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Superradiance in inverted multilevel atomic clouds
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This work examines superradiance in initially inverted clouds of multilevel atoms. We develop a set of
equations that can approximately calculate the temporal evolution of N coupled atoms. This allows us to
simulate clouds containing hundreds of multilevel atoms while eschewing the assumption and/or approximation
of symmetric dipole-dipole interactions. This treatment is used to explore the effects that dephasing causes by
elastic dipole-dipole interactions and that competition between multiple transitions has on superradiance. Both
of these mechanisms place strong parametrical restrictions on a given transition’s ability to superradiate. These
results are likely important to recent experiments that probe superradiance in Rydberg atoms.
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I. INTRODUCTION

The fact that coherent radiation can dramatically alter
physical phenomena [1] has resurfaced at the forefront of
physics. Studies have shown that superradiance must be
considered when studying atomic [2–22], biological [23,24],
and condensed matter systems [25–27]. Since its recent revival,
superradiance has led to conflicting ideas in the Rydberg-atom
community. At first glance, transitions between high-lying
Rydberg states seem like perfect candidates for superradi-
ance [12,13,19]. Because of their long wavelengths, Rydberg
transitions allow experimentalists to reach the limit first de-
scribed by Dicke [1], where atoms are placed in a volume with
a radius that is very small relative to the wavelength. Later theo-
retical works [19,28,29], however, argued that putting a cloud
of atoms in this regime would result in large dipole-dipole
interactions that quickly dephase the transition and destroy
superradiance. This implies that transitions between high-lying
Rydberg levels should not superradiate. To exacerbate the
confusion, conflicting experimental results have been reported,
with some groups claiming to have either directly or indirectly
observed Rydberg-atom superradiance [12–14,30] and one
claiming to have observed no superradiance at all [31]. In order
to unravel these experimental and theoretical differences, new
developments are needed.

The physics of superradiance in a vacuum is governed
by the set of dipole-dipole interactions between every atom
pair. These interactions can be traced back to two distinct
types of photon exchanges, real and virtual. The exchange
of real photons [see Eq. (5)] contributes to the collective
decay of the atomic ensemble. These inelastic dipole-dipole
interactions result in either superradiance or subradiance. As
the value of |�r i − �rj | → 0, where |�r i − �rj | is the spatial
distance between atoms i and j , the value of every inelastic
coupling approaches �α/2, where �α is the decay rate of the
transition e → α in an isolated atom [since the excited level is
the same for every transition (see Fig. 1), the lower energy level
α is used as the label of a given transition]. Resultantly, this
part of the dipole-dipole interaction is completely symmetric
for sufficiently dense clouds, i.e., the Dicke limit [1]. Not
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included in Dicke’s work are the interactions that result from
exchanges of virtual photons [see Eq. (3)]. These exchanges
cause shifts between the energy levels of the system, often
referred to as the collective or cooperative Lamb shifts [32].
These couplings will be referred to as elastic dipole-dipole
interactions from here on. In a vacuum, the magnitude of the
elastic interaction between two atoms diverges proportionally
to 1/(kα|�r i − �rj |)3, where kα ≡ 2π/λα . For dense atomic
clouds, this results in large and random energy shifts between
levels that dephase the system, quelling superradiance. This
will be referred to as elastic dephasing in the rest of this paper.

A rigorous numerical treatment of this effect requires an
implementation of the superradiance master equation [29]
or, equivalently, the quantum Monte Carlo wave-function
algorithm [33]. Unfortunately, both of these calculations grow
exponentially with the number of atoms being simulated N .
So far, this has limited numerical calculations to systems
such that N ∼ 10 or less. While recent treatments have been
developed that permit simulations involving large numbers of
highly excited atoms [13,34,35], so far they rely on symmetries
that result from either the assumption or approximation of
symmetric dipole-dipole interactions. These approximations
are not valid in this work because they ignore elastic dephasing.

Because of this, we derive and implement a numerical
approach that scales proportionally to N4, rather than exponen-
tially. This enables the simulation of initially inverted clouds
of hundreds of multilevel atoms. Note that a system containing
initially inverted atoms is qualitatively different than a system
where a particular transition is triggered, such as that in [14].
Unlike previous methods, our approach can fully incorporate
the inhomogeneous dipole-dipole interactions present in the
cloud. This is done by solving the set of differential equations
that describe the expectation values of the operators: bα−

i bα+
j ,

where b
α−(+)
i represents the lowering(raising) operator for the

e → α transition of the ith atom. The resulting equations are
then truncated by factorizing the higher-order correlation op-
erators. Since a full analysis of superradiating Rydberg atoms
requires an understanding of the competition between many
potentially superradiant transitions, the derivation assumes an
initially excited state that can decay into an arbitrary number
of lower-energy states. The equations are then implemented in
order to study the rich physics that occurs in clouds of two-,
three-, and four-level atoms (see Fig. 1).
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FIG. 1. This paper studies superradiant cascades in clouds of
(a) two-, (b) three-, and (c) four-level atoms. (a) Two-level system
coupled via dipole-dipole interactions. (b) Three-level system, where
dipole-dipole interactions for the a transition are considered, but are
not considered for the g transition, due to the relatively small value of
λg . (c) Four-level system, where an additional interacting transition
b has been added to the system represented in (b).

This paper is organized in the following way. In Sec. II
the equations that describe a system containing N multilevel
atoms are derived. In Sec. III this system of equations is used
to simulate a cloud of two-level atoms. Here it is demonstrated
how superradiance is limited by elastic dephasing in high-
density systems and by diffraction in low-density systems.
The result of this is that for a cloud with a given N and density
N there is a particular value of λg such that the coherent
emission is at a maximum. In Sec. IV it is shown that when
a system has multiple decay channels, superradiance develops
in a very different manner than when there is only one. Here
we mimic an elementary Rydberg system by including one
transition to a high-lying state a with a value of λa such
that atoms couple via dipole-dipole interactions significantly.
On top of this, we include one transition to the ground state
g with a very small λg such that dipole-dipole interactions
are negligible [see Fig. 1(b)]. This section shows that the
presence of an alternate decay path strongly diminishes the
buildup of superradiance. Section V shows the physics that
results when multiple transitions can superradiate at once. This
section indicates that the previously proposed mechanism for
superradiance in Rydberg atoms [13], where states tend to
superradiate via transitions with the largest values of λα , is
likely not the dominant mechanism in many Rydberg-atom
systems. Here it is argued that only transitions with λα

lying within a certain range of λαN 1/3 superradiate. This
might lead to an explanation of the current experimental
disagreements [12–14,31].

II. NUMERICAL TREATMENT

A. Master-equation evaluation

The time dependence of the reduced density matrix ρ̂ is
given by the master equation [36]

dρ̂

dt
= − i

h̄
[Hed,ρ̂] + L(ρ̂). (1)

Here Hed represents the elastic dipole-dipole interaction
defined by the Hermitian Hamiltonian

Hed =
∑
i �=j,α

h̄f α
ij b

α+
i bα−

j , (2)

where bα+
i ≡ |ei〉 〈αi |, bα−

i ≡ |αi〉 〈ei |, and

f α
ij = 3�α

4

{(
1 − 3 cos2 φα

ij

)( sin ξα
ij

ξα2
ij

+ cos ξα
ij

ξα3
ij

)

− sin2 φα
ij

cos ξα
ij

ξα
ij

}
. (3)

FIG. 2. Comparison of the time dependence resulting from
Eq. (1) (solid line) and Eq. (11) (dashed line) for clouds of two-level
atoms. (a) Photon emission rate per atom γ ′ ≡ γ /N for clouds where
N = 10 and densities: λ3

gN = 125 and λ3
gN 
 37. (b) Excitation

probability Ne/N for clouds where N = 10 and λ3
gN 
 1000,

125, and 37. Note that, in the figure, the values of λ3
gN are inversely

proportional to the slope of Ne. (c) Excitation probability Ne/N for
N = 10, 40, and 160 two-level atoms using the Dicke model, i.e.,
N → ∞ and Hed = 0. Results are shown for the full calculation
obtained using Eq. (1), as well as the approximate Eq. (11). Note that
the two calculations scale with N in the same manner.
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In addition, L(ρ̂) is the Lindblad superoperator given by

L(ρ̂) =
∑
i,j,α

�α
ij

(
bα−

j ρ̂bα+
i − 1

2
bα+

i bα−
j ρ̂ − 1

2
ρ̂bα+

i bα−
j

)
,

(4)

where �α
ij is the inelastic dipole-dipole interaction of atoms i

and j for the e → α transition,

�α
ij = 3�α

2

{(
1 − 3 cos2 φα

ij

)(cos ξα
ij

ξα2
ij

− sin ξα
ij

ξα3
ij

)

+ sin2 φα
ij

sin ξα
ij

ξα
ij

}
. (5)

In this notation, φα
ij is the angle between the αth dipole moment

and the relative position of atoms i and j , �r i − �rj . In addition,
ξα
ij = kα|�r i − �rj |, where kα is the wave number of the e → α

transition, 2π/λα .
The fact that the system of interest starts in state |eee · · · e〉

and has no driving term leads to a massive truncation of the
Liouville space. If one expresses ρ̂ in the form

ρ̂ =
∑
m,n

cmn |m〉 〈n| , (6)

it can be shown straightforwardly that the operators in Eq. (1)
will only connect to elements of ρ̂ such that |m〉 and 〈n| contain
the same number of atoms in each level. This constitutes only a
small fraction of ρ̂. For a system of N two-level atoms, the full
Liouville space contains 4N matrix elements. However, only

N∑
k=0

(
N

k

)2

=
(

2N

N

)
(7)

of these elements are actually nonzero. Incorporating this
into our numerical algorithm enables the exact calculation of
Eq. (1) up to ten atoms (see Fig. 2).

B. Approximate evaluation of operators

The problems addressed in this paper require simulat-
ing hundreds of atoms, while avoiding the usual mean-
field approximations that ultimately ignore elastic dephas-
ing [13,34,35]. This is accomplished by solving the differential

equations that describe the probability of atom i being in state
α, or in operator form 〈bα−

i bα+
i 〉, as well as the quadratic

correlation functions for atoms i and j , defined as 〈bα−
i bα+

j 〉.
The change in the expectation value of an operator 
 with time
is determined by

d

dt
〈
〉 = Tr

{



dρ̂

dt

}
. (8)

Using Eqs. (1) and (8), one can derive d
dt

〈bα−
i bα+

i 〉 (see the
Appendix). This gives

d

dt

〈
bα−

i bα+
i

〉 = �α

(
1 −

∑
β

〈
b

β−
i b

β+
i

〉)

+ 2
∑
j �=i

Re
(
gα

ij

〈
bα−

j bα+
i

〉)
, (9)

where gα
ij is the complex dipole-dipole interaction (gα

ij ≡
if α

ij + �α
ij /2). These equations are dependent on the quadratic

correlation functions, which may be solved for in the same
manner (see the Appendix). This yields a system of equations
that is not closed, because solving for the quadratic correlation
functions results in equations that depend on the quartic
correlation functions. To avoid this, the system of equations
is truncated by factorizing the quartic correlation functions in
the following manner:〈

bα−
n bα+

j bβ−
m bβ+

m 〉 
 〈
bα−

n bα+
j 〉〈bβ−

m bβ+
m 〉,〈

bβ−
m b

β+
j bα−

n bα+
m 〉 
 〈

bβ−
m b

β+
j 〉〈bα−

n bα+
m 〉,〈

bα−
m bα+

m bβ−
n bβ+

n 〉 
 〈
bα−

m bα+
m 〉〈bβ−

n bβ+
n 〉, (10)〈

bα−
n bα+

j bα−
m bα+

m 〉 
 〈
bα−

n bα+
j 〉〈bα−

m bα+
m 〉,〈

bα−
m bα+

m bα−
n bα+

n 〉 
 〈
bα−

m bα+
m 〉〈bα−

n bα+
n 〉,

where α �= β. These factorizations are chosen with two rules
in mind. First, the quartic operators must be grouped such
that both the raising and lowering operators act on the same
transition, in order to ensure a closed system of equations.
When this is satisfied, the quartic operator representing the
population of state α for atom m (i.e., bα−

m bα+
m ) is factored out.

This is done so that the factorized terms are smaller when little
decay has occurred, making our approximations accurate at
early times. Implementing these approximations results in the
following closed system of equations:

d

dt

〈
bα−

n bα+
m

〉 = −〈
bα−

n bα+
m

〉 ∑
β

�β +
∑

j �=m,n

gα∗
jm

〈
bα−

n bα+
j

〉{
1 − 〈

bα−
m bα+

m

〉 − ∑
β

〈
bβ−

m bβ+
m

〉}

+
∑

j �=m,n

gα
nj

〈
bα−

j bα+
m

〉{
1 − 〈

bα−
n bα+

n

〉 − ∑
β

〈
bβ−

n bβ+
n

〉}

−
∑
β �=α

∑
j �=m,n

g
β

nj

〈
bα−

n bα+
m

〉〈
b

β−
j bβ+

n

〉 − ∑
β �=α

∑
j �=m,n

g
β∗
jm

〈
bα−

n bα+
m

〉〈
bβ−

m b
β+
j

〉

+ 2 Re{gα
nm}

(
1 −

∑
β

〈
bβ−

n bβ+
n

〉)(
1 −

∑
β

〈
bβ−

m bβ+
m

〉)

− gα
nm

〈
bα−

n bα+
n

〉(
1 −

∑
β

〈
bβ−

m bβ+
m

〉) − gα∗
nm

〈
bα−

m bα+
m

〉(
1 −

∑
β

〈
bβ−

n bβ+
n

〉)
. (11)

033839-3



R. T. SUTHERLAND AND F. ROBICHEAUX PHYSICAL REVIEW A 95, 033839 (2017)

FIG. 3. Maximum photon emission rate per atom γ ′
max given by

both Eqs. (11) and (16) for a Gaussian cloud of 160 atoms when elastic
dephasing is neglected. Note that the plots agree well, indicating the
validity of both equations in the absence of dephasing.

The factorized terms are initially negligible. Therefore, at
early times the results from Eq. (11) agree quantitatively with
the results from Eq. (1). At later times, the two equations agree
qualitatively. This is shown in Fig. 2(a), where the photon
emission rate per atom γ ′ versus time is obtained by solving
both Eqs. (1) and (11) for clouds of ten atoms. Figure 2(b)
shows the probability of excitation

Ne

N
≡ 1

N

∑
i

〈
bα+

i bα−
i

〉
(12)

versus time for ten atom clouds, using several values for
density N . The figure shows not only how Eq. (11) is
qualitatively accurate at later times, but that it scales correctly
with N . Figure 4 also shows this by demonstrating that
the photon emission maxima versus N calculated with both
methods closely match for ten atom clouds. Section III A
further illustrates this fact for clouds where elastic dephasing
is neglected (see Fig. 3). Figure 2(c) shows that Eq. (11) also
scales correctly with N . Here Eq. (11) is compared with Eq. (1)
for the pure Dicke model [i.e., λ3

gN → ∞, Im(gα
ij ) = 0, and

Hed = 0] [1]. Using this model and clouds such that N = 10,
40, and 160, the results from Eq. (11) scale with N in the same
way as the results from Eq. (1). Since the calculations of this
work are intended to probe superradiance in regimes that are
unreachable using Eq. (1), the fact that the output of Eq. (11)
scales correctly with both N and λ3

gN indicates the validity of
the calculations presented below.

One may note that the results of Fig. 2(b) appear to agree
significantly better than those of Fig. 2(a). This is because
the photon emission rates, shown in Fig. 2(a), correspond to
the negative derivatives of the calculations in Fig. 2(b). These
small differences in slope produce very small differences in
Ne over the time frame shown. One may also note some
differences in the calculations shown in Fig. 2(c), at longer
times. For example, in the simulation of a cloud containing 40

atoms, the value of Ne/N approaches approximately 0.022 at
later times, rather than 0. This illustrates the fact that the results
of Eq. (11) are only exact when a small amount of population
has decayed via an interacting transition.

For simplicity, all of the states considered here are assumed
to be MJ = 0. Unless specified otherwise, all calculations
average over 15 360/N randomly generated frozen atomic
clouds. Each cloud is given a Gaussian density distribution

N (r) = N

σ 3(2π )3/2
exp

(−r2

2σ 2

)
, (13)

with an average density N determined by N = N/(4πσ 2)3/2.

III. TWO-LEVEL ATOMS

The Dicke model describes two-level atoms [see Fig. 1(a)]
radiating from a volume that is small relative to the transition’s
wavelength λg . In this limit, all the atoms radiate from effec-
tively the same position, making their emission in all directions
coherent. This dissipative coherence causes the increase in
photon emission rate associated with superradiance [1]. In
reality, the system is more complex in two important ways:
experimentally realizable clouds can be much larger than λg

and physical clouds undergo elastic dephasing.

A. Finite-size effects

Large and dilute clouds (compared to the Dicke limit) can
also superradiate [37,38]. While atoms in such clouds are
usually separated by distances larger than λg , the emission
of successive photons in a particular direction k̂g projects
the cloud onto a quantum state with a diffraction maxima,
and therefore coherent radiation, in k̂g . This causes superra-
diance [1,33,37]. Ignoring elastic dephasing and invoking a
semiclassical approximation, the time dependence of a given
cloud can be shown to be [37]

Ṅe = −�g{Ne + μ(kgσ )NeNg}, (14)

where kg ≡ 2π/λg , Ng is the expectation value of number of
atoms in the ground state (Ng = N − Ne), �g is the single-
atom decay rate of the g transition, and μ(kgσ ) is a shape
parameter, which for a cloud of x̂ polarized two-level atoms is
given by

μ(kgσ ) = 3

8πN2

∫
d
k{1 − (k̂ · x̂)2}

∑
m�=n

eikg(k̂−k̂g )·(�rm−�rn),

(15)

where k̂g is the direction of the diffraction maxima of the
radiation. This equation shows that μ(kgσ ) is determined by
the diffraction pattern of the cloud’s emission [37]. Solving
this nonlinear differential equation for the time dependence of
the cloud’s photon emission rate γ (t) yields

γ (t) = N�g[1 + Nμ(kgσ )]2e�gt[1+Nμ(kgσ )]

[Nμ(kgσ ) + e�gt[1+Nμ(kgσ )]]2
, (16)
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which reaches a radiative maximum after a time delay td equal
to

td = ln[Nμ(kgσ )]

�g[1 + Nμ(kgσ )]
. (17)

This equation may be applied to the present system, a
spherically symmetric Gaussian cloud, by converting the
discrete sums in Eq. (15) to integrals, assuming k̂g = ẑ.
Performing the integrals over both k̂ and the atomic positions
yields

μ(kgσ ) = 3

32k6
gσ

6

{
1 − 2k2

gσ
2 + 4k4

gσ
4

− e−4k2
gσ

2(
1 + 2k2

gσ
2 + 4k4

gσ
4
)}

. (18)

In the limit kgσ → ∞, μ(kgσ ) → 3
8k2

gσ
2 . This agrees with

recent results that show the collective enhancement to the
decay rate of a large, singly excited, and dilute atomic cloud is
3(N−1)�g

8k2
gσ

2 [4]. Conversely, in the small cloud (kgσ → 0) limit,

μ(kgσ ) → 1, which reduces the more general equation (14) to
the equation derived by Dicke [1].

Equation (16) is a reasonable approximation when dephas-
ing due to elastic interactions can be ignored. This statement
is made apparent by comparing Eq. (16) to Eq. (11) when
gα

mn → �α
mn/2, thus artificially keeping only the inelastic

part of each dipole-dipole interaction. Since one of the key
features of an initially inverted superradiating cloud is an
increase in photon emission, the maximum photon emission
rate γ (td ) is used to quantify the “amount” of superradiance
in a given cloud. Figure 3 compares the two calculations
by showing the maximum photon emission rate per atom
γ ′

max ≡ γ (td )/N�g versus 1/λgN 1/3 when N = 160. As the
value of λ3

gN increases, γ ′
max increases as well. This increase of

γ ′
max with N may be understood by considering the diffraction

pattern of a cloud that has emitted a series of photons in a
particular direction k̂. As the value of λ3

gN increases, the size
of the atomic cloud decreases. The result of this is that μ(kgσ )
increases due to the broadening of the diffraction maxima
centered at k̂. As the size of the cloud decreases, photons
can radiate coherently into more solid angles, until finally
the Dicke limit is reached and photons are coherent in all
directions [μ(kgσ ) → 1]. This is show for both calculations in
Fig. 3, when the value of γ ′

max increases towards a constant, as
1/λgN 1/3 decreases towards 0. The quantitative agreement
shown in the two simulations is a good indication of the
usefulness of Eq. (16) when elastic interactions are neglected.
However, this is often not valid.

B. Dephasing due to elastic dipole-dipole interactions

The seminal work of Dicke ignores the off-resonant,
virtual photon exchanges that lead to elastic dipole-dipole
interactions. In dense clouds, such as the ones described by
Dicke, elastic interactions cause large and random energy
shifts and can lead the system to dephase on time scales much
shorter than its collective decay rate [28,29]. This has been
described semiclassically [28], as well as numerically for small
values of N (i.e., N = 3–10) [33,39]. In this section, Eq. (11) is
used to simulate clouds containing up to 640 initially inverted

FIG. 4. Equation (11) is used to calculate the maximum photon
emission rate divided by the number of atoms N times the single-atom
decay rate �g [γ ′

max ≡ γ (td )/N�g] versus 1/λgN 1/3. This is done for
clouds such that N = 10, 20, 40, 80, and 160. As 1/λgN 1/3 decreases,
at first γ ′

max increases, due to the broadening of the diffraction maxima.
However, for every value of N there is a certain λ3

gN where the large
elastic dipole-dipole interactions begin to dominate and the value of
γ ′

max starts to decrease rapidly. The inset shows that the value of λ3
gN

such that superradiance is at a maximum λ3
gNmax increases linearly

with Nμ(kgσ ) due to the collective enhancement to the decay rate.
Note that in the main figure, the black dots represent the calculations
for ten atom clouds using Eq. (1).

atoms. This enables the exploration of the fundamental limits
that elastic dipole-dipole interactions have on superradiance.
For a given atomic cloud, the calculations presented in this
section place strong restrictions on the parameters that can
lead to significant superradiant buildup. As will be shown in
Sec. V, this has important implications on the Rydberg-atom
problem.

The relevant quantity when determining the dephasing rate
of a specific atomic cloud is λ3

gN . In Fig. 4, Eq. (11) is solved
in order to demonstrate how γ ′

max for a particular transition
depends on N and 1/N 1/3λg . In Fig. 4, γ ′

max is shown for
clouds such that N = 10, 20, 40, 80, and 160. There are
several important effects visible here. First, increasing N
in dilute clouds causes an increase in γ ′

max. This is because
in dilute clouds elastic dephasing is slow relative to the
collective decay of the cloud. Therefore, little dephasing occurs
within td . Thus decreasing the cloud size simply increases
the directional coherence [the value of μ(kgσ )] discussed in
Sec. III A. As one increases λ3

gN , however, the dephasing rate
due to elastic interactions [Eq. (3)] grows linearly, while the
radiative enhancement due to inelastic interactions [Eq. (5)]
approaches a constant value (�g/2). Therefore, in dense clouds
the system dephases significantly before td and the value of
γ ′

max begins to diminish proportionally to λ3
gN . This is n in

Fig. 4, where γ ′
max increases as 1/λgN 1/3 decreases for dilute

clouds, followed by a rapid decrease as 1/λgN 1/3 → 0. Due
to computational limitations, the largest value of λ3

gN in Fig. 4
is 37 037; however, the values of γ ′

max do seem to approach 0
for increasingly dense clouds. This is in contrast to Fig. 3,
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where there is no elastic dephasing. Here, as clouds condense
the value of γ ′

max increases to a constant with approximately 6
times the maximum values of γ ′

max shown in Fig. 4. In order
to demonstrate the accuracy of our approximate simulations,
Fig. 4 compares the photon emission maxima for ten atom
clouds using both Eqs. (1) and (11). Note that for a given
density, there is a narrow range of λg where superradiance
maximizes.

Figure 4 shows that for clouds with more atoms, the value
of λ3

gN with the largest value of γ ′
max, λ3

gNmax, increases.
This is because the collective decay rate of a cloud increases
proportionally to Nμ(kgσ ), while the dephasing rate of a dense
cloud increases proportionally to λ3

gN . Assuming that λ3
gNmax

occurs when the two rates are equal, up to some constant,
λ3

gNmax should increase linearly with Nμ(kgσ ). This increase
of Nmax with Nμ(kgσ ) is shown in the inset of Fig. 4.

In the single-excitation regime, it has been demonstrated
that large elastic interactions produce negligible effects
when clouds are sufficiently dilute. This enables relatively
straightforward analytic treatments that agree well with the
exact numerical results [4,11,20,40]. For more dense clouds,
however, the numerical results begin to deviate from the
analytic ones [4,11]. Figure 5 shows that clouds of initially
inverted atoms are similar in this respect. As shown in Fig. 5(a),
for initially inverted and dilute clouds, Eq. (16) gives similar
results to the full calculation of Eq. (11). For lower values of
λ3

gN , the numerical calculation of γ ′
max grows with N in a

similar manner to Eq. (16). For more dense clouds, the results
are very different. When comparing Figs. 5(b) and 5(c), we
see that the presence of large elastic dipole-dipole interactions
significantly decreases the rate at which γ ′

max grows with
N . Counterintuitively, in clouds where elastic dephasing is
important, such as in Fig. 5(c), the slope of γ ′

max increases
with N . This is because the larger the value of Nμ(kgσ ), the
sooner td occurs, allowing a cloud less time to dephase before
it decays significantly.

C. Parallel with classically radiating dipoles

There is a notable parallel between the physics of a cloud
of two-level atoms and that of a cloud of coupled harmonic
oscillators. In matrix form, the set of equations that describes
coupled harmonic oscillators is given by

�̇a = −G�a, (19)

where each element of the vector �a represents the complex
amplitude of a specific oscillator. The matrix elements of the
complex symmetric matrix G are given by

Gmn ≡ �
g
mn

2
+ if g

mn(1 − δmn). (20)

The eigenvalues of G often have important physical sig-
nificance [5,9,41–43], where the real part of an eigenvalue
corresponds to half of that eigenmode’s decay rate and the
imaginary part corresponds to its energy shift, often called
the collective or cooperative Lamb shift. This section will be
concerned with each eigenmode’s decay rate �j defined by the
equation

G�aj =
(

�j

2
+ iεj

)
�aj . (21)

FIG. 5. For clouds with a given density N , this figure shows the
maximum photon emission rate per atom γ ′

max versus the number
of atoms N . (a) For dilute clouds, where elastic dipole-dipole
interactions may be ignored, the analytic results of Eq. (16) are
similar to the full numerical treatment of Eq. (11). Here a cloud with
N = 30.5/λ3

g is shown. Note that for both calculations, the slope of
γ ′

max versus N decreases at larger N . This is due to the diffractive
coherence as described in the text. For more dense clouds where
N = 15625/λ3

g , (b) shows the analytic results given by Eq. (16) and
(c) shows the full numerical results obtained by solving Eq. (11). Here
the presence of large elastic dipole-dipole interactions in (c) causes
the two calculations to notably deviate.

In the original Dicke model, when a cloud decays, it cascades
through a set of states with a specific cooperation number.
For an initially inverted cloud of atoms, the cloud cascades
through the most superradiant states (cooperation number
equal to N/2) until it reaches the ground state [1]. Since
the systems investigated in this paper are initially inverted,
we imagine a physical situation where the atomic cloud in
question has decayed into the “most” superradiant singly
excited eigenmode, as a parallel to the results of Fig. 4.

In Fig. 6 the maximum value of �j , 〈�max〉, averaged
over 1.6 × 105/N runs, is shown for clouds where N = 10,
20, 40, 80, and 160. More configurations are averaged here
than in the rest of the paper, since only one data point from
each run is kept. Figure 6 shows a pattern that is remarkably
similar to Fig. 4. At low densities, 〈�max〉 increases with λ3

gN
followed by a sharp decrease as the clouds become condensed.
Also, as shown in the inset of Fig. 6, for every cloud with
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FIG. 6. Average value of the decay rate of the most superradiant
eigenmode 〈�max〉 in clouds such that N = 10, 20, 40, 80, and 160.
The inset shows the value of λ3

gN such that 〈�max〉 is at a maximum
λ3

gNmax.

more than ten atoms, the value of λ3
gNmax is equivalent to its

corresponding value in the inset of Fig. 4. Similar to a cascade
of initially inverted atoms, there is competition between
the increasingly symmetric inelastic interactions [Eq. (5)] in
G and the highly disordered and increasingly large elastic
dipole-dipole interactions [Eq. (3)]. Note that the values of
〈�max〉 in Fig. 6 do not approach 0 as 1/λgN 1/3 approaches
0. This is likely due to the fact that the eigenmodes in highly
dense clouds become localized over several atoms [44].

IV. THREE-LEVEL ATOMS: MULTIPLE
DECAY CHANNELS

Two-level systems, in many respects, are the best possible
scenario for maximizing the effects of superradiance. Realisti-
cally, superradiance experiments typically involve populating
an excited state that can decay via multiple transitions. These
transitions then “compete” for the buildup in cooperativity
that results in superradiance. As an example, a Rydberg-like
system [see Fig. 1(b)] of an exited state that can decay
into a high-lying Rydberg state a as well as a low-lying
ground state g is considered. For typical Rydberg systems
λa  λg . Since Rydberg experiments are usually conducted
for values of N such that λ3

gN � 1, setting �
g

ij = 0 and
f

g

ij = 0 is valid. This is not the case for transition a, where
in many experimental setups λ3

aN  1. Despite this potential
for cooperative behavior, the presence of an alternate decay
route significantly dampens the buildup of superradiance in
the a transition.

The qualitative physics studied here can be gleaned by
examining the two linearly independent equations that cor-
respond to Eq. (14) for the three-level system described here:

Ṅe = −(�g + �a)Ne − �aμ(kaσ )NeNa,
(22)

Ṅa = �aNe + �aμ(kaσ )NeNa,

FIG. 7. Equation (11) is used to calculate the maximum photon
emission rate per atom for transition a divided by �a , γ ′

(a)max, versus
�g/�a . This is shown for clouds such thatN = 1000/λ3

a and N = 10,
20, 40, and 80. For every value of N shown, γ ′

(a)max decreases as the
relative decay rate into state g increases. The inset shows the temporal
dependence of γ ′

(a)/�a . Note that when �g/�a increases, td increases.

where ka ≡ 2π/λa . Note that N = Ng + Na + Ne and 0 =
Ṅg + Ṅa + Ṅe. Since transition a can potentially superradiate,
one may imagine that if Nμ(kaσ )�a > �g , then the a

transition should dominate the g transition. However, this is
often not the case since the superradiant enhancement to Ṅa

is proportional to the number of decays via transition a (Na).
In Rydberg systems, �a/�g is a small value. Therefore, until
�aμ(kaσ )Na ∼ �g , Ṅa will be smaller than Ṅg . Often the
entire system will decay before this occurs, preventing any
significant superradiant enhancement to the transition a.

The superradiant enhancement to the decay rate is illus-
trated through value of γ ′ for transition a, γ ′

(a). Figure 7
shows γ ′

(a)max versus �g/�a calculated using Eq. (11). Here
the presence of an alternate decay channel quells superradiant
behavior. This is seen in the fact that when the value of
�g/�a is increased, a decrease in γ ′

(a)max follows. As shown
in Fig. 7, for clouds with larger values of N , the system
is progressively more resistant to decay into state g. This
is because clouds consisting of more atoms must radiate
more photons before all atoms reach the ground state. This
provides more opportunities for the system to decay into
state a. When the system has decayed sufficiently into state
a, such that Naμ(kaσ )�a  �g , the presence of transition
g becomes unimportant. This means that alternate decay
paths are less relevant for clouds with more atoms. However,
in many Rydberg-atom schemes �g/�a ∼ 50, making this
mechanism likely to be at least quantitatively important. Since
the much simpler equation (22) includes the above physics,
the qualitative features of Fig. 7 can be replicated using this
equation; however, elastic dephasing dampens the results by
a factor of approximately 2. We also note that the larger the
value of �g/�a is, the more accurate Eq. (11) becomes. This is
because the terms that are approximately factorized in Eq. (11)
are smaller when less population decays via channel a.

As far as the superradiant enhancement to transition a is
concerned, the process of atoms decaying via an alternate
decay route is similar to removing atoms from the system.
Resultantly, the temporal dependence of the transition a for
larger values of �g/�a is like that of a two-level system with
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less atoms. This can be seen in the inset of Fig. 7. Note that
similar to clouds of two-level atoms [see Eq. (17)], td increases
for larger values of �g/�a .

V. FOUR-LEVEL ATOMS: COMPETING
SUPERRADIANT CHANNELS

In Rydberg-atom experiments, there are multiple poten-
tially superradiant transitions that compete with each other. To
properly explore this, an additional transition to an upper-lying
Rydberg state b is added to the system of the preceding section
[see Fig. 1(c)]. This allows simulations of more realistic
Rydberg systems. Here the development of superradiance in
a particular transition competes not only with the decay to
state g, as described in the preceding section, but also with
another superradiating channel. For an isolated atom, the
competition between multiple transitions can be summarized,
straightforwardly, by the branching ratios of those transitions.
These branching ratios are determined by the single-atom
decay rates of the system. When an ensemble of atoms radiates
coherently, however, the competition between transitions is
more complex. As will be shown, when considering the
competition between superradiating transitions in a cloud,
there are two important parameters: the single-atom decay
rates and the relative densities for each transition (i.e., λ3

αN ).
If elastic dephasing is neglected, the superradiant enhance-

ment to a transition is proportional to the number of atoms
that have decayed via that transition [see Eq. (14)]. It follows
that transitions with larger decay rates will experience more
coherent enhancement, simply because they decay more. In
Sec. III it was demonstrated that for a given value ofN 1/3 there
is a very narrow range in λα such that transition α can develop
strong superradiant character. This is because the superradiant
enhancement to transition α is limited by diffraction if λαN 1/3

is too small and by elastic dephasing if λαN 1/3 is too large.
Resultantly, a given Rydberg state will have only a small
number of transitions with the potential to develop significant
superradiant behavior. This differs from previous treatments
ignoring elastic dephasing, since they argue that transitions
with the largest values of λα always show the most superradiant
enhancement [13,37].

These effects are made apparent in Fig. 8. So as to obtain
experimentally relevant results, Eq. (11) is solved using values
of �α and λα calculated for specific transitions of Rb. For the
calculations of Fig. 8, �a = 169 s−1 and λa = 1.134 × 10−3 m
corresponding to the 26p → 26s transition, while �b =
80.8 s−1 and λb = 3.51 × 10−4 m corresponding to the 26p →
25s transition. Finally, the numbers for transition g correspond
to the 26p → 5s transition, where �g = 3.5 × 103 s−1 and λg

is negligibly small.
In Fig. 8 the value of Na/Nb versus time allows one to

observe the temporal behavior of the two transitions’ collective
decay rates. Initially, Na/Nb = �a/�b because superradiant
behavior has not developed yet. As the system begins to decay
however, this ratio tends towards the transition experiencing
the most collective enhancement. For example, Fig. 8(a) shows
that for lower-density clouds N = 1000/λ3

a 
 29.65/λ3
b, su-

perradiant behavior develops the most in transition a. This
occurs in part because �a > �b. Also, since λ3

aN is not
large enough for elastic dephasing to be important, the fact

FIG. 8. An atomic cloud is placed in a Rydberg state e that
subsequently decays into three states: a, b, and g. The values of
�α and λα for each transition are given in the text. Only transitions
to states a and b experience dipole-dipole interactions. In both (a)
and (b) the competition between the two transitions’ superradiant
behavior is illustrated by the ratio of the population in states a and b,
Na/Nb. This is calculated using Eq. (11). (a) Na/Nb versus time for
clouds such thatN = 1000/λ3

a . For more dilute clouds, the dephasing
rate for both transitions is relatively low, causing the enhancement
to the a transition’s decay rate to grow with N faster than the b

transition’s enhancement. (b) Na/Nb versus time for N 
 37037/λ3
a .

Initially, the coherent enhancement to the a transition’s decay rate
is stronger than the b transition’s enhancement. However, the elastic
dipole-dipole interactions are much larger for the a transition than for
the b transition. This causes the a transition to quickly dephase, while
the coherent enhancement to the b transition’s decay rate continues
to build with N .

that μ(kaσ ) > μ(kbσ ) causes the superradiant development to
favor transition a. Therefore, for more dilute clouds, as N is
increased, the system tends to decay more into state a. This
indicates that at this density, for clouds with N ∼ 104, such
as those of recent experiments [12,13,31], the a transition is
likely to dominate.

Conversely, Fig. 8(b) shows that for more condensed
clouds N 
 37 037/λ3

a 
 1098.3/λ3
b, elastic dephasing can

be fast enough to significantly diminish superradiance in
one transition while still allowing superradiance to build in
another. Here we can see that even though �a > �b and
μ(kaσ ) > μ(kbσ ), at longer times Na/Nb decreases with
N . Earlier in the evolution, Na/Nb in Fig. 8(b) grows in
a similar manner to Fig. 8(a) both because �a > �b and
because μ(kaσ ) > μ(kbσ ). However, the elastic dephasing
rate is significantly larger for transition a than for transition
b. Resultantly, later in the cloud’s evolution, elastic dephas-
ing causes the buildup of superradiance in transition a to
diminish, which in turn allows the collective behavior to favor
transition b.

It is probable that for clouds with enough atoms, transition
a will likely dominate again. This is because, as is shown in the
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FIG. 9. Number of atoms in a cloud that have decayed into either
of the two Rydberg states compared to the number of atoms that have
decayed into the ground state (Na + Nb)/Ng . This is shown for clouds
with various numbers of atoms N such that (a) λ3

aN = 1000 and
(b) λ3

aN = 37 037. Note that for every cloud shown, only a very small
fraction of the population actually decays into the Rydberg states. For
the reasons argued in Sec. IV, this diminishes the cooperative behavior
of the cloud. This is calculated using Eq. (11).

inset of Fig. 4, the value of λ3
aNmax increases with N . If a given

cloud contained enough atoms such that λ3
aNmax 
 37 037,

then transition a would likely reemerge as the dominant
superradiating transition at all times. Traces of this are visible
in Fig. 8(b), where for clouds with larger values of N , Na/Nb

increases for slightly longer periods of time before elastic
dephasing decimates it. If a cloud reaches the point where the
entire system decays before elastic dipole-dipole interactions
can significantly dephase transition a, then it will likely
dominate the cascade.

Finally, one must consider the decay to state g in order
to fully understand what is occurring in Fig. 8. For reasons
argued in Sec. IV, the fact that �g/�a 
 21 and �g/�b 
 43
suggests that the decay via the g transition strongly suppresses
the cooperative behavior in Fig. 8. This is illustrated concretely
in Fig. 9, where it is shown that for even the most superradiant
cloud in Fig. 8, less than 15% of the population decays to either
of the two Rydberg states. This shows that for the values of
N that are currently computationally feasible, the superradiant
behavior of a system is dominated by the decay to the ground
state. As was argued in Sec IV, for clouds with significantly
more atoms this effect will be less important.

VI. CONCLUSION

This work consisted of the development and implementa-
tion of a robust set of differential equations that can be used to
study superradiance in ensembles of initially inverted atoms.

This set of equations incorporated the dephasing due to elastic
dipole-dipole interactions present in dense atomic clouds and
reduced the calculation so that 100 s of multilevel atoms could
be simulated. Note that, unlike some recent experiments [14],
the superradiant cascades studied here were not triggered.
Rydberg-like systems were studied so that two fundamentally
different effects could be examined. Section III focused
on dephasing due to the elastic part of the dipole-dipole
interaction. Here we found that because the elastic dephasing
rate of a given transition is proportional to λ3

αN , where N is
the average density for a given cloud, there is a narrow range of
λα such that superradiance can develop significantly. Further,
in Sec. IV it was shown that the presence of an alternate
decay channel also suppresses the buildup of superradiance.
In Sec. V both of these mechanisms were incorporated into
one four-level system. Here the competition between multiple
superradiant transitions was studied. Further, it was argued
that which transition develops the strongest superradiant
behavior depends on the values of N , �α , and λα for the
system.

The parametrical dependence of a transition’s potential to
superradiate, described in this work, may provide a starting
point for an explanation of why some experiments observe
superradiance and some do not. For example, the observations
in [12] were conducted for clouds whereN ∼ 107 cm−3, while
in [31] they were conducted at N ∼ 109 cm−3. If elastic
dephasing were not present, this two-order-of-magnitude
difference in N would not have a tremendous effect, since the
high-lying transitions from an initial Rydberg state are all in the
Dicke regime. When elastic dephasing is considered, however,
the range of λαN 1/3 that can superradiate is significantly
narrowed, meaning that the specific value of N for an
experiment is extremely important. For transitions from high-
lying Rydberg states to nearby Rydberg states, the value of
�α decreases sharply with the difference in principle quantum
number, due to the smaller dipole moment for those transitions.
However, �α for transitions to low-lying states can be two
orders of magnitude larger than the Rydberg transitions, due to
the fact that �α ∝ ω3

α [45]. Therefore, it is possible that for very
dense clouds, the Rydberg transitions with the largest values
of �α are prevented from superradiating by elastic dephasing
(see Sec. III), while decay rates to lower Rydberg states are
prevented by the competition between those transitions and the
transitions to the ground state (see Sec. IV). For more dilute
clouds, however, transitions to nearby Rydberg states will
undergo significantly less elastic dephasing and will therefore
be much more likely to superradiate. This could be relevant to
elucidating the discrepancies currently present in experiments
[12–14,31].

The diversity of the transitions available in Rydberg atoms
implies that they have tremendous potential for studying
superradiance. Nevertheless, quantitatively predicting the su-
perradiant decay in a Rydberg cloud is a daunting task.
Certain sophisticated approaches to doing this have been
conducted [13]; however, these approaches do not incorporate
elastic dephasing. This work fills that gap. However, there
is clearly a need for further experimental and theoreti-
cal developments that provide the community with much
needed insights into Rydberg atoms, and superradiance in
general.
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APPENDIX

Using gα
ij ≡ if α

ij + �α
ij /2, Eq. (1) may be rewritten as

˙̂ρ =
∑

α

�α

∑
j

{
bα−

j ρ̂bα+
j − 1

2
bα+

j bα−
j ρ̂ − 1

2 ρ̂bα+
j bα−

j

}

+
∑

α

∑
i �=j

{
2 Re

(
gα

ij

)
bα−

j ρ̂bα+
i − gα

ij b
α+
i bα−

j ρ̂

− gα∗
ij ρ̂bα+

i bα−
j

}
. (A1)

First, we solve for the time dependence of the operators
representing the probability of atom i being in the state
α, 〈bα−

i bα+
i 〉, by substituting this into Eq. (8). Note that

for this appendix, we treat the one- and two-atom terms in
Eq. (A1) separately, adding them together in the end. Here the
single-atom terms give

Tr

{
bα−

m bα+
m

∑
β

�β

∑
j

(
b

β−
j ρ̂b

β+
j − 1

2
b

β+
j b

β−
j ρ̂

− 1

2
ρ̂b

β+
j b

β−
j

)}
. (A2)

The terms in this sum, such that m �= j or α �= β, will be equal
to zero. This gives

�α

{〈
bα+

m bα−
m bα+

m bα−
m

〉 − 1
2

〈
bα−

m bα+
m bα+

m bα−
m

〉
− 1

2

〈
bα+

m bα−
m bα−

m bα+
m

〉}
. (A3)

Incorporating the fact that any operator proportional to bα+
m bα+

m

or proportional to bα−
m bα−

m is 0, that bα+
m bα−

m bα+
m bα−

m = bα+
m bα−

m ,

and that (bα+
m bα−

m + ∑
β b

β−
m b

β+
m = I ), we obtain

�α〈bα+
m bα−

m 〉 = �α

⎧⎨
⎩1 −

∑
β

〈
bβ−

m bβ+
m

〉
⎫⎬
⎭ . (A4)

When considering the two-atom terms, the only nonzero
contributions will occur when α = β and m = i or j . This
gives ∑

j �=m

gα
mj

〈
bα−

j bα+
m

〉 + ∑
i �=m

gα∗
im

〈
bα−

m bα+
i

〉

= 2
∑
i �=m

Re
{
gα

mi

〈
bα−

i bα+
m

〉}
. (A5)

Adding these two terms together gives

d

dt

〈
bα−

m bα+
m

〉 = �α

⎧⎨
⎩1 −

∑
β

〈
bβ−

m bβ+
m

〉
⎫⎬
⎭

+ 2
∑
i �=m

Re
{
gα

mi

〈
bα−

i bα+
m

〉}
. (A6)

Next we solve for d
dt

〈bα−
n bα+

m 〉. Plugging bα−
n bα+

m into the
single-atom terms in Eq. (A1), we find that the only nonzero
terms occur when m = j or n = j . This gives

−〈
bα−

n bα+
m

〉 ∑
β

�β. (A7)

Because
[
bα−(+)

m ,bα−(+)
n

] = 0 when m �= n, when considering
the two-atom parts of Eq. (A1), the only terms that are
potentially nonzero occur when

(i) i = mj = n, (ii) i = nj = m,

(iii) i = mj �= n, (iv) i �= mj = n,

(v) i �= nj = m, (vi) i = nj �= m.

Here we calculate each term individually, noting that

d

dt

〈
bα−

n bα+
m

〉 = (i) + (ii) + (iii) + (iv) + (v) + (vi), (A8)

(i) =
∑

β

2 Re
{
gβ

mn

}{〈
bβ+

m bα+
m bα−

n bβ−
n

〉 − gβ
mn

〈
bα+

m bα−
n bβ+

m bβ−
n

〉 − gβ∗
mn

〈
bβ+

m bβ−
n bα+

m bα−
n

〉}

= 0, (A9)

(ii) =
∑

β

2 Re
{
gβ

nm

}〈
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m
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m bβ−
m
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〉
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m
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⎞
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˝
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(iii) =
∑

β

∑
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2 Re
{
g

β

mj
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m bα+
m bα−
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(iv) =
∑
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g
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∑
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Adding these all together and rearranging commuting terms gives
d
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. (A14)

This gives a set of differential equations that is not closed. This problem is eschewed by implementing the following factorizations:〈
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(A15)

This results in the final equation
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