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Parametric feedback cooling of rigid body nanodumbbells in levitated optomechanics
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We theoretically investigate the rigid body dynamics of an optically levitated nanodumbbell under parametric
feedback cooling and provide a simplified model for describing the motion. Differing from previous studies, the
spin of the nanoparticle about its symmetry axis is considered nonnegligible. Simulations reveal that standard
parametric feedback cooling can extract energy from two of the five rotational degrees of freedom when
the nanoparticle is levitated using a linearly polarized laser beam. The dynamics after feedback cooling are
characterized by a normal mode describing precession about the laser polarization axis together with spin about
the nanoparticle’s symmetry axis. Cooling the remaining mode requires an asymmetry in the two librational
frequencies associated with motion about the polarization axis as well as information about the two frequencies
of rotation about the polarization axis. Introducing an asymmetric potential allows full cooling of the librational
coordinates if the frequencies of both are used in the feedback modulation and is an avenue for entering the
librational quantum regime. The asymmetry in the potential needs to be large enough for practical cooling times
as the cooling rate of the system depends nonlinearly on the degree of asymmetry, a condition that is easily
achieved experimentally.
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I. INTRODUCTION

Optically levitated mesoscopic particles [1] are known to
be ultrasensitive detectors of force, torque, and charge [2–5]
and provide a range of possible applications such as detection
of gravitational waves, fractional charges in bulk matter, and
the Casimir torque [6–10]. One of the next sought-after goals
in levitated optomechanics is for a nanoparticle to reach
its quantum mechanical ground state. A nanoparticle in the
quantum regime allows exploration of fundamental physics
phenomena studying the boundary between the classical and
quantum worlds, both mechanically and thermodynamically
[11–17]. Other micromechanical systems in optomechanics
such as microchip resonators offer similar applications [18]
and have been able to attain low occupation numbers, even
below n = 1 [19,20] due to their GHz resonance frequencies
and strong coupling to light. However, these systems often
require cryogenic cooling or phononic band gaps to suppress
decoherence and improve quality factors since they are di-
rectly coupled to their environment [21]. Optically levitated
nanoparticles are isolated from rigid structures, eliminating
this source of decoherence, and can achieve quality factors
Q > 109 [22].

Much progress has been made in cooling the translational
degrees of freedom (DOF) [23–28] with a lowest reported
occupation number n = 21 [29]. Preventing further reduction
in the occupation number is the efficiency with which the
position can be detected [24,25]. Shot noise on the detector
from the trapping laser hinders the efficiency of position
detection, and therefore decreases the effectiveness of the
feedback cooling mechanism. Increasing the detection effi-
ciency of the scattered light from the nanoparticle would allow
more accurate position detection and is necessary to reach the
quantum realm [30,31].

An alternative path to the ground state and a tool for
torque sensing [8,32] is accessing control over the rotational
DOF [32–38]. Whereas translational mode frequencies are
typically in the kHz range, librational mode frequencies can
be in the MHz range, possibly offering a more accessible
ground state [3]. Cooling the nanoparticle through coupling
of the translational and rotational modes has been explored
both theoretically and experimentally [22,38,39]. Cooling of
the librational modes directly has also been proposed using
active feedback schemes [33]. However, these models often
assume libration as the sole rotational motion. Describing the
rotational dynamics in terms of libration exclusively is a good
approximation for particle shapes such as nanorods because of
the small moment of inertia about its symmetry axis, but this
approximation will break down for particles like dumbbells
with more nearly equal moments of inertia.

In this paper, we investigate the intrinsic coupling between
the rotational DOF by considering the classical rigid body
dynamics of an optically levitated nanodumbbell with and
without parametric feedback cooling. As shown below, for
symmetric top-like particles, the spin of the nanoparticle about
its symmetry axis, at an angular frequency of ω3, couples
the two librational coordinates. This coupling results in two
precessional modes amounting to a combination of libration
and precession about the polarization axis. In the small angle
limit, the equations of motion are of the same form as a
charged particle in a two-dimensional harmonic oscillator
plus a magnetic field. Previous investigations dismissed the
coupling that leads to precession [3,22,32,33,37,40–43], while
recently, the existence of precession motion was observed
for anisotropic nanoparticles [44]. For symmetric top-like
particles, ω3 is a conserved quantity, a feature which has
important implications when considering ground state cooling
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FIG. 1. (a) A nanodumbbell with center of mass confined to
the origin is allowed to rotate. The particle has the lowest energy
when its long axis (z′′′ axis) aligns with the laser’s electric field
polarized in the laboratory frame x direction. (b) The definition
of the Euler angles α, β, γ shown in the z-y ′-z′′ convention. For
small angle rotations, the coordinate α = 0 + ξ describes rotations
near the laboratory frame x axis in the x-y plane and β = π/2 − η

describes rotations near the laboratory frame x axis in the x-z plane.
The coordinate γ describes rotations about the z′′ = z′′′ axis with
γ (t ) ≈ ω3t . For visual clarity, the x ′′, y ′′, x ′′′, y ′′′ axes have been
omitted from the figure.

of the librational motion. Surprisingly, due to the coupling
of the librational coordinates, parametric feedback cooling
using a linearized beam is only able to cool one of the two
precessional modes. Cooling the remaining mode requires a
strong frequency difference in the librational coordinates.

This paper is organized as follows. Section II introduces
the classical kinetic and potential energy associated with
rotations and provides a simplified model describing the mo-
tions. In Sec. III the signals of two common experimental
methods to measure the orientation are calculated utilizing
an incident Gaussian laser beam. Section IV investigates
the effects of parametric feedback cooling with linear and
elliptical polarization. Simulations of power spectral densities
of the measured orientation before and after cooling are also
presented. Section V addresses the effects of laser shot noise
and gas collisions.

II. THEORETICAL MODEL

The system under consideration is a nanodumbbell opti-
cally trapped in a laser field. The particle’s center of mass is
fixed at the origin so that only rotations are considered. The
nanodumbbell is composed of two spheres each with mass
Ms and radius R. The spheres are aligned along the z′′′ axis
and touching at the origin, where the triple prime indicates the
particle frame coordinate system [see Fig. 1]. It is a symmetric
top with principal moments of inertia Ix = Iy = 14

5 MsR
2 and

Iz = 4
5MsR

2. An amorphous silica nanodumbbell with mass
2Ms = 1.029 × 10−17 kg, radius R = 85 nm, Ix = 1.041 ×
10−31 kg × m2, Iz = 2.974 × 10−32 kg × m2, index of refrac-
tion n = 1.458, and density ρ = 2000 kg/m3 [37] is used for
the calculations. The laser beam is linearly polarized along the

laboratory frame x direction and propagating in the z direction
with a wavelength λ = 1550 nm � R, power 500 mW, and is
focused by a NA = 0.45 objective. Because the size of the
nanoparticle is much smaller than the wavelength of light,
the nanodumbbell is treated as a point dipole with �Einc =
E0x̂, the electric field polarizing the dumbbell, having no
spatial dependence. Throughout this paper, the calculations
are purely classical, and in what follows, exclude heating from
gas collisions and photon scattering. Discussions of the effects
due to heating and other noise may be found in Secs. IV
and V.

The rotational dynamics are governed by the classical
equations of motion described by the Euler angles (α, β, γ )
[45,46] in the z-y ′-z′′ convention. To transform from the labo-
ratory (x, y, z) frame to the particle (x ′′′, y ′′′, z′′′) body frame
three rotation transformations are made. First, a rotation about
the laboratory frame z axis through an angle α is performed,
(x, y, z) → (x ′, y,′ z′ = z). Then, a rotation about the y ′ axis
is made through an angle β, (x ′, y ′, z′) → (x ′′, y ′′ = y ′, z′′).
Finally, a rotation about the z′′ axis is made through an angle
γ , (x ′′, y ′′, z′′) → (x ′′′, y ′′′, z′′′ = z′′). See Appendix A for
further details of the convention used in this paper.

The kinetic and potential energy are

K = 1
2Ix

(
ω2

1 + ω2
2

) + 1
2Izω

2
3, (1)

U = − 1
4 �p · �Einc = − 1

4 (αz − αx )E2
0 cos2(α) sin2(β ), (2)

where

�p =
↔
R

†↔
α0

↔
R �Einc

= E0

⎛
⎜⎝

(αz − αx ) cos2(α) sin2(β )

(αz − αx ) sin2(β ) cos(α) sin(α)

(αz − αx ) cos(β ) sin(β ) cos(α)

⎞
⎟⎠

≡< px, py, pz >, (3)

is the nanodumbbell polarization vector in the laboratory
frame and

↔
R is the rotation matrix. The αj (j = x, y, z)

[47,48] are the polarizabilities for an ellipse in the particle
frame (αx = αy) and are not to be confused with the coordi-
nate α. Constant terms in Eqs. (2) and (3) have been omitted
as they do not affect the particle’s rotational dynamics. The
ωi (i = 1, 2, 3) and the full equations of motion may be found
in Appendix A. It should be noted that as a consequence of
the nanodumbbell’s symmetry, the angular momentum about
the nanoparticle’s symmetry axis Izω3 is a constant of the
motion. In this configuration, each Euler angle has an intuitive
definition for small amplitude oscillations; α defines libration
in the x-y plane, β defines libration in the x-z plane, and γ

corresponds to angles of rotation about the z′′′ axis.
The attractive potential, Eq. (2), causes the particle to

oscillate about the polarization axis in two joint motions [see
Fig. 2(a)]. The two motions are most easily seen under a
small angle approximation. It is energetically favorable for the
particle’s long axis (z′′′ axis) to align with the electric field
and is therefore localized near the laboratory frame x axis.
This corresponds to α nearing towards zero or π , and β near
π/2. Allowing the two coordinates to make small oscillations
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FIG. 2. Trajectory of the nanoparticle’s z′′′ axis, projected on the
laboratory frame y-z plane found by simulating the full equations of
motion and using linear polarization. Here Z/2R = cos(β ), Y/2R =
sin(β ) sin(α) define the location of the z′′′ axis; in the small angle
limit Z/2R ≈ η, Y/2R ≈ ξ . (a) The particle’s long axis moves in
two joint motions, one describing libration and the other describing
precession about the polarization axis. (b) Final trajectory of the long
axis after parametric feedback cooling. The motion has reduced to
pure precession.

about the x axis, α → 0 + ξ , β → π
2 − η, with ξ, η small, the

equations of motion to first order become

ξ̈ =
[

− ω2

2
sin(2ξ ) − ωcη̇ sec(η) + 2η̇ξ̇ tan(η)

]

≈ −ω2ξ − ωcη̇, (4)

η̈ = cos(η)[−ω2 sin(η) cos2(ξ ) + ωcξ̇ − ξ̇ 2 sin(η)]

≈ −ω2η + ωcξ̇ , (5)

where ω2 = 1
2 (αz − αx )E2

0/Ix and ωc = (Iz/Ix )ω3. The first
term on the right-hand side of Eqs. (4) and (5) amounts
to libration about the polarization axis due to the trapping
potential which has been seen before in Refs. [33,40]. The
second term containing ωc couples the four DOF and is
responsible for precession about the x axis. The precession
is a consequence of the nonzero angular momentum about the
symmetry axis, Izω3. Precession has recently been seen for
anisotropic particles in an elliptically polarized beam [44], but
with α precessing around the laboratory frame z axis with β

roughly fixed. As in the case for thin nanorods, the motion
reduces to pure libration in the limit Iz → 0. The equation
of motion for γ is not directly affected by the potential and
largely evolves with time as γ (t ) ≈ ω3t in the small angle
approximation [see Appendix A Eq. (A12)].

The transformation of the z′′′ axis into the laboratory frame

r̂z′′′ =
↔
R

†
ẑ′′′ determines the location of the tip in the (x, y, z)

coordinate system

r̂z′′′ =

⎛
⎜⎝

sin(β ) cos(α)

sin(β ) sin(α)

cos(β )

⎞
⎟⎠ ≈

⎛
⎝1

ξ

η

⎞
⎠, (6)

where in the last step the small angle approximation was
made. It is seen that ξ and η play the role of the y and z

coordinates defining the location of the tip. By introducing

a vector that specifies the projection of the z′′′ axis on the
y-z plane, �ρz′′′ = 〈0, ξ, η〉, it is possible to combine Eqs. (4)
and (5)

�̈ρz′′′ = −ω2 �ρz′′′ − �̇ρz′′′ × �ωc, (7)

where �ωc = ωcx̂ = (Iz/Ix )ω3x̂. The last term in Eq. (7)
has the familiar form of the force on a charged particle
in a magnetic field. The two joint motions now become
clear as a combination of harmonic oscillations in a static
pseudomagnetic field. Thus, as long as ωc is nonzero, the
full dynamics of the nanoparticle must be described as a
combination of libration and precession, as opposed to just
libration. For a nanodumbbell at room temperature, T =
300 K, the average value of ωc/2π ∼ √

kBT Iz/(2πIx ) ∼
10 kHz, where kB is the Boltzmann constant. While ω/2π ∼
100 kHz − 1 MHz � ωc/2π , the coupling that results due to
the ∼10 kHz frequency is a resolvable feature in the power
spectral density and is a nonnegligible effect when consid-
ering parametric feedback cooling, as will be discussed in
Sec. IV.

The librational frequency ω scales with the radius as ω2 ∼
1/R2 suggesting that a particle of smaller size is beneficial for
ground state cooling. However, the polarizability and moment
of inertia scale as αj ∼ R3, Ij ∼ R5, implying that the particle
will be less confined and more unstable in the optical trap as
the size decreases. In effect, a smaller radius will be more
likely to escape the trap and will produce a broader power
spectral density. Further, ωc ∼ 1/R5/2, showing that as the
size of the particle decreases the precessional phenomenon is
more pronounced.

Equations (4) and (5) admit two normal modes

ξ (t ) = A+ cos(ω+t + δ+) + A− cos(ω−t + δ−), (8)

η(t ) = A+ sin(ω+t + δ+) − A− sin(ω−t + δ−), (9)

with ω± = 1
2 (� ± ωc ), � = √

4ω2 + ω2
c , and the A±, δ±

determined by initial conditions. Each mode circles the po-
larization axis at a particular frequency with the (+) mode
advancing clockwise and the (-) mode counterclockwise. The
superposition of the two modes results in the libration and
precession mentioned above. Thus, as will be discussed in
Sec. IV C, the power spectral density of ξ or η should exhibit
two peaks at ω±.

Since the coordinates α and β completely describe the
location of the nanodumbbell’s tip projected on the laboratory
frame axes, it is possible to track the rotational evolution
about the polarization axis while simulating the full equations
of motion. Figure 2(a) plots the z′′′-axis projection on the
laboratory frame z-y plane [i.e., Z/2R = cos(β ), Y/2R =
sin(β ) sin(α) is plotted versus time. Note that in the small
angle limit Z/2R ≈ η, Y/2R ≈ ξ ]. The particle’s tip under-
goes fast oscillations enveloped in a slower precession motion
about the x axis, qualitatively consistent with the dynamics
seen in the small angle approximation.

III. MEASURING THE ORIENTATION

It is possible to determine the orientation of the nanopar-
ticle with respect to α and β through different types of

013821-3



T. SEBERSON AND F. ROBICHEAUX PHYSICAL REVIEW A 99, 013821 (2019)

measurements. A common method of measuring α libration
[35–38] is to first send the forward scattered light from the
nanoparticle and the laser beam through a 45◦ polarized
beamsplitter (PBS). The light exits the PBS in two different
directions with orthogonal polarizations. A measurement is
obtained by reading the signal of each polarization state on
a photodetector and taking the difference between the two
signals. To determine what is measured in this procedure,
consider a Gaussian laser beam incident on the dumbbell

�Einc = E0
ω0

ω(z)
e

−ρ2

ω2 (z) e
i

(
kz+ kρ2

2R(z) −ψ (z)
)
x̂. (10)

The Gaussian beam is defined with ω0 the beam waist,
ω(z) = ω0

√
1 + (z/zR )2 with zR = πω2

0/λ the Rayleigh
range, ρ2 = x2 + y2, k = 2π/λ, R(z) = z[1 + (zR/z)2], and
ψ (z) = arctan(z/zR ). The scattered light is determined by the
electric and magnetic fields for a dipole in the far field [49]

�H = ck2

4π
(r̂ × �p)

eikr

r
, (11)

�E = Z0 �H × r̂ , (12)

where �r is in the direction of observation, c the speed of
light, and Z0 the impedance of free space. After exiting a
collimating lens [50], the light is split by a 45◦ PBS. The
transverse components of the electric field exiting the PBS are

�E+(x, y) = 1√
2

(Ex (x, y) + Ey (x, y))ê+, (13)

�E−(x, y) = 1√
2

(Ey (x, y) − Ex (x, y))ê−, (14)

where Ex,y are the x and y components of the total electric
field following the collimating lens and ê± designate the
two split polarization states after the PBS. The magnetic
field undergoes a similar transformation. A measurement is
performed by taking the difference between the two signals
measured at their respective detectors

P45◦ =
∫ ∞

−∞

∫ ∞

−∞
(�S+ · ẑ − �S− · ẑ)dydx, (15)

where �S± = 1
2 Re[ �E± × �H ∗

±] is the Poynting vector. Perform-
ing the integration gives a homodyne term that is proportional
to the y component of the polarizability from Eq. (3)

P45◦ ∝ py ∝ sin2(β ) cos(α) sin(α). (16)

Considering that α → 0 + ξ and β → π
2 − η,

py ∝ cos2(η) cos(ξ ) sin(ξ ) ≈ ξ, (17)

which is the angle describing the extent to which the nanopar-
ticle’s long axis has deviated from the polarization axis in
the x-y plane. Following the same procedure above, after the
collimating lens a split detection measurement is performed
(which is often used to track the transverse translational
motion [23–28]) and the homodyne term is examined

Px =
∫ ∞

0

∫ ∞

−∞
(�S · ẑ)dydx −

∫ 0

−∞

∫ ∞

−∞
(�S · ẑ)dydx

∝ pz ∝ cos(β ) sin(β ) cos(α) ≈ η, (18)

which is the angle describing the extent to which the nanopar-
ticle’s long axis has deviated from the polarization axis in the
x-z plane. Thus, both angles that will be required for para-
metric feedback cooling in the next section can be detected.
Note that it is not possible to measure γ directly using these
methods since it is not contained within the polarization vector
in Eq. (3).

Whereas the detection of translational motion relies on
the π/2 Gouy phase shift from ψ (z) in Eq. (10) [51], for
a nanoparticle centered at the origin, the Gouy phase shift
hinders detection of rotational motion. The homodyne terms
in the Poynting vector evaluated far from the nanoparticle
are left purely imaginary and require the imaginary part of
the polarizability for orientational detection. The imaginary
part of the polarizability is usually smaller than the real part
[48,52] for the types of particles used in levitated optomechan-
ics and is two orders of magnitude smaller for a R = 85 nm
amorphous silica dumbbell in a λ = 1550 nm laser field.

However, the signal may become real, and therefore larger
in magnitude, if the particle is not centered at the origin, but
pushed away from the focus by the laser beam in the axial
direction. In Appendix B the size of the displacement in the
z direction is estimated by considering the radiation pressure
on a nanodumbbell in the point dipole limit. Relative to the
Rayleigh range zR , the displacement zd is

zd

zR

=
(

32α

3

)(
πR

λ

)3( 1

NA

)2

, (19)

where α is a unitless parameter defined in the polarizability
as α0 = 4πε0R

3α. For α = 0.59, λ = 1550 nm, NA = 0.45,
R = 85 nm, zd/zR ∼ 0.14. This ratio becomes important for
measurements as eizd/zR ∼ (1 + izd/zR ) is a prefactor in the
polarizability matrix when considering ψ (z) in Eq. (10),
effectively reducing the measured signal by this ratio.

IV. PARAMETRIC FEEDBACK COOLING

Parametric feedback cooling utilizes a laser beam to trap
a particle and cool its motion simultaneously through mod-
ulation of the laser power at twice the particle’s oscillation
frequency [24]. To obtain a signal at twice the oscillation
frequency, the coordinate to be cooled is multiplied by its time
derivative qq̇, for an arbitrary coordinate q.

The analyses here assume perfect and instantaneous mea-
surements of qq̇, which cannot be achieved in practice. Shot-
noise heating due to photon scattering and the effects of gas
collisions are also not included to simplify the analysis. While
the heating mechanisms do determine the lowest energy at-
tainable for a fixed cooling power, the dynamical effects of gas
collisions do not become important for pressures ∼10−3 Torr
or lower and photon shot noise does not become important
until the heating rate is near the cooling rate. See Sec. V
for further discussion of these effects and the inclusion of
noise. The results that follow thus provide a fundamental
limit to cooling, irrespective of the limitations set by quan-
tum mechanics or practical experimental parameters such as
orientation detection efficiency.

It is also worth mentioning that since the equations of
motion for γ are unaffected by the trapping potential, with the
dynamics determined largely by the conserved ω3, parametric
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FIG. 3. (a) Energy of the four quadratic degrees of freedom versus time under parametric feedback cooling during a single trajectory. The
energy plateaus to a nonzero value as the nanoparticle circles the polarization axis. (b) Distribution of initial energies used before parametric
feedback cooling. The distribution follows the blue line, a Maxwell-Boltzmann distribution with four quadratic degrees of freedom at a
temperature of 300 K. (c) Distribution of energies following parametric feedback cooling with linear polarization. The distribution has a mean
of 312 K and is similar to the blue line, a Maxwell-Boltzmann distribution with two quadratic degrees of freedom at a temperature of 300 K.
The final energies are taken as the last data point in runs similar to that of (a). (d) Final energy distribution of the nanoparticle following
feedback cooling with elliptical polarization for θ = 4π

32 . Each distribution in this figure is composed of 12 000 runs implemented with a
cooling strength χ = 107 s/m2.

feedback cooling only directly affects the α, α̇ and β, β̇ DOF.
For this reason, the focus will be on the motions associated
with α and β (ξ and η), as it is not possible to cool the
nanoparticle’s spin about its symmetry axis using parametric
feedback cooling.

A. Linear polarization

The equations of motion for the dumbbell in the small
angle approximation from Sec. II. Eqs. (4) and (5) under
feedback cooling become

ξ̈ = −ω2(1 + χR2qq̇ )ξ − ωcη̇, (20)

η̈ = −ω2(1 + χR2qq̇ )η + ωcξ̇ , (21)

where χ is the cooling strength that sets the amplitude of
the power modulation. Choosing to measure and feedback
qq̇ = ξ ξ̇ into Eqs. (20) and (21), the average cooling power
is calculated as

〈P 〉ξ ξ̇ =
〈
dE

dt

〉

=
(

Ix

2

)〈
d

dt
[ξ̇ 2 + η̇2 + ω2(ξ 2 + η2)]

〉

= −Ixω
2χR2〈ξ ξ̇ (ηη̇ + ξ ξ̇ )〉. (22)

Inserting Eqs. (8) and (9) into Eq. (22) gives the cooling rate
in terms of the normal mode amplitudes A±. Performing the
derivatives in Eq. (22) with the A± slow compared to ω± and
averaging the sinusoidal factors over one cycle gives

〈P 〉ξ ξ̇ = − 1
4Ixω

2χR2�2[A+(t )A−(t )]2, (23)

which implies that cooling is effective until one mode is
removed from the motion. As t → ∞ the particle will fully
precess about the polarization axis with no libration [see
Fig. 2(b)]. The result of a single mode remaining is a plateau
in the energy over time as shown in Fig. 3(a). Choosing to
measure and feedback the frequency ηη̇ produces the same
result while the addition of the two, qq̇ = ηη̇ + ξ ξ̇ , delivers

the same effect at twice the rate since η and ξ oscillate at the
same frequency.

Using the conserved quantity

d

dt

[
ξ η̇ − ηξ̇ − ωc

2
(ξ 2 + η2)

]
= 0, (24)

together with Eqs. (8) and (9) gives the exact expression
d
dt

[A2
−(t ) − A2

+(t )] = 0. This condition shows that as one
mode is cooled completely, the second mode ceases to be time
dependent, facilitating the notion that there is a limit to how
much energy is removed from the motion.

To investigate the extent of possible cooling, a nan-
odumbbell is initially prepared with a thermal distribution at
T = 300 K and several thousand cooling runs are simulated
using the full equations of motion. The simulations are run
using a fourth-order Runge-Kutta adaptive step algorithm [53]
with random initial conditions conforming to a Boltzmann
distribution. The initial frequencies of rotation are found by

ωi =
√

kBT

Ij

dW, (25)

with (i, j ) = [(1, x), (2, y), (3, z)] and dW a Gaussian ran-
dom number with zero mean and unit variance. The initial
coordinate values α, β are established through rejection sam-
pling of the potential

P (α, β ) = e−[U (α,β )−U (0, π
2 )]/kBT , (26)

and γ is initialized as a uniformly distributed random number
between 0 and 2π .

Figures 3(b) and 3(c) show the energy distributions be-
fore and after cooling for a cooling strength χ = 107 s/m2

and feedback frequency pyṗy [see Eqs. (3), (16), and (17)].
In the figure, D(ε) is the probability energy density with∫ ∞

0 D(ε)dε = 1. As cooling extracts energy from the α, α̇

and β, β̇ DOF exclusively, in Fig. 3 the shifted energy ε =
E − 1

2Izω
2
3 is used where E = K + U (α, β ) − U (0, π/2) is

the total energy adjusted so that 0 K is the minimum energy.
The blue lines in Figs. 3(b) and 3(c) are plots of the Maxwell-
Boltzmann distribution function Aεn exp(−ε/300) for four
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(n = 1) and two (n = 0) DOF, respectively. As expected,
the initial energies follow a Maxwell-Boltzmann distribution
with an average energy 602 K ∼ 4

2T corresponding to four
quadratic DOF. In the final energy distribution, it is seen
that effectively two DOF have been removed due to cooling;
the final energy distribution has a mean energy of 312 K ∼
2
2T , corresponding to two uncooled quadratic DOF. The two
DOF remaining is consistent with the nanoparticle’s long axis
circulating around the polarization axis at a fixed nonzero an-
gle, qualitatively seen in both the small angle approximation
and the full simulation. The result that parametric feedback
cooling is unable to cool the nanoparticle’s motion completely
even if both coordinate frequencies are known is one of the
important results of this paper. It is clear that cooling into the
quantum regime is not possible utilizing a perfectly linearized
beam and standard parametric feedback cooling, even if both
angular DOF can be detected.

B. Elliptical polarization

The issue with the previous section’s strategy for cooling is
the coupling between η and ξ due to the spin about the sym-
metry axis and their similar frequencies of rotation about the
polarization axis. To cool further requires breaking the sym-
metry between the two DOF responsible for the precession
motion. In this section this symmetry is broken by introducing
a potential that produces different librational frequencies for
the two coordinates η and ξ . This can be achieved through
elliptical polarization, using two perpendicular laser beams
incident on the nanoparticle, or general asymmetries found
in a focused laser beam’s gradient [50]. Here, elliptical po-
larization is used with �Einc = E0〈cos θ, i sin θ, 0〉. This alters
Eqs. (4) and (5)

ξ̈ = −ω2
ξ ξ − ωcη̇, (27)

η̈ = −ω2
ηη + ωcξ̇ , (28)

where ω2
ξ = ω2(cos2 θ − sin2 θ ), ω2

η = ω2 cos2 θ . The normal
modes and further details of this system are described in
Appendix C. Feedback cooling using either qq̇ = ξ ξ̇ or qq̇ =
ηη̇ gives the following average cooling rates

〈P 〉ξ ξ̇ = [A+(t )]4y1 − [A−(t )]4y2 − [A+(t )A−(t )]2y3,

(29)

〈P 〉ηη̇ = −[A+(t )]4z1 + [A−(t )]4z2 − [A+(t )A−(t )]2z3,

(30)

where the yi , zi (i = 1, 2, 3) are positive and constant for a
fixed electric field strength (see Appendix C) and reduce to
Eq. (23) for θ = 0. Equations (29) and (30) show a combi-
nation of heating and cooling with each choice of feedback
frequency having preference of cooling a particular mode. In
this arrangement one mode is cooled while the other heats,
ultimately leading to heating. Simulations of energy versus
time while feeding back the frequency ηη̇ or ξ ξ̇ show the
energy increasing indefinitely, sometimes following an initial
period of cooling depending on the initial conditions.

FIG. 4. Plots showing (a) the dependence of the cooling strength
χ and (b) the frequency separation of ωη and ωξ on the cooling
rate 〈P 〉ξ ξ̇+ηη̇. (a) Intermittently increasing the cooling strength χ

during a single cooling process for a fixed electric field strength
(θ = 4π

32 ). Each dip corresponds to an abrupt increase in the value of
χ . At t = 0, the cooling process starts with χ = 107 s/m2. Beginning
with t = 3 ms, χ is increased every 1 ms by a factor of 10, ending
with 1012 s/m2. (b) Average energy after feedback cooling versus θ

showing the dependence of the frequency separation between ωη and
ωξ on the cooling rate 〈P 〉ξ ξ̇+ηη̇. The points are averages of 1000
calculated energies following feedback cooling for a fixed simulation
time of 80 ms and cooling strength χ = 107 s/m2.

However, feeding back both coordinate’s frequencies
in the form qq̇ = ηη̇ + ξ ξ̇ will lead to cooling of both
modes. The cooling rate 〈P 〉ξ ξ̇+ηη̇ = 〈P 〉ξ ξ̇ + 〈P 〉ηη̇ is nega-
tive for all ωη > ωξ > ωc (see Appendix C), which are the
conditions considered in this paper. Figure 3(d) shows the
final energy distribution with this choice of feedback for a
fixed cooling strength χ = 107 s/m2 and θ = 4π

32 . The parti-
cle’s accessible DOF have been cooled significantly compared
to the case for linear polarization.

Figure 3(d) shows the final energies plateauing near 5 K.
This is a consequence of the simulation time used of 80 ms
and not a limit to further cooling. The limit is set only
by the accuracy of the simulations. What delays further
energy reduction are the decreasing values of the A±(t )
in the cooling rate 〈P 〉ξ ξ̇+ηη̇. To circumvent this delay one
may intermittently increase the cooling strength χ to achieve
more rapid cooling as shown in Fig. 4(a). As an example,
for the nanoparticle considered in this paper, an occupation
number n = 1 corresponds to a temperature on the order
of T = h̄ω/kB = 16.7 μK for ω/2π = 349 kHz. Setting the
simulation accuracy to ∼10−10 K, the particle is able to reach
a temperature of ∼10−9 K by employing the same method
as that in Fig. 4(a). These classical calculations thus show
that parametric feedback cooling is a suitable method for
approaching the quantum regime. The dynamics and funda-
mental limits at lower temperatures will require a full quantum
analysis and will be addressed in a future report.

Also affecting the cooling rate is the frequency separation
between ωξ and ωη. A slight difference in frequency will
allow cooling, but the rate is much larger when the frequency
difference is larger. In Fig. 4(b) the final average energy of
1000 randomly initialized cooling runs 〈ε〉 is plotted versus θ

with each run having a fixed simulation time of 80 ms. For
θ ≈ 0 (ωη ≈ ωξ ) the average final energy is ∼300 K, similar
to the final temperature when feedback cooling using linear
polarization. As θ increases (ωη > ωξ ), the cooling proceeds
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FIG. 5. Power spectral densities of a py measurement before and
after feedback cooling for (a) linear polarization and (b) elliptical
polarization. Feedback cooling using linear polarization eliminates
one peak, shifting the remaining peak to a normal mode frequency
and reducing the motion to pure precession. Feedback cooling under
elliptical polarization reduces both peaks in magnitude, and shifts
them toward the normal mode frequencies found in the small angle
approximation.

more quickly, as evidenced by the average final energy de-
creasing. The rate plateaus near θ = 4π

32 where the competing
heating terms in Eqs. (29) and (30) become negligible.

C. Experimental signatures

What is actually measured in the laboratory is the power
spectral density (PSD) of the signal. Figures 5(a) and 5(b)
show the PSD of a py measurement before and after cooling
the particle using linear and elliptical polarization. Before
cooling, two peaks are seen identifying the existence of two
rotational motions at different frequencies; the libration and
precession motions discussed in Sec. II. As the particle is
cooled using linear polarization, both peaks converge to a
normal mode frequency ω± with the larger peak reducing
to a nonzero value and the smaller peak decreasing to zero.
Introducing elliptical polarization allows both modes to be
cooled fully. In this case, the two initial peaks each converge
to a normal mode frequency with the magnitudes of both
peaks decreasing to zero.

V. DISCUSSION OF HEATING AND NOISE

The above analysis has shown that it is theoretically possi-
ble to cool the librational motion through parametric feedback
cooling within a classical approximation that does not include
sources of noise or heating. However, real experiments will
encounter unavoidable shot noise, gas collisions, measure-
ment uncertainty, and quantum limits.

The effects of a nonzero measurement uncertainty was
addressed by the authors of Ref. [33], showing that inefficient
feedback sets a lower bound on the occupation number after
cooling for a fixed cooling power. This noise source becomes

important for a nanoparticle in a low occupation state n ∼ 50
(T ∼ 1 mK). The spin about the symmetry axis of a nan-
odumbbell limits the energy of the particle’s accessible DOF
in the 1–100 K range after parametric feedback cooling with
linear polarization [Fig. 3(c)], leaving imperfect feedback to
be a negligible effect. For elliptical polarization, librational
cooling is expected to be affected similarly to that found in
Ref. [33] with a lower bound on the occupation number. A
full quantum treatment, to be performed in the future, will test
this hypothesis.

One may think it possible that gas collisions could in-
duce an asymmetry between the librational coordinates which
would allow further cooling. To test this hypothesis the effects
of shot noise and gas collisions in our simulations were
included for linearly polarized light. Laser shot noise was
included using the methods of the authors of Ref. [33].
Gas collisions were considered as the Langevin type, π̇i =
−�iπi + ζ (t ), with πi = (α̇, β̇, γ̇ ), �i = τi/Ii�i the damping
rate (�α = �β) [37], and ζ (t ) stochastic noise. Simulations
were performed for three different pressures P = 760, 10−3,
and 10−7 Torr.

For P = 760 Torr, the nanoparticle is unable to be cooled.
The final energies conform to a Maxwell-Boltzmann distribu-
tion as it thermalizes with the surrounding gas at 300 K. Here,
increasing the cooling strength χ , with hope to overcome
energy exchange with the gas, heats the particle as its motion
is more Brownian than periodic.

For P = 10−3, and 10−7 Torr, the main results of Secs. II
and IV A hold, with final energy distributions and PSD’s simi-
lar to that of Figs. 3(c) and 5(a), respectively. The simulations
reveal that gas collisions and photon scattering do not change
the general conclusions of this paper in the classical limit. The
effects of laser shot noise and gas collisions while cooling
using elliptically polarized light are expected to limit the
lowest occupation number attainable for a fixed cooling rate
and will be studied in a future report.

VI. CONCLUSION

We have theoretically studied the rotational dynamics of an
optically trapped nanodumbell with and without parametric
feedback cooling. A relatively simple model describing the
motions in a small angle approximation has also been pro-
vided. The nanoparticle oscillates about the polarization axis
as a superposition of two modes resulting in a combination
of libration and precession motions. The librational motion is
due to the laser field’s potential while precession arises from
the nonzero spin of the nanoparticle about its symmetry axis.
The equations of motion describing the location of the tip of
the nanoparticle in the small angle approximation are seen
to have the same form as a charged particle in a harmonic
oscillator potential and a static magnetic field.

The effect of parametric feedback cooling using a linearly
polarized beam is to remove one of the two modes, resulting
in pure precession. In this geometry, it is not possible to
extract energy from more than two degrees of freedom and not
possible to cool to the quantum regime even when information
about both librational frequencies is available. Evidence of
these dynamics may be found in the power spectral density
with two peaks converging toward normal mode frequencies

013821-7



T. SEBERSON AND F. ROBICHEAUX PHYSICAL REVIEW A 99, 013821 (2019)

during the cooling process, with the smaller of the two peaks’
magnitude reducing to zero.

Using a potential energy that sets different frequencies
of libration allows cooling to much lower energies when
information about both librational frequencies are available,
theoretically approaching the quantum regime in this classical
analysis. The setup for cooling may be achieved experimen-
tally by using elliptical polarization or using two perpendic-
ular laser beams incident on the nanoparticle and feeding
back both coordinate frequencies. If a single librational co-
ordinate frequency is used in the feedback, the particle will
ultimately heat. The rate of cooling is largely determined
by the cooling strength and the separation between the two
librational frequencies. In this case, the power spectral density
will show two peaks converging toward the two normal mode
frequencies with both magnitudes decreasing to zero over
time.

After submission of this paper, Ref. [54] was published
proposing a method for cooling the librational motion of
an ellipsoidal nanodiamond utilizing the intrinsic magnetic
dipole moment of the NV center. This method is only useful
for nanodiamonds, but may have potential to cool into the
quantum regime. However, the authors of Ref. [54] did not
include the rotation about the symmetry axis. Therefore, it
is difficult to ascertain whether the symmetry discussed in
Sec. IV would be relevant. In particular, it is uncertain whether
this method would allow cooling of the rotation about the
symmetry axis and/or cooling of more than one precessional
mode.
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APPENDIX A: CONVENTION AND DYNAMICS

The Euler angles in the z-y ′-z′′ convention were used,

which, for the sake of clarity, gives the rotation matrix
↔
R as

↔
R =

↔
Rz′′

↔
Ry ′

↔
Rz, (A1)

and

↔
Rz =

⎛
⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞
⎠, (A2)

↔
Ry ′ =

⎛
⎝cos β 0 − sin β

0 1 0
sin β 0 cos β

⎞
⎠, (A3)

↔
Rz′′ =

⎛
⎝ cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎞
⎠. (A4)

The full equations of motion for α, β, γ are found through the
Lagrangian with kinetic and potential energies

K = 1
2Ix

(
ω2

1 + ω2
2

) + 1
2Izω

2
3, (A5)

U = − 1
4 �p · �Einc, (A6)

where �p =
↔
R

†↔
α0

↔
R �Einc is the polarization vector,

↔
α0 is the

diagonal polarizability matrix, and the body frame angular
velocities are given by

ω1 = β̇ sin(γ ) − α̇ sin(β ) cos(γ ), (A7)

ω2 = β̇ cos(γ ) + α̇ sin(β ) sin(γ ), (A8)

ω3 = α̇ cos(β ) + γ̇ = const. (A9)

Due to the particle symmetry, ω3 is a constant of the motion.
The equations of motion for the three angles are

α̈ = −2α̇β̇ cot(β ) + β̇ csc(β )
Iz

Ix

ω3 − 1

Ix sin2(β )

(
∂U

∂α

)
,

(A10)

β̈ = sin(β )

(
α̇2 cos(β ) − α̇

Iz

Ix

ω3

)
− 1

Ix

(
∂U

∂β

)
, (A11)

γ̇ = ω3 − α̇ cos(β ). (A12)

To evaluate Eq. (A6), we consider the nanodumbbell in the
dipole limit λ � R with the center of mass fixed at the
origin so that the electric field has no spatial dependence.
For elliptical polarization, �Einc = E0 < cos θ, i sin θ, 0 >, the
potential is

U = − E2
0

4
[αx + (αz − αx ) sin2 β

× (cos2 θ cos2 α + sin2 θ sin2 α)], (A13)

and the potential for linear polarization is U (θ = 0). The
analysis in the main paper excludes the constant term in
the potential energy, as it does not affect the librational and
rotational dynamics.

APPENDIX B: AXIAL DISPLACEMENT IN THE LASER
FIELD

To determine the approximate size of translational dis-
placement in the axial direction, consider a laser with intensity
I0, power P0, and wave vector �k = 2π

λ
ẑ incident on a dumbbell

of radius R and polarizability α0 = 4πε0R
3α with ε0 the

permittivity of free space. The average force on the nanopar-
ticle due to momentum transfer from the beam in the axial
direction is

Fz =
(

I0λ

hc

) ∫
�

dσ

d�
(� �pẑ)d� (B1)

=
(

4

3

)(
P0NA2

c

)(
2πR

λ

)6

α2, (B2)

where h is Planck’s constant, c is the speed of light,
� �p = h

λ
{[1 − cos(θ )]ẑ + sin(θ )ρ̂} is the momentum transfer
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function with θ the angle with respect to the z axis, and
dσ
d�

= k4R6α2[1 − cos2(θ ) sin2(φ)] is the differential scatter-
ing cross section for a particle in the point dipole limit. The
size of the displacement zd is estimated by looking at the
equations of motion to first order with the nanoparticle in its
equilibrium position

mz̈ = 0 = −mω2
zzd + Fz, (B3)

where mω2
z = [2α0(NA)6π3/(cε0λ

4)]P0 [24]. Solving for
zd in Eq. (B3) recovers the expression found in
Eq. (19),

zd

zR

=
(

32α

3

)(
πR

λ

)3( 1

NA

)2

. (B4)

APPENDIX C: PARAMETRIC FEEDBACK COOLING
UNDER ELLIPTICAL POLARIZATION

The normal modes of Eqs. (27) and (28) are

ξ (t ) = A+ cos(ω+t + δ+) + A− cos(ω−t + δ−), (C1)

η(t ) = A+κ2 sin(ω+t + δ+) − A−κ1 sin(ω−t + δ−), (C2)

with ω± = 1√
2
(ω2

ξ + ω2
η + ω2

c ± Q)
1
2 , Q =√

4ω2
ηω

2
c + (ω2

c + ω2
ξ − ω2

η )
2
, κ1 = (2ω+ωc )/(Q + ω2

c +
ω2

ξ − ω2
η ), κ2 = (2ω−ωc )/(Q − ω2

c − ω2
ξ + ω2

η ). The κi

(i = 1, 2) have the following relations κ2
1 � 1, κ2

2 � 1,
κi (θ = 0) = 1. The relations are important when considering

the cooling rate when feeding back twice of both coordinate’s
frequencies. The small angle approximation equations of
motion under cooling become

ξ̈ = −ω2
ξ [1 + χR2(ξ ξ̇ + ηη̇)]ξ − ωcη̇, (C3)

η̈ = −ω2
η[1 + χR2(ξ ξ̇ + ηη̇)]η + ωcξ̇ . (C4)

The cooling rate is the addition of Eqs. (29) and (30),

〈P 〉ξ ξ̇+ηη̇ = 〈P 〉ξ ξ̇ + 〈P 〉ηη̇

= −[A+(t )]4(z1 − y1) − [A−(t )]4(y2 − z2)

− [A+(t )A−(t )]2(y3 + z3). (C5)

The coefficients in Eq. (C5) are constant for fixed electric field
strengths and are as follows:

(z1 − y1) =
(

Ixω
2
+χR2

4

)(
κ2

1 − 1
)(

ω2
ηκ

2
1 − ω2

ξ

)
� 0, (C6)

(y2 − z2) =
(

Ixω
2
−χR2

4

)(
1 − κ2

2

)(
ω2

ξ − ω2
ηκ

2
2

)
� 0, (C7)

(y3 + z3) =
(

Ixω
2
ξχR2

2

)(
4ω2

ξ + ω2
c

)
> 0, (C8)

which leads to complete cooling for the conditions described
in this paper, ω2

η > ω2
ξ � ω2

c . Only for very large values of ωc

(ωc/ω ∼ 105) is (y2 − z2) < 0.
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