Comment on "Matter-Wave Interferometry of a Levitated Thermal Nano-Oscillator Induced and Probed by a Spin"

The main point of Refs. [1,2] was to propose an experiment involving the center of mass (c.m.) position of a nanodiamond and the spin of its NV center to demonstrate "the interference between spatially separated states of the center of mass of a mesoscopic harmonic oscillator ... by coupling it to a spin and performing solely spin manipulations." The creation and detection of spatially separated states of a levitated nano-oscillator would represent a major experimental advance. In this Comment, we argue that the proposed measurement does not achieve this goal. Instead, the measured signal results from the common displacement of the c.m. position of both ± 1 states, and hence, does not give information about the c.m. separation of these states.

The nanodiamond is held in a harmonic potential. A spatially varying magnetic field $\vec{B}=B_{0}(-x \hat{x}-y \hat{y}+2 z \hat{z})$ entangles the spin and c.m. degrees of freedom because the $\mid \pm 1>$ states have oppositely directed forces; it is this entanglement that Refs. [1,2] propose to measure. The conceptual problem is that the nanodiamond is not oscillating about the $z=0$ point of the harmonic potential but about the shifted position, $-\Delta z_{g}$, due to gravity, leading to a nonzero average B field for both $\mid \pm 1>$ states. This gives a Zeeman phase difference that exactly reproduces the proposed signal [Eq. (11) in Ref. [1]] even if the nanodiamond is held fixed at $-\Delta z_{g}$, negating the interpretation that the signal results from "the interference between spatially separated states ..." Another way to see that the interpretation of Refs. [1,2] is not correct is to note that they cancel the B field at $z=0$ to eliminate a Zeeman phase difference; if the experimental proposal had canceled the B field at the shifted position, then their signal disappears. The orders of magnitude difference in distance scales make it clear that B should be canceled at $-\Delta z_{g}$. The parameters in Ref. [1] are $\omega_{z} \sim 10^{5}$ $\mathrm{s}^{-1}, m \sim 1.25 \times 10^{-17} \mathrm{~kg}$, and $B_{0} \simeq 580 \mathrm{~T} / \mathrm{m}$. Both $\mid \pm 1>$ states have the same spatial shift from gravity of order $g / \omega_{z}^{2} \sim 10^{-9} \mathrm{~m}$, much larger than the spatial width of the ground state $\sim \sqrt{\hbar /\left(m \omega_{z}\right)} \sim 10^{-11} \mathrm{~m}$ or, more importantly, the separation of the $\mid \pm 1>$ states due to the spatially varying B field $\sim 4 B_{0} g_{N V} \mu_{B} /\left(m \omega_{z}^{2}\right) \sim 3 \times 10^{-13} \mathrm{~m}$.

This intuitive argument can be made precise. The Hamiltonian, Eq. (4) of Refs. [1,2], is rewritten using the shifted c.m. coordinate $\tilde{z} \equiv z+\Delta z_{g}$ as

$$
\begin{align*}
H= & D S_{z}^{2}+\hbar \omega_{z} \tilde{c}^{\dagger} \tilde{c}-2 \lambda S_{z}\left(\tilde{c}^{\dagger}+\tilde{c}\right) \\
& +\sqrt{\frac{2 m \omega_{z}}{\hbar}} \Delta z_{g} 2 \lambda S_{z}-E_{s} \tag{1}
\end{align*}
$$

where the parameters not defined in Ref. [1] are $\quad \tilde{z}=\sqrt{\hbar /\left(2 m \omega_{z}\right)}\left(\tilde{c}^{\dagger}+\tilde{c}\right), \quad \Delta z_{g} \equiv g \cos (\theta) / \omega_{z}^{2}, \quad$ and $E_{s}=(1 / 2) m \omega_{z}^{2} \Delta z_{g}^{2}$. The first three terms of Eq. (1) will be grouped into H_{1}, the fourth term will be defined as H_{2}, and E_{s} is a constant and, thus, can be dropped.

The wave function can be written exactly as

$$
\begin{equation*}
\Psi(t)=\exp \left(-i H_{2} t / \hbar\right) \exp \left(-i H_{1} t / \hbar\right) \Psi(0) \tag{2}
\end{equation*}
$$

where $\Psi(0)=\psi_{0}(\tilde{z})(|+1\rangle+|-1\rangle) / \sqrt{2}$ is an initial spatial function times the symmetric combination of spins +1 and -1 . The H_{1} is the only term that leads to separation of the $\mid \pm 1>$ states. After an integer N periods, $t=2 \pi N / \omega_{z}$, the

$$
\begin{equation*}
e^{-i H_{1} t / \hbar} \Psi(0)=e^{i N \eta} \Psi(0) \tag{3}
\end{equation*}
$$

where $\eta=8 \pi \lambda^{2} /\left(\hbar \omega_{z}\right)^{2}-2 \pi D /\left(\hbar \omega_{z}\right)$. Thus, the part of the Hamiltonian that contains both the S_{z} and the \tilde{z} operators, which is the only part of H that can entangle the spin and c.m. degrees of freedom, gives no effect on the wave function after an integer number of periods.

However, the term that results from the magnetic field at the shifted $z, H_{2}=\sqrt{2 m \omega_{z} / \hbar} \Delta z_{g} 2 \lambda S_{z}$, gives

$$
\begin{equation*}
e^{-i H_{2} t / \hbar} \Psi(0)=e^{-i N \phi / 2} \psi_{0}(z) \frac{|+1\rangle+e^{i N \phi}|-1\rangle}{\sqrt{2}} \tag{4}
\end{equation*}
$$

after N periods, where $\phi=8 \pi \lambda \Delta z_{g} \sqrt{2 m \omega_{z} / \hbar} /\left(\hbar \omega_{z}\right)$. Evaluating this ϕ and $\Delta \phi_{\text {grav }}$ in Eq. (10) of Ref. [1], one can show that $\phi=\Delta \phi_{\text {grav }}$. Thus, the main result of Ref. [1], Eq. (9), is exactly obtained in Eq. (4) but Eq. (4) cannot contain information about the spatial evolution of the wave function since H_{2} is proportional to S_{z}, has no dependence on \tilde{z}, and commutes with H_{1}. In fact, it is the Zeeman splitting of the $\mid \pm 1>$ states as discussed above.

F. Robicheaux*
Department of Physics and Astronomy
Purdue University
West Lafayette, Indiana 47907, USA

Received 29 August 2016; published 10 March 2017
DOI: 10.1103/PhysRevLett.118.108901
*robichf@ purdue.edu
[1] M. Scala, M. S. Kim, G. W. Morley, P. F. Barker, and S. Bose, Phys. Rev. Lett. 111, 180403 (2013).
[2] C.Wan, M. Scala, S. Bose, A.C. Frangeskou, ATM A. Rahman, G. W. Morley, P. F. Barker, and M. S. Kim, Phys. Rev. A 93, 043852 (2016).

