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Wave Function Microscopy of Quasibound Atomic States
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In the 1980s Demkov, Kondratovich, and Ostrovsky and Kondratovich and Ostrovsky proposed an
experiment based on the projection of slow electrons emitted by a photoionized atom onto a position-
sensitive detector. In the case of resonant excitation, they predicted that the spatial electron distribution on
the detector should represent nothing else but a magnified image of the projection of a quasibound
electronic state. By exciting lithium atoms in the presence of a static electric field, we present in this Letter
the first experimental photoionization wave function microscopy images where signatures of quasibound
states are evident. Characteristic resonant features, such as (i) the abrupt change of the number of wave
function nodes across a resonance and (ii) the broadening of the outer ring of the image (associated with
tunneling ionization), are observed and interpreted via wave packet propagation simulations and recently
proposed resonance tunneling mechanisms. The electron spatial distribution measured by our microscope
is a direct macroscopic image of the projection of the microscopic squared modulus of the electron wave
that is quasibound to the atom and constitutes the first experimental realization of the experiment proposed

30 years ago.
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The quantum description of atoms and molecules is
based on the key concept of the wave function.
Traditionally, information on this wave function is inferred
by comparing theoretically calculated and experimentally
measured observables, such as absorption spectra. With
recent experimental progress, an atomic or molecular orbi-
tal can be reconstructed and visualized by manipulating
electrons with strong laser fields [1] or by photoemission
from a molecule deposited on a surface [2]. These experi-
ments pave the way to spectroscopic tools where the
interest is focused on the wave function itself. Along these
lines, the development of electron imaging techniques has
permitted the advent of wave function microscopy, i.e., the
direct experimental observation of the projection of the
squared modulus of an electronic wave function. This is
accomplished by recording the two-dimensional flux of
very slow electrons ejected by an ionization process in
the presence of a static electric field. In fact, contrary to
traditional angularly resolved photoelectron spectroscopy
[3], in wave function microscopy one is interested in the
radial rather than the angular electron distribution. In
the early 1980s an experiment was proposed [4] where
electron waves interacting with a static electric field could
be imaged as long as the de Broglie wavelength of these
electrons is large enough. This was realized by the
so-called photodetachment microscope [5] that was experi-
mentally implemented soon after the emergence of photo-
electron imaging techniques [6-8].

The above proposal was further developed [9,10] so
as to include atomic photoionization and the possibility of
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visualizing electron standing waves corresponding to qua-
sidiscrete electronic states of an atom. Photoionization is
very different from photodetachment since photoionized
electrons interact with both the electric field and the
Coulomb field of the residual ion and neither field can
be considered as a perturbation. The first photoionization
microscopy experiments were performed with Xe atoms
[11-13]. Remarkably, in these experiments [ 14] the number
and position of nodes of the recorded wave function evolved
smoothly with energy, and remained to a large extent
insensitive to the substantial number of resonances lying
in the examined energy range [15]. Thus, only the electron
wave function associated with the ionization continuum
was observed, while the original idea of obtaining an image
related to a quasibound quantum state [9,10] was not real-
ized. Here, we present the first realization of the experiment
proposed in Refs. [9,10] by photoionizing Li atoms in the
presence of a ~1 kV/cm static electric field. Contrary to
the earlier observations in Xe, the Li wave function micros-
copy images are sensitive to the presence of resonances and
therefore directly reveal the nature of the quasibound states.

Before presenting our findings it is instructive to quali-
tatively discuss the concept of wave function microscopy,
which can be understood on the basis of hydrogenic Stark
theory. For a hydrogen atom in a static field of strength F,
directed along the z axis, the Hamiltonian is separable in
parabolic coordinates ¢ =r+z, n=r—z and ¢ =
arctan(y/x). Separability along ¢ leads to the azimuthal
quantum number m, while separability along & and 7
involves two separation constants, 8; and 8, = 1 — By,
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and leads to parabolic quantum numbers #; and n,, count-
ing the nodes in the &- and n-part of the wave function,
respectively [16—18]. The electron is always bound along
the ¢ coordinate (see Fig. 1). The energy range of interest
here lies between the field-free ionization limit (E = 0)
and the classically calculated saddle point energy, Eg, =
—2+/F a.u. (atomic units: i = m, = e = 1), that is the
energy to which the ionization limit is lowered due to the
presence of the field. Within this range the electron can
escape in the negative z direction along the 1 coordinate.
For Eg, = E = O each n, is associated with a threshold Eyl
(found by solving the equation E = —2[B,(E, n)F]"/?)
and n, is meaningful only when E < Ej! . Each (n;, n,)
pair corresponds to a quasibound state where the electron
escapes solely via rfunneling through the =7 potential
[Fig. 1(a)]. For E > E', where n, loses its meaning, the
electron escapes over the m-potential barrier [Fig. 1(b)].
Thus, within Eg, = E' = 0 quasidiscrete and continuum
Stark states with different n; values coexist. Wave function
microscopy aims at recording the photocurrent density j(£)
at a macroscopic distance (see Fig. 1) [10]. Let us first
consider the absence of resonances and denote by n! the
largest £-quantum number corresponding to a continuum
(for a given energy). This, so-called, background (BG)
density, may be written as
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FIG. 1 (color online). Wave function microscopy aims at ob-
serving the spatial structure of the electronic wave function. The
electron flux stemming from the photoionization of an atom in
the presence of a static electric field is recorded perpendicularly
to the field and at macroscopic distance, i.e., approximately
along a given constant 1 = 7, paraboloid. The image corre-
sponds to the wave function along the & coordinate where the
electron motion is always bounded. The nodes of the wave
function are clearly observed in the example shown, recorded
with F = 1010 V/cm and electron excitation energy exceeding
Eg, by 10 meV. Depending on the electron energy with respect to
the maximum of the 7 potential, the classical electron motion
may be either bounded (a) or free (b). In the former case the
electron can escape solely via tunneling and the image corre-
sponds to a direct macroscopic projection of a quantum standing
wave characterizing the quasibound electronic state (n}™, a5,
m) where the electron is initially localized within the inner
n-potential well.

nd 2
jBG(é‘:’ n= 770) x Z cn]/\/l,nl(‘f) | ’ (1)

n;=0

where y, ,, denotes wave functions along the £ coordinate
and ¢, the corresponding weights. It turns out that
Jea(& m = mp), having the form of an interferogram, is
dominated by X100 Therefore, the density of Eq. (1) exhib-
its n(l’ dark fringes, which increase smoothly with energy.
The presence of a single quasidiscrete state with a wave
function X])nrles(é‘:) (n'*s > n%) modifies j(£) according to

JeG+res (&, = 1)

og

nl 5
Z Cnl/\/l,nl(ér) + anrles,nZ/\/l,nrle"(f) ’ (2)
n=0

where the weight Apres depends on n,. The latter, however,

cannot, in principle, be extracted from jggires(& 7 = M0).
For a sufficiently narrow resonance, X1 dominates the

interferogram. Therefore, jpgirps(€, 7 = 1) is expected
to evolve nonmonotonically in the vicinity of resonances
and hydrogenic Stark theory [10] predicts (i) A strong on-
resonance modification of the interference pattern that can
include a fringe number change. Hence, jpg+res(€, 7= 10)
can exhibit n}* dark fringes while their number is reduced
to n) at energies below and just above the resonance.
(i1) A modulation of the fringe contrast due to the coherent
superposition of resonant and nonresonant contributions in
Eq. (2). (iii) A broadening of the image outer ring, associ-
ated to tunneling ionization [19].

The ultimate goal of photoionization microscopy is to
uncover the features of j(& 1 = 7,) stemming from the
resonant state xi that is to say, to directly observe the
wave function projection corresponding to a quasibound
electronic state (n®, n,, m). In nonhydrogenic atoms,
however, the above features are obscured due to short-
range interactions occurring when the excited electron
penetrates the ionic core. This leads to mixing between
states of different n;. Therefore, even if the system is
initially prepared to the quasidiscrete state ( lenges>n(l)), it

may ‘“‘leak” to the degenerate continua ( )(l,nls,l?) and the

resonant character may not show-up in j(£, n = 7). This
was the case in the xenon experiment. Obviously, the effect
would be expected in experiments on hydrogen atoms.
Nevertheless, the observation of resonant effects in non-
hydrogenic atoms appears to be of fundamental signifi-
cance, as it turns photoionization microscopy into a more
general technique, eventually capable of dealing with poly-
atomic systems. In order to overcome the problem linked to
the large core penetration encountered in high-Z atoms, we
use the low-Z alkali Li atom, which allows, for the first
time, undisputable experimental signatures of resonant
effects. The degree of core penetration can be assessed
by a comparison of the magnitude of the quantum defects
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Mo for the ns, np, and nd Rydberg series: Xe (u, = 4.0,
My =35 and py = 2.4) and Li (u, = 0.4, u, = 0.05
and w,; = 0.002) [20] is revealing. In order to increase
the selectivity, we use single-photon excitation and ioniza-
tion of Li and linear perpendicular laser polarization that
leads to |m| = 1 final states which are expected to be closer
to the hydrogenic case because the final Stark state wave
function does not contain any € = 0 core-penetrating
component.

Our microscope is similar to the one employed earlier
[11,13,14,21]. It is based on a standard velocity-map
imaging design [22]. Image magnification is accomplished
via an einzel lens [23,24]. The field accelerates photo-
electrons towards a position-sensitive detector (MCP +
phosphor-screen + CCD camera). The Li atomic jet is
produced by laser ablation of a pure Li metallic rod. The
Li atoms are carried by a pulsed He gas jet. The jet is
skimmed and interacts with tunable UV laser radiation
delivered by a high finesse OPO system (Spectra-Physics
MOPO-pulse energy ~1 mlJ, pulse duration ~5 ns, 10 Hz
repetition rate, bandwidth 0.05 cm™ ).

Experimentally, the electronic wave function of a reso-
nance should be easier to visualize when the resonances
dominate the ionization yield and the number of nodes in
the wave function (n,° and n,"*) is small. These two
criteria are met just above Eg,. Interferograms recorded
with our microscope for ionization of Li just above the
saddle point (F = 1010 V/cm = 1.96 X 1077 a.u., & =
E/|Eg,| = —0.928) are shown in the top half of Fig. 2.
Their angular distributions reflect the excitation of the p
component of the Stark states, as expected for a single-
photon transition from an s state. Figure 2(c)-(2) corre-
sponds to the measurement ata (n,"* =2, n, =25, m = 1)
resonance [18], and Figs. 2(c)-(1) and 2(c)-(3) correspond
to recordings 120 ueV below (¢ = —0.933) and above
(—0.923) this resonance. In nonresonant ionization, the
number of dark fringes should remain unchanged and equal
to n,% = 1, for this energy range. On resonance, however,
we do observe two dark fringes [Fig. 2(c)-(2)]. Hence,
we measure a direct projection of the squared &-wave
function component of the (n,"* =2, n, =25, m =1)
state (located 2 X 10”7 a.u. below the n-potential barrier
[Fig. 1(a)]).

In Figs. 2(c), experimental images are compared to cal-
culations based on wave packet propagation techniques,
solving the time-dependent Schrodinger equation [25].
The quantum defects are taken into account using a model
potential [26]. One clearly observes that theory also predicts
two dark fringes on resonance, and a single one below and
above it. In Fig. 2(d), the comparison between Li, hydrogen
(H), and cesium (Cs) shows a single dark fringe below
[Fig. 2(d)-(1)] and above the resonance [Fig. 2(d)-(3)].
However, on the resonance, the nearly identical interfero-
grams for Li and H show two dark fringes, whereas the
Cs interferogram exhibits just a single one [Fig. 2(d)-(2)].

1.0

0.5

Total Electron
Signal [arb. unit]

(a)

0.0
<100 -0.95 -090 -0.85
E/E,)|

(b)

(©

Electron Signal [arb. Unit]

(@

1 1 1
Image Radius [arb. unit]

FIG. 2 (color online). (a) Measured ionization yield versus
energy with respect to the saddle point showing Stark resonances
(F=1010V/em=1.96X10""au., E,=-887X10"*au =
—24.11meV), |m| = 1). Images, shown in (c) below, are mea-
sured across one resonance near threshold (indicated by dashed
blue lines). (b) Measured images. For m = 0 (laser polarization
parallel to the electric field) the angular distribution is isotropic.
For |m| = 1 the distribution is aligned along the laser polariza-
tion. (c) Measured (continuous line) and corresponding calcu-
lated (dotted line) radial distributions obtained from one-photon
ionization of Li (Jm| = 1) using F = 1010 V/cm (measured
images are presented as insets) at three different photon energies,
namely on resonance case (2) 1.74 meV above the saddle point
(e = E/|Egp| = —0.928, A =230.912 nm and off-resonance
cases (1) and (3) 120 weV below and above the resonance,
A =230.917 nm A = 230.906 nm, respectively. An additional
on resonance fringe corresponding to an increase of the nodes of
the wave function is clearly seen. The interferogram is a direct
image of the (n}®™ = 2, |m| = 1) state and it is similar to the
calculated one. (d) Calculated radial distributions for H (red
line), Li (black-dotted line), and Cs (blue line) 120 ueV below
(1), on (2), and 120 ueV above (3) the (n* =2, m=1)
resonance.

This is due to the fact that, for |m| =1, Li is almost
perfectly hydrogenic and thus its quasibound and contin-
uum states are nearly orthogonal. In Cs, by contrast, inter-
channel coupling leads to population “leaking” from the
quasibound state to the degenerate continuum. This con-
clusion, however, should not be generalized since theoreti-
cal predictions showed that, even for Xe, resonant effects
could be observable, albeit at a much higher spectral and
spatial resolution [27]. We further note that wave packet
calculations reproduce qualitatively the experimental rela-
tive fringe intensities in Li. A number of reasons could be
responsible for the lack of quantitative agreement (e.g.,
spatial resolution, polarization imperfections, or field inho-
mogeneity). Computationally, it is difficult to include all
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FIG. 3 (color online). (a) 2D and 3D representation of mea-
sured photoelectron images obtained in one-photon ionization
of Li with F= 1010 V/cm, around the (n* =6, m=1)
resonance (¢ = E/|Eg| = —0.789). (1) —19.78 meV (A =
230.800 nm); (2) —19.07 meV (A = 230.769 nm); and
(3) —18.49 meV (A = 230.744 nm). (b) Radial distribution of
the images. The radius is scaled to the classical radius R¢, [12],
whose size on the detector phosphor screen is ~6 mm. While in
the non-resonant case, the radius of the image should smoothly
increase with photon energy, we observe that the image is larger
on-resonance (black continuous curve) and smaller at both lower
(red-dashed line) and higher (blue-dotted line) photon energies.
This is attributed to the tunneling ionization through the barrier.

these effects. In addition, the model takes only implicitly
into account the excitation process. Therefore, a more accu-
rate description of the threshold ionization mechanism is
compulsory. A recently developed theoretical treatment,
successfully reproducing our nonresonant data of Li [28],
looks promising towards this direction.

Further experiments at the same field but near the
(n,"* = 6, ny, m = 1) resonance, located at £ = —0.789
(~ Egy + 5 meV), are shown in Fig. 3(a). The main effect
of the resonance is a dramatic change in the radial inter-
ference pattern, which is relatively smooth on both its red
and blue side (620 weV below and above it), while, on
resonance, it is dominated by two rings that appear at
intermediate radii between the broad outer ring and the
central peak. This is a consequence of the aforementioned
coherent superposition of resonant and non-resonant

contributions, expressed by Eq. (2). We notice that the
width of the outer ring of the image is much broader on-
resonance. This is more clearly visible in Fig. 3(b), show-
ing the cross section of the radial distribution of emitted
electrons as a function of the scaled radius, defined as the
ratio of experimental radius divided by the classical maxi-
mum radius of impact. The effect was recently predicted by
Zhao et al. [19]. It corresponds to an on resonance increase
of the probability for the electron to tunnel through the
potential barrier as a result of its high localization near the
edge of the potential. This holds for either hydrogenic or
nonhydrogenic Rydberg atoms (the barrier is present in
both cases).

In conclusion, we have presented the first experimental
wave function microscopy images where a projection of a
quasidiscrete electronic state (n;, n,, m) is directly visual-
ized. The evolution of the interference pattern shows an
on-resonance change of the number of fringes and, con-
sequently, of the parabolic quantum number n;. This is in
agreement with the expectations of the experiment pro-
posed during the 1980s [9,10]. Further, the observed on
resonance broadening of the outer image ring confirms
recent theoretical predictions [19] associated with tunnel-
ing through the barrier. Finally, wave function microscopy
appears as a powerful tool for investigating matter on the
quantum level that brings information on the electron’s
presence within the inner n-potential well. We hope that
the present work will motivate further experimental and
theoretical developments.
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