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Shot-noise-dominant regime for ellipsoidal nanoparticles in a linearly polarized beam
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Results on the heating and the parametric feedback cooling of an optically trapped anisotropic nanoparticle
in the laser-shot-noise-dominant regime are presented. The related dynamical parameters, such as the oscillating
frequency and shot noise heating rate, depend on the shape of the trapped particle. For an ellipsoidal particle,
the ratio of the axis lengths and the overall size controls the shot noise heating rate relative to the frequency.
For a particle with smaller ellipticity or bigger size, the relative heating rate for rotation tends to be smaller than
that for translation indicating a better rotational cooling. For one feedback scheme, we also present results on
the lowest occupation number that can be achieved as a function of the heating rate and the amount of classical
uncertainty in the position measurement.
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I. INTRODUCTION

The transition between a quantum and a classical descrip-
tion of a system as its size is increased has been discussed
extensively since the birth of quantum mechanics [1–4].
Understanding the behavior of increasingly large systems in
terms of quantum mechanics is one of the motivations for
investigating mesoscopic quantum phenomena [5,6]. In order
to observe mesoscopic quantum coherence, a mesoscopic
system needs to be cooled to the quantum regime and it
should be well isolated from its environment such that the
quantum coherence is not destroyed before any observation.
Recently, laser-levitated nanoparticles have become a promis-
ing candidate to study mesoscopic quantum phenomena due to
this system’s favorable properties regarding decoherence and
thermalization [5,7–10].

Despite the great advantage of laser levitation, the
nanoparticle still suffers from shot noise due to photon
scattering from the trapping laser. In ultrahigh vacuum, this
shot noise is the dominant source of decoherence [11], which
will lead to an increase in energy of the solid-body degrees
of freedom: the center-of-mass motion and the solid-body
rotations. Thus, in a laser-levitated-cooling experiment, the
photon scattering, as an unavoidable factor, plays the role of
setting a fundamental cooling limit to the system since the
heating from shot noise will counteract whatever method is
used to cool the nanoparticle.

Cooling and controlling the center-of-mass vibration of
levitated nanoparticles have been discussed intensively in
the past several years [12–15]. The interest in the rotational
motion of a nonspherical nanoparticle is also increasing
[10,16–18]. The anisotropy of a dielectric nanoparticle has
an orientation-dependent interaction with a linearly polarized
optical field which leads to a restricted, librational motion
in some of the orientation angles when the laser intensity
is large enough [19,20]. The oscillating frequency of the
rotational degrees of freedom can be much larger than that of
the spatial degrees of freedom indicating that the rotational
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ground state can be reached at a higher temperature [10].
However, this feature does not guarantee that the ground state
of the librational motion is easier to reach than that for the
center-of-mass vibration. From our previous study [16], the
decoherence rate due to shot noise in the rotational degrees of
freedom was several orders of magnitude faster than that in the
translational degrees of freedom for a nanoparticle interacting
with blackbody radiation. The results from this theoretical
study suggested that cooling the center-of-mass vibrations has
a practical advantage over cooling the librational motion.

In this paper, we investigate the shot noise heating and
parametric feedback cooling [12] of a nanoellipsoid trapped in
a linearly polarized laser beam. The nanoparticle is trapped in
the center of the beam with its long axis closely aligned with
the laser polarization direction. Because the nanoparticle is
nearly oriented with the laser polarization, the decoherence
and shot noise heating rate of the librational motion are
qualitatively changed from those for a nanoparticle interacting
with blackbody radiation. The heating rate differs in the
rotational and the translational degrees of freedom depending
on the particle size and geometry. Importantly, we find that
the relative rotational heating rate is slower than translation
for a wide range of nanoparticle sizes and shapes, suggesting
a better rotational than translational cooling. However, the
preference for smaller relative heating rates becomes much
less certain when classical feedback uncertainty is included
in the calculation. By one measure, a lower optimal cooling
limit can be reached for motions with a higher relative heating
rate. Thus, the details of the limitations imposed by the
classical measurement uncertainty will determine whether
lower quantum numbers can be achieved for vibrations or
librations. The results of the feedback cooling calculations are
suggestive, instead of definitive, because they are based on
classical mechanics. Quantum calculations with more realistic
measurement assumption would allow for estimates of the
feedback-cooling limits [21–25]. Although more computa-
tionally demanding, a quantum version of feedback cooling
of levitated nanoparticles should be within reach.

This paper is organized as follows. Section II introduces
the translational and rotational shot noise heating of a
nanoellipsoid trapped in a laser beam based on the theory
of collisional decoherence [4,16,17]. Section III analyzes the
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FIG. 1. A symmetric ellipsoidal nanoparticle is trapped in a laser
beam (shown by the red line), which is polarized in the z direction
and propagating in the positive y direction (shown by the red arrow).
Besides the vibrational motion in the center-of-mass degrees of
freedom, the ellipsoid also rotationally vibrates with its long axis
closely aligned with the laser polarization direction. The angles α,β,γ

denote an orientation of the nanoparticle.

particle’s vibrational and librational motions and discusses its
relative cooling in the laser beam. Section IV presents the
numerical results of the heating and the parametric feedback
cooling. The simulation is classical and assumes an ideal
measurement of the particle’s position and velocity. Although
limited to the classical regime, the calculations give insight into
the relative difficulty of cooling the vibrational and librational
degrees of freedom. In Sec. V, the results of feedback cooling
with classical feedback uncertainty are presented. Finally,
Sec. VI summarizes our results.

II. SHOT NOISE HEATING IN A LASER BEAM

In this paper, we consider a nanoellipsoid with a size about
50 nm and mass m trapped in a linearly polarized laser beam,
as shown in Fig. 1. The laser field is polarized in z and
propagating in the positive y direction, which can be denoted
by �Einc = �ξE exp(i�k0 · �r), where �ξ, E, and �k0 = k0ŷ are the
polarization vector, the field magnitude, and the wave number,
respectively. The system is assumed to be well isolated from its
environment, and recoil from the elastically scattered photons
is the major source of decoherence.

A. Shot noise in translational degrees of freedom

In order to compare the shot noise in rotation and trans-
lation, we first present the well known photon recoil heating
of a trapped nanoparticle in its center-of-mass motion [5,11].
Classically, the levitated nanoparticle experiences a momen-
tum kick from each scattered photon [11], each of which gives
a recoil energy �E = h̄2k2/2m when the nanoparticle is much
smaller than the wavelength of the light. The shot noise heating
rate can be derived through multiplying the recoil energy by
the momentum transfer cross section and the photon flux.
Quantum mechanically, the interaction between the system
and the incoming photons causes a decoherence in the system
state [1], which generates a diffusion in momentum space.
The classical and quantum mechanical treatments lead to the
same shot noise heating rate. In the position basis, the master

equation can be written as [4]

∂

∂t
ρ(x,x ′) = −	(x,x ′)ρ(x,x ′). (1)

The unitary part of the time evolution is not shown in the
above expression. 	(x,x ′) is the decoherence rate. In a long-
wavelength approximation (which is a good approximation in
the cases we consider), the decoherence rate 	 = D(x − x ′)2,
where D is the momentum diffusion constant and it takes the
form

D = Jp

∫
d3�kμ(�k)

∫
d2k̂′|f (�k,�k′)|2 k2

2
|k̂ − k̂′|2, (2)

where Jp is the photon flux, μ(�k) is the incoming wave number
distribution, and dσ/d� = |f (�k,�k′)|2 is the differential cross
section. �k and �k′ are the incoming and outgoing wave vectors,
respectively. The shot noise heating rate can be evaluated by
the formula

ĖT = d 〈HT 〉
dt

= tr

(
KT

∂

∂t
ρ

)
, (3)

where HT = KT + VT denotes the system Hamiltonian and
KT = P2/2m is the free system Hamiltonian. The potential
energy VT is absent from the right-hand side of Eq. (3) since the
trace operation will set 	 = D(x − x ′)2 to zero. Combining
the above equations, a straightforward calculation yields the
result

ĖT = Jp

∫
d3�kμ(�k)

∫
d2k̂′ dσ

d�

h̄2k2

2m
2(1 − cos θ ), (4)

where θ is the angle between the incoming and outgoing wave
vector. Equation (4) gives the translational shot noise heating
rate, which is exactly the same as what one would expect from
a classical derivation [12].

In order to compare the above calculation with experimental
results [11], Eq. (4) needs to be further evaluated. We are
interested in the shot noise of a system coherently illuminated
by a laser beam, so the incoming wave vector distribution can
be approximated by

μ(�k) = δ(�k − �k0), (5)

in which �k0 = k0ŷ is the incoming wave vector. If we denote ξ ′
as the polarization vector of the outgoing wave, the scattering
amplitude can be written as [26]

f (�k′,�k) = k2

4πε0E
�ξ ′ · �P , (6)

where �P = α · �Einc is the induced dipole moment. For now,
we choose a spherical nanoparticle (a nonspherical particle is
discussed below), such that the polarizability is a scalar

α = 4πε0

(
ε − 1

ε + 2

)
r3, (7)

where r is the radius, and ε and ε0 are the relative and
the vacuum dielectric constant, respectively. Substituting the
above equations into Eq. (4) and using the formula [27]∑

λ=(1,2)

ελ
i ελ

j = δij − k̂i k̂j (8)

053421-2



SHOT-NOISE-DOMINANT REGIME FOR ELLIPSOIDAL . . . PHYSICAL REVIEW A 95, 053421 (2017)

to average the polarization of the outgoing wave, the shot noise
heating rate is obtained:

ĖT = D
h̄2

m
= 8πJp

3

(
k2

0

4πε0

)2

α2 h̄2k2
0

2m
. (9)

Using the parameters in Ref. [11], the laser wavelength
λ = 1064 nm, the particle mass of a fused silica of radius r =
50 nm is approximately 1.2 × 10−18 kg, the relative dielectric
constant is about 2.1, and the photon flux Jp is equal to the
laser intensity over the energy of a photon. The laser intensity
at the focus is given by I = Pk2NA2/2π . The laser power
is P = 70 mW and NA = 0.9 is the numerical aperture for
focusing [11] (these values are used throughout the paper
unless specified otherwise). Combining all of these factors,
the translational shot noise heating rate is

ĖT � 200 mK/sec, (10)

which matches well the experimental result in Ref. [11].

B. Shot noise in rotational degrees of freedom

Inspired by the experiment of laser trapping and cooling
of nonspherical nanoparticles [10,18], the master equation of
rotational decoherence was studied for either mass particles
or thermal photons scattered from an anisotropic system,
and a squared sine dependence on the orientation difference
was found in the angular localization rate [16,17]. Similarly
to the momentum diffusion induced by the translational
decoherence, the rotational decoherence generates an angular
momentum diffusion, which was discussed for a spherically
symmetric environment in Ref. [17]. Based on the rotational
master equation, the time evolution of the expectation value of
the angular momentum J was shown to be a constant, while the
second moment of the angular momentum indeed follows the
diffusion equation

〈J2〉t = 〈J2〉0 + 4Dt, (11)

where D is the diffusion coefficient determined by different
types of scattering. The diffusion coefficients of Rayleigh-type
and van der Waals–type scattering were given in Ref. [17].

In this section, we discuss the rotational shot noise from
photon scattering in a laser beam. The starting point is the
master equation of rotational decoherence. As shown in Fig. 1,
the configuration of the ellipsoid can be described by its Euler
angles |�〉 = |α,β,γ 〉 [16,17]. If we denote ρ(�,�′) as the
density matrix of the system in the orientational basis, the
time evolution follows the equation [16]

∂

∂t
ρ(�,�′) = −	(�,�′)ρ(�,�′), (12)

where

	 = Jp

2

∫
d3�kμ(�k)

∫
d2k̂′|f�(�k′,�k) − f�′ (�k′,�k)|2 (13)

is the rotational decoherence rate. Detailed discussion about
the equation can be found in Ref. [16]. Similarly to Eq. (3),
the rotational shot noise heating can be obtained by evaluating

ĖR = d

dt
〈HR〉 = tr

(
KR

∂

∂t
ρ

)
, (14)

where HR = KR + VR is the rotational Hamiltonian, VR is
the potential energy which has zero contribution in the above
equation, and KR is the free rotational part. For a symmetric
top, KR takes the form [28]

KR = − h̄2

2I1

[
∂2

∂β2
+ cot β

∂

∂β
+

(
I1

I3
+ cot2 β

)
∂2

∂γ 2

+ 1

sin2 β

∂2

∂α2
− 2 cos β

sin2 β

∂2

∂α∂γ

]
, (15)

where I1 and I3 are the moments of inertia of the ellipsoid
along the short and long axis, respectively. To calculate the shot
noise heating, the next step is to determine the decoherence
rate 	. As with the derivation of the translational shot noise,
the distribution of the laser wave vector takes the delta function
μ(�k) = δ(�k − �k0), where �k0 is in the propagating y direction.
The scattering amplitude is given by

f�(�k′,�k) = k2

4πε0E
�ξ ′ · ¯̄α� · �Einc, (16)

where ¯̄α� is the polarizability matrix for a specific configu-
ration |�〉 = |α,β,γ 〉. If we place the ellipsoid symmetrically
along the coordinate axis, the polarizability matrix will be
diagonal,

¯̄α0 =
⎛
⎝αx 0 0

0 αy 0
0 0 αz

⎞
⎠, (17)

where αx = αy for a symmetric top. The polarizability with
other rotational configuration can be derived through the
operation

¯̄α� = R†(�) ¯̄α0R(�). (18)

Combining the above equations and averaging over the
polarizations of the outgoing wave using Eq. (8), the integral
of Eq. (13) becomes

	 = Jp

2

k4
0

(4πε0)2

2π

3
(αz − αx)2[1 − cos(2β) cos(2β ′)

− cos(α − α′) sin(2β) sin(2β ′)]. (19)

The polarizability αx,z should not be confused with the
Euler angle α and α′. As expected, 	 differs from the
decoherence rate from blackbody radiation given in Ref. [16].
The localization rate 	 depends on the orientations |�〉 and
|�′〉 individually since the polarization of incoming photons
is not isotropic. There is no dependence on γ because we
are assuming a symmetric top. The localization rate depends
only on the difference of the angle α because the photons are
linearly polarized in the z direction which does not have a
preferential angle in the xy plane.

For the cases considered below, we take the small oscillation
approximation β � 1 which will be justified in the next
section. (Unless specified otherwise, the symbol � in this paper
means this approximation is used.) Combining Eqs. (12), (15),
and Eq. (19), a direct evaluation of Eq. (14) yields the rotational
shot noise heating rate

ĖR � 8πJp

3

(
k2

0

4πε0

)2

(αz − αx)2 h̄2

2I1
, (20)

where terms of order β2 have been dropped.
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TABLE I. The parameters for three different nanodiamonds in a laser trap. The data are ordered for diamonds with decreasing ellipticity,
while their sizes

√
a2 + b2 are kept approximately the same. The trapping laser has wavelength λ = 1064 nm and power P = 70 mW.

(a,b)/nm αz−αx

αz
ωβ1/2π ωx/2π ωy/2π ĖR (mK/s) ĖT (mK/s) ĖR/ĖT

ωβ1
ωx

〈ṅ〉R
〈ṅ〉T

�nR

�nT

(15,70) 0.60 4.02 MHz 625 kHz 398 kHz 3.83 × 103 382 10.0 6.43 1.56 0.24
(38,60) 0.28 2.20 MHz 497 kHz 316 kHz 1.84 × 103 838 2.20 4.42 0.50 0.11
(48,53) 0.07 998 kHz 454 kHz 289 kHz 113 824 0.14 2.20 0.06 0.03

III. RELATIVE COOLING OF THE ELLIPSOID
IN THE LASER BEAM

There are several possible quantities that are useful when
comparing the cooling of translation and rotation. The first one
is the ratio of magnitudes of the translational and rotational
shot noise, which is written as

ĖR

ĖT

� 5

(
λ

2π
√

a2 + b2

)2 (αz − αx)2

α2
z

, (21)

where the moment of inertia I1 = 1
5m(a2 + b2) with a and b

being the short and long axis of the ellipsoid and k0 = 2π/λ

are used. The polarizability can be determined by the formula
[29]

αi = ε0V
ε − 1

1 + Li(ε − 1)
, (22)

where V is the particle volume, and ε is the relative dielectric
constant. Li=(x,y,z) is determined by

Lx = Ly = 1 − Lz

2
,

Lz = 1 − e2

e2

(
1

2e
ln

1 + e

1 − e

)
,

(23)

where e =
√

1 − a2/b2 is the ellipticity of the nanoparticle.
Using the wavelength λ = 1064 nm and ε = 5.7 for diamonds
and ε = 2.1 for silica, the rotational and translational shot
noise and their ratios ĖR/ĖT for several nanodiamonds
and fused silica are given in Tables I, II, III, and IV (for
convenience, other related quantities are included in the
tables). The geometries of the ellipsoids in the tables are
chosen in a way such that their sizes

√
a2 + b2 or ellipticities

are approximately fixed. From the tables, we see that the
ratio ĖR/ĖT differs depending on the ellipticity or size of
the nanoparticle. A more elongated or smaller ellipsoid tends
to have higher shot noise heating in the rotational degrees of
freedom, which suggests that particles with more spherical
shape or bigger size may be better for rotational cooling.

The second useful quantity is the ratio of the rate of
change of occupation number 〈ṅ〉R / 〈ṅ〉T , where 〈n〉 ≡ E/h̄ω

is defined as the mean occupation number, and E and ω are
the energy and the oscillating frequency in the corresponding
degree of freedom. For exploration of quantum phenomena,
the occupation should be as small as possible. In order to get
the ratio, it is necessary to analyze the mechanical motion
of the nanoparticle in the laser trap. We consider an incident
Gaussian beam which is z polarized and propagates in the y

direction, as shown in Fig. 1. The detailed discussion of the
Gaussian beam can be found in Refs. [12,30]. The ellipsoid in
the laser trap experiences a force and a torque

Fi = 1
2 ( �P · ∂i

�Einc),

Mi = 1
2 ( �P × �Einc)i ,

(24)

where no absorption is assumed such that the dipole moment �P
is real. For the center-of-mass motion, using the small oscilla-
tion approximation, the particle oscillates harmonically in the
trap and each degree of freedom has an oscillating frequency,

ωx = ωz �
√

αz

m

E0

w0
,

ωy �
√

αz

2m

E0

y0
,

(25)

where all corrections quadratic in the amplitude of oscillations
have been dropped. y0 = πw2

0/λ,w0 = λ/(πNA) is the
beam waist, and E0 is the field strength in the center of
the laser focus. Similarly, for the rotational motion, due to the
torque exerted on the particle, the long axis of the ellipsoid
will be aligned with the direction of the laser polarization, as
shown in Fig. 1. From the small oscillation approximation,
the torsional oscillating frequencies can be written as

ωβ1 = ωβ2 �
√

αz − αx

2I1
E0, (26)

where all corrections quadratic in the amplitude of oscillations
have been dropped. The subindexes β1 and β2 are used
to denote the torsional vibration along the x and y axes,
respectively. From the above equations, one finds that the
ratio of torsional oscillating frequency to the translational

TABLE II. The parameters for three different nanodiamonds in a laser trap. The data are for diamonds with increasing size while fixing
the ellipticity such that the ratio (αz − αx)/αz stays approximately the same. The trapping laser has wavelength λ = 1064 nm and power
P = 70 mW.

(a,b)/nm αz−αx

αz
ωβ1/2π ωx/2π ωy/2π ĖR (mK/s) ĖT (mK/s) ĖR/ĖT

ωβ1
ωx

〈ṅ〉R
〈ṅ〉T

�nR

�nT

(27,42) 0.28 3.14 MHz 497 kHz 316 kHz 1.23 × 103 292 4.22 6.31 0.68 0.11
(38,60) 0.28 2.20 MHz 497 kHz 316 kHz 1.84 × 103 838 2.20 4.42 0.50 0.11
(49,78) 0.28 1.68 MHz 497 kHz 316 kHz 2.46 × 103 1830 1.34 3.40 0.39 0.11
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TABLE III. The parameters for three different fused silica in a laser trap. The data are for silica with different ellipticities, while their sizes√
a2 + b2 are kept approximately the same. The trapping laser has wavelength λ = 1064 nm and power P = 70 mW.

(a,b)/nm αz−αx

αz
ωβ1/2π ωx/2π ωy/2π ĖR (mK/s) ĖT (mK/s) ĖR/ĖT

ωβ1
ωx

〈ṅ〉R
〈ṅ〉T

�nR

�nT

(15,70) 0.30 1.90 MHz 419 kHz 267 kHz 119 48.6 2.45 4.52 0.54 0.12
(38,60) 0.13 1.17 MHz 388 kHz 247 kHz 93.2 197 0.47 3.01 0.16 0.05
(48,53) 0.03 549 kHz 374 kHz 238 kHz 6.50 240 0.03 1.47 0.02 0.01

oscillating frequency is approximately given by

ωβ1

ωx

�
√

5w0√
2(a2 + b2)

√
αz − αx

αz

. (27)

In an experiment, the beam waist is much bigger than the size of
the particle, and the polarizabilities αz and αz − αx are roughly
the same order, so the rotational oscillating frequency is gen-
erally higher than the translational oscillating frequency [10].

Thus, the ratio of the corresponding rate of change of
occupation number is obtained:

〈ṅ〉R
〈ṅ〉T

≡ ĖR/ωβ1

ĖT /ωx

� λ2

4π2w0

√
10(αz − αx)3

(a2 + b2)α3
z

, (28)

where the ratio is determined by the laser parameters, the
particle size, and the quantity (αz − αx)/αz (determined by
the particle ellipticity and dielectric constant). The ratios
〈ṅ〉R/〈ṅ〉T with respect to the particle ellipticity and size are
given in Fig. 2. The blue and yellow curves are for diamonds
and silica respectively. In Fig. 2(a), the particle size is kept
fixed while we increase the ellipticity. As the particle shape
approaches more spherical (ellipticity decreases), the ratio
〈ṅ〉R/〈ṅ〉T becomes smaller. In Fig. 2(b), we change the
particle size while the particle ellipticity stays fixed. As the
particle size increases, we see 〈ṅ〉R/〈ṅ〉T gets smaller. In
addition, comparing the results for diamond and silica with the
same geometries, we see that the ratio 〈ṅ〉R/〈ṅ〉T is generally
smaller for silica. The reason is that (αz − αx)/αz in Eq. (28) is
smaller for particles with smaller dielectric constants and silica
has a smaller dielectric constant than diamond. Intuitively, the
ratio 〈ṅ〉R/〈ṅ〉T should be chosen as small as possible so as
to get a better rotational cooling to the ground state. However,
we will show later that the unavoidable measurement noise
quantitatively modifies the trend.

The third useful quantity is the ratio �nR/�nT , where
�n ≡ 2πĖ/h̄ω2 is the change in occupation number over one
vibrational period in the corresponding degree of freedom.
The ratio can be written as

�nR

�nT

= ĖR/ω2
β

ĖT /ω2
x

� λ2

2π2w2
0

αz − αx

αz

, (29)

which only depends on the laser parameters, the particle
ellipticity, and the particle dielectric constant. The ratios
�nR/�nT for diamond and silica with respect to the particle
ellipticity are given in the tables and are plotted in Fig. 3. The
curves show that the ratio increases with the particle ellipticity
and also increases with the particle dielectric constant. This
quantity is important and we will show in Sec. V that this
quantity actually controls the classical dynamics during the
feedback cooling.

The above equations are based on a small oscillation
angle approximation. In a cooling experiment, the maximal
oscillation angle can be estimated by

βmax �
√

2kBT

I1ω
2
β

, (30)

where kB is the Boltzmann constant and T denotes the
temperature. Using the data (a = 48 nm, b = 53 nm) from
Tables I and III, we find that the maximal angle spread is
still small (βmax � 10−3 rad for diamond, βmax � 10−2 rad for
silica) at T = 0.1 K. For higher oscillating frequencies and
lower temperature, the maximal angle spread βmax will be
even smaller.

IV. NUMERICAL SIMULATION OF SHOT NOISE
HEATING AND FEEDBACK COOLING

Parametric feedback cooling is discussed in Ref. [12],
where a single laser beam is used for both trapping and
cooling. The spatial motion of a nanoparticle is cooled from
room temperature to subkelvin, and the quantum ground state
cooling is also suggested with the same cooling mechanism.
In this parametric feedback scheme, a signal at twice the
oscillation frequency is obtained by multiplying the particle’s
position with its first time derivative x(t)ẋ(t). This information
is then fed back to the system, which leads to a loop that on
average acts as a drag on the particle. The parametric cooling
works by simply modulating the intensity of the trapping
laser, and this scheme is extremely suitable for rotational
cooling since it avoids relatively complex operations if one
tries to feedback torque. In this section, the feedback cooling
calculations are based on ideal assumptions about measuring

TABLE IV. The parameters for three different fused silica in a laser trap. The data are for silica with increasing sizes while the ellipticity is
fixed such that the ratio (αz − αx)/αz stays approximately the same. The trapping laser has wavelength λ = 1064 nm and power P = 70 mW.

(a,b)/nm αz−αx

αz
ωβ1/2π ωx/2π ωy/2π ĖR (mK/s) ĖT (mK/s) ĖR/ĖT

ωβ1
ωx

〈ṅ〉R
〈ṅ〉T

�nR

�nT

(27,42) 0.13 1.67 MHz 388 kHz 247 kHz 62.6 69.1 0.91 4.30 0.21 0.05
(38,60) 0.13 1.17 MHz 388 kHz 247 kHz 93.2 197 0.47 3.01 0.16 0.05
(49,78) 0.13 899 kHz 388 kHz 247 kHz 124 427 0.29 2.31 0.12 0.05
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FIG. 2. The ratio of the occupation number change 〈ṅR〉 / 〈ṅT 〉 in
terms of ellipticity (a) and size (b). (a) The size of particles is fixed at√

a2 + b2 = 71 nm while the ellipticity increases. (b) The ellipticity
is fixed at e = 0.77 while the particle size increases. The blue curves
are for diamonds while the yellow curves are for silica.

the nanoparticle’s position and orientation. The discussions of
feedback cooling with the measurement uncertainty are given
in the next section.

Combining the translational and rotational motion, the
classical dynamics of the ellipsoid is governed by

m
d2xi

dt2
� −mω2

i (1 + �)xi,

I1
d2βj

dt2
� −I1ω

2
βj

(1 + �)βj .

(31)

The small oscillation approximation is used in the above
equations where all corrections quadratic in the amplitude
of oscillations have been dropped. xi = (x,y,z) and βj =
(β1,β2). The shot noises in translation and rotation are added
at each time step according to

pi(t + δt) = pi(t) + δWi δpi,

Li(t + δt) = Li(t) + δRj δLj ,
(32)

where δWi,δRj are the standard normally distributed random

numbers, and δpi =
√

2ĖTi
δt m, δLj =

√
2ĖRj

δt I are the fluctua-
tion of the momentum and angular momentum for each degree
of freedom induced by the shot noise. The heating rate in the
z direction (optical polarization direction) is half that of the
other two translational degrees of freedom because the photons
scatter less in the direction of the laser polarization [11]. � is
a scalar which takes the form

� =
∑

i=1,2,3

ηixi ẋi +
∑
i=1,2

ζir
2βiβ̇i , (33)

where r is the size of the nanoparticle. The feedback parame-
ters ηi and ζi have the unit time/length2 and they control the

FIG. 3. The ratio �nR/�nT in terms of the particle ellipticity.
The blue and yellow curves correspond to diamond and silica,
respectively.
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FIG. 4. The classical simulation results of shot noise heating
for nanodiamonds in both the translational and rotational degrees
of freedom. Each curve is averaged over 400 individual reheating
trajectories. (a) and (b) are for the nanoparticle with half axes (a =
15 nm, b = 70 nm), while (c) and (d) with half axes (a = 38 nm, b =
60 nm), (e) and (f) with half axes (a = 48 nm, b = 53 nm). The
dashed lines are the heating curves T = T0 + Ėt with T0 the initial
temperature and Ė the corresponding heating rate from Table I.

cooling limit and speed. Details about the parameters and the
parametric feedback cooling limit are given in the Appendix.
Simulations are performed for three different nanodiamonds
with decreasing ellipticity, whose half axes go from (a =
15 nm, b = 70 nm), (a = 38 nm, 60 nm) to (a = 48 nm, b =
53 nm). The corresponding parameters are given in Table I.
The classical equations of motion are numerically solved using
a fourth-order Runga-Kutta algorithm with adaptive time steps
[31]. All simulations are repeated many times and data are
collected by averaging over the different runs to reduce the
random noise.

We start by presenting the simulation with zero feedback
(η1,2,3 = 0, ζ1,2 = 0), which corresponds to the pure shot noise
heating process. The system is prepared initially at temperature
Ti = 1 μK. The result is shown in Fig. 4, where each curve
depicts the time evolution of the energy in the corresponding
degrees of freedom. Figures 4(a) and 4(b) show the case
(a = 15 nm, b = 70 nm) in the first 100 ms. The rotational
shot noise is about an order of magnitude larger than that in
the translational motion. The case (a = 38 nm, b = 60 nm)
is given in Figs. 4(c) and 4(d), in which the rotational and
translational shot noise heating rates are of similar size. As
the ellipticity gets smaller, the shot noise in the rotational
degrees of freedom becomes less than that in the translational
motion, which is shown in Figs. 4(e) and 4(f) for the case
(a = 48 nm, b = 53 nm). From Table I, the case (a =
48 nm, b = 53 nm) has a higher rotational than translational
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FIG. 5. The parametric feedback cooling for nanodiamonds in
all degrees of freedom, where each curve shows the time evolution
of the average occupation number in the corresponding degree
of freedom. Data are collected by averaging 30 cooling trajec-
tories. Calculations are for classical parametric feedback cooling;
thus results for occupation numbers less than 10 are suggestive.
(a) and (b) depict the translational and rotational cooling, respectively,
for a nanoparticle with half axes (a = 15 nm, b = 70 nm). The
cooling parameter �1 = {ηi = 1.1 × 1011 s/m2, ζi = 1011 s/m2} for
t < 100 ms and �2 = 10�1 for t > 100 ms. Similarly, (c) and (d)
show the cooling for half axes (a = 38 nm, b = 60 nm) while (e) and
(f) for half axes (a = 48 nm, b = 53 nm).

oscillating frequency, which suggests that it might be a good
candidate for rotational cooling.

The nonzero feedback cooling is performed with the system
temperature initially prepared at Ti = 0.1 K. The feedback
parameters (ηi, ζi) are chosen in a way such that Eq. (33) is
much smaller than 1 and the position and velocity are assumed
to be measured perfectly.

First, we turn on the feedback in all degrees of freedom.
The results are shown in Fig. 5. Because the calculations

are classical, the results for occupation less than 10 are
qualitative or suggestive. However, we do expect that the
classical results are approximately correct for 〈n〉 ∼ 10 so
we do expect this feedback could get to near the ground
state. By tuning the feedback parameters from �1 = {η1,2,3 =
1.1 × 1011 s/m2,ζ1,2 = 1011 s/m2} to �2 = 10�1, the system
is observed to be quickly cooled. Both the translational and
rotational occupation numbers can get down to less than 1
in this classical calculation, which suggests the possibility of
ground-state cooling in all degrees of freedom. Figures 5(a)
and 5(b) depict the cooling of a nanodiamond with half axes
(a = 15 nm, b = 70 nm) in the translational and rotational
degrees of freedom, respectively. We see that rotation and
translation are cooled with almost equal speed though the
rotational oscillating frequency is more than six times higher
than that for the translational motion. As the ellipticity goes
lower, the cooling in rotation becomes more effective than
in translation. As shown in Figs. 5(c) and 5(d) for the case
(a = 38 nm, b = 60 nm), when the parameter �1 is taken,
the rotational occupation numbers go down close to 10 while
the translational occupation numbers are still around 20. The
cooling in rotation gets even better when the particle with
half axes (a = 48 nm, b = 53 nm) is used, where the rotation
is close to the ground state (〈n〉 < 1) while the translational
occupation numbers are still more than 10, as shown in
Figs. 5(e) and 5(f). The reason is that when the ellipticity
of the nanoparticle gets smaller, the rotational shot noise
heating is less than that for translational heating while the
rotational oscillating frequency is still larger than that for
translation. Thus, a better rotational cooling for a particle
with low ellipticity is expected, which was suggested in the
previous section. From the Appendix, the steady-state value of
〈n〉 is proportional to the square root of Ė/ω2. This suggests
that smaller values of �n = 2πĖ/(h̄ω2), as defined in the
previous section, are better for cooling to the ground state.
However, we will see in the next section that measurement
noise qualitatively modifies this trend.

Second, we keep the feedback cooling only in the rotational
degrees of freedom with �1 = {η1,2,3 = 0, ζ1,2 = 1011 s/m2}
and �2 = 10�1. The results are shown in Figs. 6(a) and 6(b)
for the nanodiamond with half axes (a = 48 nm, b = 53 nm).
As shown in Fig. 6(a), when the feedback is increased from �1

to �2 = 10�1, the rotational occupation number goes down
all the way to the quantum regime. However, as shown in
Fig. 6(b), the translational motion is heated up in the mean
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FIG. 6. The parametric feedback cooling in only the rotational degrees of freedom for a nanodiamond (a = 48 nm, b = 53 nm). All curves
are averaged over 400 trajectories. (a) and (b) show the cooling in both β1 and β2 with the cooling parameters �1 = {η1,2,3 = 0, ζi = 1011 s/m2}.
The black and purple lines show the rotational motion gets cooled as we increase the feedback parameters from �1 to �2 = 10�1. The red,
green, and blue lines depict the heating trajectories in translational degrees of freedom. (c), (d), and (e) show the result of cooling in only
β1 with parameters �1 = {η1,2,3 = 0, ζ2 = 0, ζ1 = 1011 s/m2} and �2 = 10�1, and heating in β2 and x,y,z, respectively. In (d), resonance
heating causes massive heating in the uncooled β2 degree of freedom. The dashed lines in (b), (d), and (e) are the heating curves T = T0 + Ėt

with T0 the initial temperature and Ė the corresponding heating rate from Table I.
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time. In order to see the cooling in only one rotational degree
of freedom, we also calculate the case with �1 = {η1,2,3 =
0, ζ2 = 0, ζ1 = 1011 s/m2}. As shown in Figs. 6(c), 6(d),
and 6(e), the motion in the β1 degree of freedom quickly
gets cooled to the ground-state regime when �2 are taken,
while all other degrees of freedom (β2, x, y, and z) are heated
up. For β2, extra heating is observed due to the resonance
heating: the changes in the laser intensity are predominantly at
the frequency to resonantly couple with either of the rotational
degrees of freedom. In Figs. 6(b), 6(d), and 6(e), the dashed
lines show the heating from pure shot noise. We see that the
pure shot noise heating rates are slightly lower (almost the
same) than the heating rate with feedback cooling. The reason
is because the cooling in one degree of freedom can add to
the heating in the other degrees of freedom. Fortunately, this
extra heating is not excessive and should not be a problem in
experiments.

V. THE PARAMETRIC FEEDBACK COOLING LIMIT
WITH CLASSICAL UNCERTAINTY

The above discussion of feedback cooling is based on an
ideal measurement of the particle’s position and velocity. In
reality, a measurement cannot be infinitely accurate and is
fundamentally limited by the quantum uncertainty δxδp �
h̄/2, which introduces an extra feedback noise during the
cooling process. The uncertainty in the position measurement
can be reduced by increasing the photon scattering rate;
however stronger photon scattering induces faster shot noise
heating. Thus, tuning an appropriate photon recoil rate and a
proper feedback parameter should be important in optimizing
the feedback cooling.

This section numerically studies the optimal cooling limit
when the main error in the position measurement is due to
classical measurement uncertainty. As we will show below, the
equations of motion can be scaled. Therefore, the simulation
is performed in only the x degree of freedom for the case (a =
48 nm, b = 53 nm) in Table I. The calculation is still classical,
but the feedback signal is modified to satisfy δxδp = Nh̄/2,
where N is a measure of the classical uncertainty in units of
the minimum quantum uncertainty. The dynamical equation is
given by

m
d2x

dt2
= −mω2

x(1 + ηxmẋm)x,

xm = x + δR δx,

(34)

and the shot noise is added according to

p(t + δt) = p(t) + δW δp, (35)

where δR and δW are Gaussian random numbers with
unit variance, δp = √

2ĖTx δt m is the momentum fluctuation
determined by the shot noise ĖTx

, and xm is the measured
position with δx = Nh̄/(2

√
2ĖTx δt m), which is chosen to satisfy

the relation δxδp = Nh̄/2. Several values of N are used
in the the pure classical calculation. In reality, the results
are not physically possible for N < 1, and for small N the
result is only suggestive because it would require a true
quantum treatment. Figure 7 shows the results, where each
curve corresponds to the steady-state occupation in terms of
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FIG. 7. The steady-state occupation in terms of the feedback
parameter η for the x degree of freedom of the particle (a =
48 nm, b = 53 nm) from Table I. The different curves correspond
to several different values of classical uncertainty.

the feedback parameter η. The pink line corresponds to the
classical feedback with no noise in the position measurement
(N = 0), where the occupation keeps decreasing as we
increase the feedback parameter. As we add uncertainty to the
feedback signal, the purple (N = 1), black (N = 1.5), green
(N = 2), red (N = 2.5), and blue (N = 3) lines have an η

that gives a minimum occupation, which is the corresponding
optimal cooling limit. The reason is that, as η increases, the
feedback cooling is strengthened, but the noise in the measured
value of x leads to the feedback procedure itself adding noise
to the motion. Beyond a value of η, the feedback noise heating
becomes faster than the feedback cooling, which indicates
that the steady-state occupation can reach a minimum and
then increase. Moreover, one can see that a larger uncertainty
N in the position measurement leads to a larger occupation
for optimal cooling limit. The reason is that the feedback
noise heating is generally faster with a big N in the position
measurement than that with a smaller N .

The steady-state occupation is also related to the shot noise
heating and the oscillating frequency, as suggested by the result
in the Appendix 〈n〉limit ∝ √

ĖT /ω2 for ideal measurements.
In fact, the one-dimensional dynamical equation for the
nanoparticle can be scaled

d2x̃

dt̃2
= −x̃

(
1 + η

h̄

2m
x̃m

˙̃xm

)
,

x̃m = x̃ + δR δx̃,

(36)

and the shot noise is added according to

p̃(t + δt) = p̃(t) + δp̃(t)δW, (37)

where the scaled position x̃ = x/a0 with a0 = √
h̄/(2mωx ), t̃ =

ωxt , and ˙̃ET = 2ĖT /(h̄ω2
x). δp̃ = √

2 ˙̃ET dt̃ and δx̃ =
N

√
1/(2 ˙̃ET dt̃). The scaled equation shows that �n =

2πĖT /(h̄ω2
x) (as defined previously); N and η determine the

particle’s dynamics. To confirm that, we simulate the cooling
of the x degree of freedom for particle (a = 48 nm, b =
53 nm) with fixed measurement uncertainty (N = 2). First,
we choose (ĖT , ωx) to be different values (470 mK/s,
343 kHz), (824 mK/s, 454 kHz), and (1295 mK/s, 569 kHz),
which are obtained by tuning the laser power to P =
(40 mW, 70 mW, 110 mW), respectively. Figure 8(a) gives
the simulation results, where the three curves give the
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FIG. 8. The steady-state occupation for the x degree of freedom
of particle (a = 48 nm, b = 53 nm) from Table I in terms of the
feedback parameter η with N = 2. Three different laser powers P =
(40 mW,70 mW,110 mW) are used. (a) The quantity �n = 0.083.
(b) The quantity �n = 0.026.

steady-state occupation in terms of the feedback parameter.
Those curves match each other, which confirms that �n

indeed determines the dynamics, since varying the laser
power does not change the quantity �n � 0.083. All three
curves get to an optimal cooling limit around 〈n〉 = 8.5 when
η = 3.3 × 1012 s/m2. In Fig. 8(b), we take �n � 0.026 by
changing the laser beam waist. Using the same laser powers
P = (40 mW, 70 mW, 110 mW), the shot noise heating and
the x translational oscillating frequency are (1488 mK/s,
1085 kHz), (2603 mK/s, 1434 kHz), and (4092 mK/s,
1798 kHz), respectively. The three curves still match, but the
minimal point is shifted to (〈n〉 = 12, η = 5 × 1011 s/m2),
which suggests that the optimal cooling limit should depend
on the choice of �n for a given value of N , the scale factor
between the uncertainty in the position measurement, δx, and
the momentum shot noise scale, δp.

Comparing the two results in Fig. 8, we see that a lower
optimal cooling limit is reached for the motion with a bigger
�n when N is held fixed. This motivates us to calculate the
optimal cooling limit for varied �n (by changing the beam
waist), and the result is shown in Fig. 9, where the two curves
correspond to N = (1,2). Both curves reveal that a bigger
�n leads to a lower optimal cooling limit, which suggests
that a more efficient feedback cooling can beat the cost from
the higher shot noise heating. A bigger �n means a larger
shot noise ˙̃E; however, it also indicates a more accurate
measurement, which results in a more efficient feedback
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FIG. 9. The optimal cooling limit for the x degree of freedom of
particle (a = 48 nm, b = 53 nm) from Table I with respect to �n.
The blue and yellow curves correspond to the classical uncertainty
measure N = 1 and N = 2, respectively. Our data stop at �n = 0.41
since the feedback calculation with a larger η becomes unstable when
we try to reach the optimal cooling limit.

cooling. Figure 9 also shows that a smaller N generally has a
lower optimal cooling limit, which matches the result in Fig. 7.
The data in Fig. 9 stop at �n = 0.41, since a bigger η is needed
in order to get to the optimal cooling limit. Our calculation
becomes unstable when η gets larger. In reality, a bigger
feedback parameter η means a lot more effort in feedback
cooling. The maximal realizable η in the experiment should
physically bound the lowest cooling limit for fixed N . The
actual shot noise heating rate and measurement uncertainty
determine the minimum occupation number. By scaling these
parameters, one can understand how the system will respond
in terms of the dimensionless Eqs. (36) and (37).

VI. CONCLUSION

The translational and rotational shot noise heating and
feedback cooling of an optically trapped nanoellipsoid were
analytically and numerically investigated. The detailed anal-
ysis suggests that a lower relative rotational heating rate
is expected for a wide range of nanoparticle geometries.
This conclusion is in contrast to that when scattering from
blackbody radiation was studied [16] which reported that
rotational degrees of freedom decohered much faster than
translational degrees of freedom. The qualitatively different
conclusion is due to the difference in photon scattering from a
polarized beam aligned along the nanoparticle axis compared
to unpolarized photons.

The analysis and numerical calculation of the shot noise
heating suggest that a lower relative rotational heating rate
results from the following: (1) a nanoparticle with nearly
spherical shape for fixed size; (2) a nanoparticle with a
bigger size for fixed ellipticity; (3) a trapping laser with a
shorter wavelength and a bigger beam waist; (4) a nanoparticle
with lower dielectric constant. In addition, the calculation
of the feedback cooling in only the rotational degrees of
freedom reveals that a separate rotational cooling should be
experimentally possible, since heating in the other degrees of
freedom was only slightly faster than the shot noise.

The feedback cooling with classical measurement uncer-
tainty was analyzed. The measurement uncertainty introduces
an extra noise during the feedback, which competes with the
cooling when the feedback parameter increases. When the
scaled classical uncertainty N is held fixed, a system with
a bigger value of �n = 2πĖ/(h̄ω2) could in principle get
to a lower optimal cooling limit. While this is an interesting
result, it is hard to imagine an experiment where the N can
be held fixed while the shot noise heating rate is changed as it
would require the uncertainty in x to decrease proportionally
to 1/

√
Ė as the heating rate increases. A more effective way

to achieve small occupation number is to decrease N which is
proportional to the uncertainty in x times

√
Ė.

In conclusion, the shot noise heating, the measurement
uncertainty, and the feedback parameter are important factors
to consider when cooling a levitated nanoparticle in the shot-
noise-dominant region. The results presented here can provide
a framework for thinking about how these parameters affect
the heating and the feedback cooling of levitated nanoparticles.
However, since our calculations are classical, there is clearly a
need for investigations of quantum effects on feedback cooling
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for small occupation number. The results in Fig. 9 suggest there
may be nonintuitive trends in the quantum limit.
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APPENDIX: THE PARAMETRIC FEEDBACK COOLING

This appendix describes the parametric feedback cooling
scheme and analyzes the cooling limit in the shot-noise-
dominant regime. Perfect measurement is assumed in the
following derivation. As an example, the average cooling
power for one translational degree of freedom from the
feedback is given by

〈P 〉 = −ηk 〈x2ẋ2〉 � −ηE2

2m
, (A1)

where E is the system energy in this degree of freedom and
k is the spring constant. The approximation is made above by
ignoring the noise when taking the cycle average. The negative
sign of the power guarantees an effective cooling during
the feedback process. Combining with the translational shot
noise heating rate, the system energy follows the differential
equation

dE

dt
= ĖT − ηE2

2m
. (A2)

A steady state can be reached when the heating and cooling
are balanced, which yields the cooling limit

〈n〉limit =
√

2mĖT

ηh̄2ω2
, (A3)

where ω is the oscillation frequency. One finds that a bigger η

gives a lower steady state energy and the particle mass together
with the quantity ĖT /ω2 determine the final occupation. The
differential equation can be analytically solved:

E = Elimit

⎛
⎝1 + 2

B exp
(
2
√

ηĖT

2m
t
) − 1

⎞
⎠, (A4)

where

B =
√

η/2mEi +
√

ĖT√
η/2mEi −

√
ĖT

. (A5)

Ei is the initial energy of the system. The system gets cooled
as time increases and the parameter

√
ηĖT
2m

is a measure of how
fast the system is cooled. The feedback parameter η has the
unit time/length2, which can be tuned to control the speed of
cooling and the final steady-state energy.
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