference developed between the wing tips is:

8 is:

$$\vec{F} = (\vec{E} + \vec{V} \times \vec{B}) = \vec{O} \cdot \vec{T} - \vec{E} = \vec{V} \times \vec{B}$$
(A)() 1.44 mV
(B)() 1.80 mV

$$\vec{V} = - \vec{E} \cdot \vec{D} = \vec{I} - \vec{I} -$$

4. (6 points) The segment of wire in the figure below carries a current of I = 20.0 Ain the direction shown by the arrow. The radius of the arc is R = 5.0 cm. The magnetic field at point A is:

5. (8 points) A circular loop of wire, of radius R = 50 cm, with two turns lies in a plane perpendicular to a uniform magnetic field of magnitude $B=0.40~\mathrm{T}$. If in 0.10 s the wire is reshaped into a square with four turns, but remains in the

(A)()
$$2\pi[1-\pi/16]$$

(B)() $2\pi[1-\pi/4]$
(C)() $2\pi[1-\pi/8]$
(D)() $4\pi[1-\pi/4]$
(E)() $4\pi[1-\pi/8]$

same plane, what is the magnitude of the average induced emf (in Volts) in the wire during this time?

$$(A)() 2\pi[1-\pi/16] \qquad \text{area of circle} = A_1 = \pi R^2 \\ \text{Lempt of wire} = (2 \text{ torses})(2\pi R) - 4\pi R \qquad N_1 = 2 \text{ torses}$$

$$(A)() 2\pi[1-\pi/16] \qquad \text{Side of square} = 0 = \frac{l_{ength}}{(4 \text{ torses})} \frac{d^2 \pi R^2}{l_0^2} = \frac{4\pi R}{l_0^2} = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 2\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \pi^2 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

$$(B)() 4\pi[1-\pi/8] \qquad \text{area of square} = A_1 = \frac{\pi^2 R^2}{l_0^2}$$

> Problem: No musing.

(<u>A</u>)()	$-\pi R^2 n N \omega I_o \cos(\omega t)$	$\beta = \mu_0 n T = \mu_0 n T_0 yn(\omega^4)$
→(B) (7	- #r'n Nwl, cos (wt)	I = BA = Non I sin (wt) Fr2
(0)(Ţ	$\pi r^2 n^2 \omega I_o \cos(\omega t)$	5= Nd\$ N 4 - 7 N 4 - 7
(D)()	$\pi R^2 n^2 \omega I_o \cos(\omega t)$	E= - N d = - N A n] o w ws (wt) # r2
(E)()	$\pi r^2 n N \omega I_{\bullet} \sin{(\omega t)}$	

(6 points) A 6-V battery is used to charge a 50-μF capacitor. The capacitor is then discharged through a 0.34-mH inductor. The maximum current in the circuit is:

(A)() 2.3 A (B)() 2.8 A (C)() 4.2 A	Up= 2 than	,
(D)() 5.1 A (E)() 7.5 A	$u_g = u_{rs} \Rightarrow \frac{1}{2} \frac{2nu_L}{c} = \frac{1}{1} \frac{1}{1}$	2.30 A

8. (8 points) At t = 0, a source of emf with 500 V, is applied to a coil that has an inductance of 0.80 H and a resistance of 30 Ω . The energy stored in the magnetic field when the current reaches half its maximum value is:

(A)() 14.7 J (B)() 27.8 J (C)() 38.2 J (D)() 45.1 J (E)() 64.8 J	R R R R R R R R R R R R R R R R R R R	
	UB====================================	27.77 J

10. (6 points) An RLC circuit is used in a radio to tune into an FM station broadcasting at 99.7 MHz. The resistance in the circuit is 12
$$\Omega$$
 and the inductance is 1.40 μ H. What value of capacitance should be used?

(A)() 1.15 pF
(B)() 1.82 pF
(C)() 1.26
$$\mu$$
F
(D)() 2.29 μ F
(E)() 5.32 μ F
$$= \frac{1}{L(\omega^{2} + (\frac{R}{2}L)^{2})} = \frac{1}{L((2\pi t)^{2} + (\frac{R}{2}L)^{2})}$$

$$= \frac{1}{(1.60\pi 10^{-6} H)(2\pi + 94.7\pi 10^{6} H4)^{2} + \frac{(\ln 52)^{2}}{2(1.40\pi 10^{-6} H)}}$$

$$= \frac{1}{(1.62 \times 10^{-12} F)}$$

11. (8 points) A long straight conducting wire of diameter 4.0 mm carries a current of 20 A. Considering that the current is uniformly distributed over the cylindrical cross-section of the wire, calculate the magnetic field at a point 1.0 mm from the axis of the wire.

(A)() 0.40 mT
(B)() 1.0 mT
(C)() 0.50 T
(D)() 2.00 T
(E)() None of the above
$$i_{e_{ac}} = 1 \cdot \text{gr}^{2} \times i \cdot \frac{c^{2}}{R^{2}}$$

B.
$$2\pi r = \sqrt{15} \cdot d5 = M_0 c_{exc} = 4i \frac{r^2}{R^2}$$

B. $a \left(\frac{M_0 c}{2\pi R^2} \right) r = \frac{(47 \cdot 10^{-7})(30) \left(1.0 \times 10^{-3} \right)}{2\pi \left(20 \cdot 10^{-3} \text{ m} \right)^2} = 10 \cdot 10^{-3} \text{ T}$

12. (8 points) Two straight, very long, parallel conductors carry currents I_1 and I_2 in the directions as shown in the figure below. If the magnetic field at point C is to be zero, the ratio of the currents I_1/I_2 must be:

(A)(<u> </u>	1.5) B(c)= 4	(1 (Gd) - 27 (Gd) = 0
(B)(7	2.0	7. /T L) . ()
(C)()	2.5	(두 - †)・0
(D)()	.3.0	*0
(E)()	At C magnetic field can not be zero.	-> <u>I</u> = & = 1.5

13. (8 points) An 800-eV electron traveling along the +x axis enters a region of uniform magnetic field of magnitude 0.02 T. If the direction of the magnetic field is along -z, determine the magnitude and direction of the electric field necessary to keep the electron moving along its original direction

necessary to keep the electron moving along its original direction.

(A)()
$$3.36 \times 10^{3}$$
 V/m

(B)() -3.36×10^{3} V/m

(B)() -3.36×10^{3} V/m

(C)() -3.36×10^{3} V/m

(D)() 3.36×10^{3} V/m

(E)() 7.72×10^{5} k V/m