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The calculations of Badnell et al. [Phys. Rev. A 48, R2519 (1993)] demonstrated an apparent
breakdown of the isolated-resonance approximation within certain resonant contributions to the
352 1S — 3s3p 3P transition in Fe!**. We have now carried out detailed analyses of selected
resonant structures for this transition. Comparing calculations using the independent-processes and
isolated-resonance approximation, interacting resonance theory, and the R-matrix close-coupling
method, we determine the nature of the interactions between resonances and demonstrate the sen-
sitivity of the size of the resonant contribution to the positions of the resonances.

PACS numbers: 34.80.Kw

The ability to accurately predict the strength of cer-
tain atomic collision processes remains crucial to the un-
derstanding of a variety of astrophysical and laboratory
plasmas. Especially important is the electron-impact ex-
citation of atomic ions. Because of their influence on level
populations and radiative line emissions, accurate excita-
tion cross sections form the basis of many plasma temper-
ature and density diagnostics. The formation of short-
lived resonances can lead to significant enhancements of
nondipole transitions, for which the nonresonant back-
ground cross sections are relatively weak. In order to gain
a more complete understanding of the nature of such res-
onant structures, we compare resonant cross-section cal-
culations based on a perturbative independent-processes,
isolated-resonance (IPIR) approximation, a perturbative
interacting resonance approximation, and a nonpertur-
bative close-coupling (CC) approximation. A key finding
of this Letter is that the strength of the resonant con-
tribution to electron-impact excitation can be affected
significantly by direct configuration interaction (CI) be-
tween resonances, causing it to be very sensitive to the
energy separation between the resonances. On the other
hand, indirect interactions through a common continuum
are found to be less important.

The most widely used perturbative approach for
electron-ion excitation is the IPIR approximation [1],
in which both the interference between the direct and
resonant contributions and the interaction between reso-
nant states are ignored. In this approximation, the total
electron-impact excitation cross section from an initial
level i to a final level f is the sum of the direct excitation
cross section and the cross section for resonant excita-
tion followed by autoionization, orga (¢ — f), which in
atomic units is given by
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In Eq. (1), k; is the linear momentum of the incident
electron, g; is the statistical weight of the initial level,
go and €, are the statistical weight and energy of the
resonant level a, respectively, A,(a — 4,1;) and A, (o —
f,ls) are the autoionizing rates to the initial and final
levels plus continuum electrons with angular momenta [;
and I, respectively, and I',, is the total (autoionizing and
radiative) width of the resonance a.

The IPIR approximation has been employed to calcu-
late the excitation cross section, including resonant con-
tributions, in a number of highly ionized species [1-3].
Recently, however, Badnell et al. [4] discovered some
large differences between resonances calculated using the
R-matrix close-coupling (CCR) approach [5] and the
IPIR approximation for the 35 'S — 3s3p 3P transi-
tion in Fe!'4*. Similar discrepancies have also been dis-
covered in other Mg-like ions [6]. It is the purpose of this
Letter to explain the reasons for this apparent break-
down in the IPIR approximation and to provide a better
understanding of the nature of the interactions between
resonances.

The two most likely sources of these discrepancies are
the following: direct CI between the resonant states,
which is of order V' in perturbation theory, and interac-
tions between resonances through the adjacent continua,
which are of order V2 in perturbation theory, where V is
the two-electron electrostatic-interaction operator. Di-
rect CI is included within the CC formalism in terms
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of the interactions between closed channels. However,
in most applications of the IPIR approximation, CI is
included within the N-electron target states, but is ig-
nored between the (N + 1)-electron autoionizing states,
for all but the lowest Rydberg states. This practice is in
the spirit of the distorted-wave approximation, which ig-
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In Eq. (2), ¥; and ¥y are the initial- and final-state wave
functions, including the continuum electron, respectively;
¢o and ¢g are the wave functions for the (N +1)-electron
resonant levels o and (3, respectively; and the elements
of the matrix §2 are given by

Qag = 6aﬁ(E —€q + iFa/2) - (1 - 60‘5)1\05 . (3)

In the pole approximation, the elements of the matrix A
are given by
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In Eq. (4), &, is an (N + 1)-bound-electron wave func-
tion, D is the dipole-radiation field operator, and con-
tinuum normalization is chosen as 1 times a sine func-
tion. If one ignores the interaction between resonances
[Qap = 6ap(F — €q +iT'w/2)] and assumes that the res-
onances do not overlap, Eq. (2) reduces to the IPIR ap-
proximation [Eq. (1)].

The calculations of the resonant contributions for the
35215 — 3s3p 3P excitation in Fel4*, discussed here,
were carried out in LS coupling using a CI expansion de-
scribed in Ref. [4]. The CCR calculations were performed
using modified versions of the Opacity project R-matrix
codes [8] and the orbitals for the CCR calculations were
generated using the multiconfiguration Hartree-Fock pro-
grams of Fischer [9]. The perturbation-theory calcula-
tions were carried out in the distorted-wave approxima-
tion using bound-state orbitals, distorted waves, and ma-
trix elements generated with Cowan’s atomic structure
codes [10]. Care was taken to assure that the slightly
different bound-state orbitals for the two sets of calcu-
lations would not cause any significant differences in re-
sults. The effects of the radiative interaction were not in-
cluded within the perturbation-theory calculations, since
they were not part of the CCR calculations.

We have investigated the effects of interacting reso-
nances for several of the resonant structures within the
35218 — 3s3p 3P transition. However, for this Let-
ter, we focus on the structure due to resonances of
the form 3s3d(3D)7! and 3s3p(! P)14l. The discrepan-
cies between the CCR and the IPIR calculations oc-
cur for most of the LSII symmetries within this reso-
nant structure; for illustrative purposes, we consider the
interactions between the lower energy 3s3d(3D)7f 2H°,
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nores CI in the (N +1)-electron continuum; it also avoids
the diagonalization of large matrices.

Interactions between resonances through a common
continuum can be incorporated within a perturbative for-
malism by applying Feshbach resonance theory [7]. The
resonant-excitation-autoionization contribution is then
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r 353d(3D)7h 2H° resonant pair and the slightly higher en-

ergy 3s3p(1P)14g 2H°, 3s3p(*P)14i ?H° resonant pair.
The interactions within each pair are negligibly small.
A comparison of the calculated 2H° partial cross sec-
tions for this resonance structure, with and without CI
between the pairs of resonances, is shown in Fig. 1. We
notice from Fig. 1(a) that the resonances, without the
inclusion of CI, are small. Furthermore, by comparing
the partial cross section calculated from the IPIR ap-
proximation [Eq. (1)] with that calculated from interact-
ing resonance theory [Eq. (2)], we see that interactions
between the resonant pairs through the continuum are
small. However, from Fig. 1(b), we see that direct CI has
a very large effect on the size of the resonant structure;
and that when CI is included, the effects of interactions
through the continua are negligible. It is also interest-
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FIG. 1. Partial cross section for the resonant con-
tributions of 3s3d(®D)7I°H° and 3s3p(*P)141°H° to the
352 1S — 3s3p 3P transition. Solid curve, IPIR approxima-
tion; dashed curve, interacting resonance theory. (a) No CI
between resonant pairs; (b) with CI between resonant pairs.
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ing to note that the area under the resonance curve in
Fig. 1(b) is more than 4 times that of Fig. 1(a). This
large increase in the resonance contribution can be un-
derstood by examining the Auger rates. Without CI, it
is found that the 3s3d(3D)7/2H’ resonances have a small
probability of formation but a large probability of au-
toionizing to 3s3p 3P, while the reverse is true of the
3s3p(1P)14[2H’ resonances. When CI between the reso-
nant pairs is included, the probability of formation of the
3s3d(3D)7I2H° decreases further, but the probability of
autoionization from the 3s3p(!P)14/2H° resonances to
3s3p 3P increases dramatically, accounting for the large
increase in the strength of the higher energy resonant
structure.

We have also performed a four-state (3s2 15, 3s3p 3P,
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FIG. 2. ?H° partial cross section for the 3s? 1S — 3s3p 3P
transition, from a four-state CCR calculation, showing the
resonant contributions as a function of separation between
resonances. (a) 4.0 times, (b) 1.5 times, and (c) 0.5 times the
energy separation between resonances employed in Fig. 1.

3s3p 1P, 3s3d 3D) CCR calculation for the 2H° symme-
try in this energy region and the resonant structure at 30
eV is nearly identical to that shown in Fig. 1(b). Thus,
the IPIR approximation agrees very well with the CC
approximation, but only when CI between the (N + 1)-
electron resonance states is included.

It is also interesting to study the interactions between
these resonances as a function of separation between
pairs. This was accomplished by repeating the four-state
CCR calculations, mentioned above, at various energies
of the 3s3d 3D threshold. In this way, it is possible to
move the 3s3d(3D)7I2H’ resonances with respect to the
3s3p(1P)14/?H’ resonances. The results for 4.0 times,
1.5 times, and 0.5 times the energy separation between
resonant pairs employed in Fig. 1 (approximately 0.22
eV) are shown in Fig. 2. From Fig. 2(a), we see that
even when the separation is increased by a factor of 4,
the resonant structure at 30 eV is still approximately 4
times higher than that obtained from the IPIR approxi-
mation with no CI. We see from Figs. 2(b) and 2(c) that
as the resonances get closer, the lower energy resonant
structure begins to disappear and the higher energy one
continues to increase in magnitude.

One might expect this effect to continue as the reso-
nances are forced even closer. However, when the reso-
nances are overlapping, interactions through the continua
become important, and offset some of the enhancement
due to direct CI. In Fig. 3, we demonstrate this by com-
paring IPIR calculations, which include direct CI (solid
curve), with perturbative calculations which include both
direct CI and interference through the continuum (dot-
ted curve) at an energy separation of approximately one-
fourth that of Fig. 1. At this separation, destructive
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FIG. 3. 2H° partial cross section for the 3s% 1S — 3s3p 3P
transition showing the resonant contributions for an energy
separation between resonant pairs equal to approximately
0.25 times that employed in Fig. 1. Solid curve, IPIR ap-
proximation with direct CI; dotted curve, interacting reso-
nance theory with direct CI; dash-dotted curve, four-state
CCR calculation.
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interference between resonances through the continua de-
creases the height of the resonant structure by about
a factor of 2. By comparing this with the results of a
four-state CCR calculation at the same separation (dash-
dotted curve), we see that the interacting resonance the-
ory [Eq. (2)] gives a fairly accurate representation of this
additional interaction. As an independent check of the
results shown in Figs. 2 and 3, we have also performed
four-state CCR calculations at various resonance separa-
tions using a completely different R-matrix program [11],
and obtained nearly identical results. With this code, we
also turned the direct CI between resonances on and off
and thereby confirmed the importance of CI on the size
of the resonant structure.

It is also worth noting that in the case of the interaction
between the 3s3d(3D)7l pair and the 3s3p(!P)14l pair
for the 2I¢ symmetry, the resonances are completely over-
lapping, and all the effects discussed above are present,
but much more pronounced. Direct CI increases the area
under the resonance curve by approximately 200; how-
ever, interaction through the continuum reduces this en-
hancement by a factor of about 3, so that the overall en-
hancement of the resonance structure is approximately
64. Again, the agreement between the interacting res-
onance theory calculation and the CCR calculation for
this symmetry is excellent [6].

In conclusion, we have shown that the resonant contri-
bution to electron-impact excitation can be affected sig-
nificantly by interactions between resonances, and that
the primary mechanism for such interactions is direct CI,
rather than interactions through the continuum. In order
for such interactions to have an appreciable effect, they
must be relatively close; however, CI can be significant
when the resonances are far from overlapping, which is
not true of interactions through the continua. For over-
lapping resonances, both types of interactions should be
included within a perturbative calculation. It is inter-
esting to contrast this with dielectronic recombination,
which appears to be far less sensitive to the interactions
between resonances (12].

We have also demonstrated the extreme sensitivity of
the resonance structure to the positions of the individ-
ual resonances. This may make accurate perturbative
or nonperturbative calculations of the resonance contri-
bution to excitation difficult for complex structures, for
which there are often a large number of closely spaced
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resonances. However, additional efforts will be required
to establish how important these effects will be on the
determination of the rate coefficients needed for plasma
diagnostics.

In highly charged ions, the effects of the radiative in-
teraction on the resonant contribution to excitation can
become important. Although radiative damping is easily
included within a perturbative approach, a general treat-
ment within a nonperturbative CC formalism has yet to
be developed. In addition, in complex ionic systems,
perturbative approaches often have advantages over CC
methods because of the sheer number of atomic states
involved. With this new understanding of the nature of
the interactions between resonances, it may be possible
to develop efficient numerical techniques to incorporate
the important resonant interactions, within a perturba-
tive formalism.
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