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Generalized local-frame-transformation theory for excited species in external fields
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A rigorous theoretical framework is developed for a generalized local-frame-transformation theory (GLFT).
The GLFT is applicable to the following systems: Rydberg atoms or molecules in an electric field and negative
ions in any combination of electric and/or magnetic fields. A first test application to the photoionization spectra of
Rydberg atoms in an external electric field demonstrates dramatic improvement over the first version of the local-
frame-transformation theory developed initially by U. Fano [Phys. Rev. A 24,619 (1981)] and D. A. Harmin [Phys.
Rev. A 26,2656 (1982)]. This revised GLFT theory yields nontrivial corrections because it now includes the full
on-shell Hilbert space without adopting the truncations in the original theory. Comparisons of the semianalytical
GLFT Stark spectra with ab initio numerical simulations yield errors in the range of a few tens of MHz, an
improvement over the original Fano-Harmin theory, whose errors are 10-100 times larger. Our analysis provides
a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate

enough to meet most modern experimental standards.
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I. INTRODUCTION

Symmetries in a separable Hamiltonian system elegantly
enable the quantum states to be described simply in terms
of a few good quantum numbers. Another intriguing class is
Hamiltonian systems that possess approximate local symme-
tries, i.e., systems that exhibit different symmetries in different
portions of the configuration space but not over the entire
spatial domain. To address this class of Hamiltonians, Fano [1]
introduced the concept of a local frame transformation
(LFT) which begins from solutions of the time-independent
Schrodinger equation in the different portions of configuration
space where the Hamiltonian obeys different symmetries and
then matches the sets of approximate “good” but incompatible
quantum numbers via a frame transformation. This theoret-
ical advance has been used to interpret and quantitatively
describe a plethora of diverse physical systems. In particular,
Fano [1] and Harmin [2] employed the LFT to describe
Stark photoabsorption spectra of alkali-metal atoms [2—4]. The
Stark effect of more complex systems could also be treated
by the combination of the LFT with multichannel quantum
defect theory (MQDT) [5], such as Rydberg atoms with two
valence electrons [6—8], noble gases [9,10], and even molecular
hydrogen [11].

Furthermore, the LFT theory gives a compact description
of a variety of physical processes such as dielectronic recom-
bination [12], negative-ion photodetachment in magnetic [13]
or electric [14-16] fields or under generic external confine-
ment [17], and ultracold atomic and/or dipolar collisions
in the presence of external trapping potentials [18-21]. In
molecular applications frame-transformation theory has been
decisive in describing the rich rovibrational Rydberg spectra
of diatomic molecules [22] and the dissociative recombination
of Hy [23,24].
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Despite the versatile landscape of physical applications
and the successes of the LFT theory, it lacks one important
attribute for a comprehensive theory: there is no systematic
pathway for improving the accuracy of the method. Indeed,
high-precision experiments on the photoabsorption spectra
"Li in the presence of an electric field by Stevens et al. [25]
showed that the Fano-Harmin LFT theory [1,2] deviates from
the experimental observations by several hundreds of MHz. In
addition, several theoretical investigations have attempted to
identify the origin of these discrepancies and check the range
of validity of the LFT [26,27]. In this paper, a generalized
LFT (GLFT) theory is developed based on more reliable and
complete physicomathematical grounds whose rigor allows
an extension of calculations to much higher accuracy. Due to
the generic scope of the GLFT, it can be equally applied to
Rydberg atoms or molecules in an electric field or to negative
ions in any combination of electric and/or magnetic fields.
Following the formal derivation of this GLFT, a first test
application to the Stark effect of Rydberg atoms yields Stark
photoabsorption Rydberg spectra 10-100 times more accurate
than the Fano-Harmin LFT theory.

This work is organized as follows: Sec. II focuses on
the formulation of the generalized local-frame-transformation
approach addressed for generic Hamiltonians which pos-
sess different symmetries in different parts of the config-
uration space. Section III develops the generalized local-
frame-transformation theory to treat the photoionization of a
Rydberg atom in a uniform external electric field and clarifies
differences with the Fano-Harmin theory. Section IV presents
calculations that illustrate the main differences between the
Fano-Harmin theory and the present generalized local-frame-
transformation approach. Finally, Sec. V summarizes and
concludes our analysis.

II. GENERALIZED LOCAL-FRAME-TRANSFORMATION
THEORY

The concept of local-frame-transformation theory is par-
ticularly aimed at systems with a nonseparable Schrodinger
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equation but which exhibits incompatible symmetries in dif-
ferent regions of configuration space. This type of Hamiltonian
has the following form:

H = Hy+ Vi(r) + Vc(r), &)

where Hj denotes an unperturbed separable Hamiltonian and
Vs(r), V.(r) are two potential terms. This treatment assumes
that the two potential terms exhibit different symmetries; that
is, frequently, V; (V.) has spherical (nonspherical) symmetry.
We further assume that the length scales associated with
the two potentials are well separated, whereby the full
Hamiltonian H exhibits two regions in the configuration
space of distinct symmetry. In the first region the potential V;
dominates, typically close to the origin, where the Hamiltonian
H exhibits spherical symmetry. Away from the origin, the V,
potential prevails, normally in the asymptotic region where H
is separable in a nonspherical symmetry.

These considerations imply two separate coordinate sys-
tems associated with the short-range and long-range symme-
tries where different approximately separable solutions of the
Lippmann-Schwinger equation exist at each energy E:

W) = ¥ + GV W) forr — 00,  (2)
|,) = 1) + GBSV, [®,) forr -0, (3

where the terms |V, ) and |®,) correspond to standing-wave
solutions (for the full problem and for only the short-range
potential, respectively). Here chhys and Gghys represent the
principal-value Green’s functions of the long-range, H, =
H — Vi, and unperturbed, Hy, Hamiltonians. These Green’s
functions obey the corresponding proper asymptotic boundary
conditions for their respective Hamiltonians and are thus
denoted as physical Green’s functions. The terms |, ) and | f3)
are the regular solutions of the corresponding homogeneous
Schrodinger equation, i.e., when V; = 0. Note that « and A
indicate collective quantum numbers that are associated with
the symmetry which is fulfilled by the potentials V, and Vi,
respectively.

Fano’s key idea in Ref. [1] was to interrelate the energy-
normalized regular solutions |¥,) and |f,) via an energy-
dependent local-frame-transformation matrix U satisfying

W) =Y 1A UL )
A

This is a local relationship obeyed only at small distances for
each energy E.

Asymptotically, where the V. potential prevails, the
Lippmann-Schwinger relation in Eq. (2) provides us with the
corresponding K matrix, i.e., Ky = —7 (¢K/|\A/X|\IIK), which
contains the relevant physics associated with the Hamiltonian
H. Using the Schwinger identity, the K matrix can obtain the
following form:

Kew = =10 (Y (Vi M Vi) )

where M = VY — Vyéghys \7_Y — VY(GEhYS — Gghys)\?‘.. Note
that by adding and subtracting G2™* the last term in M is

an infinity-free quantity. However, the term G2™* possesses
singular behavior at short distances which can be tamed by
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choosing an on-shell complete set of states which obey Eq. (3).
The matrix elements of Eq. (5) are computed by introducing
the complete set of on-shell |®;) states and employing the
LFT U matrix from Eq. (4). Following this prescription, the
K matrix in Eq. (5) obtains the following form:

Ko = =1 Y Uen (LI Vsl @) IM™ T (@ 1Vi] fir) U

PO

(6)
where the matrix elements M, obey the relation M, =
(@, |M|®,). The roots of det(M) are associated with all the
relevant resonant structure of the K matrix.

The GLFT framework presented here differs in two ways
from the LFT approach: (i) the current formulation needs
only to frame transform the regular solutions, in contrast to
the conventional LFT approach, where an additional frame
transformation was used to connect the irregular pieces of
the scattering wave functions, and (ii) the K matrix in
Eq. (6) contains the physical Green’s functions, allowing us
to take into account not only the physics associated with the
energetically open channels but also the relevant information
arising from the energetically closed channels. The latter
processes affect the accuracy of the scattering observables
since they are coupled with the open-channel physics through
the V, potential at short distances. Note that the concept
of closed or weakly closed channel physics is absent in
Fano’s LFT approach since only the channels which possess a
classically allowed region close to the origin are considered.

III. IMPROVED FANO-HARMIN THEORY IN
TERMS OF THE GENERALIZED
LOCAL-FRAME-TRANSFORMATION APPROACH

A. Hamiltonian and the improved Fano-Harmin K matrix

In order to demonstrate the rigor of the GLFT approach
the application to the Stark effect of nonhydrogenic atoms
is now considered. This physical system sparked the initial
formulation of the LFT by Fano [1] and Harmin [2]. The
notation introduced below closely follows the notation of
Ref. [2] in order to elucidate the differences between the GLFT
and the original LFT. Note that in the following, atomic units
are used unless clearly stated otherwise.

Consider a neutral alkali Rydberg atom in an external
electric field. The motion of the outermost electron of an
alkali atom in the presence of an electric field is described
by the following Hamiltonian (in atomic units):

1
H:T+Vs(r)_;+FZ» (M

where T denotes the kinetic-energy operator which fulfills the
relation T = —%Vf, Vis(r) indicates the residual potential of
the atom, and F is the strength of the electric field in the z
direction.

To an excellent approximation, for a typical laboratory-
strength electric field, the nonseparable Hamiltonian H be-
comes separable in two limiting regions of space. Namely, at
large distances (r > ry), the combined external and Coulombic
potential prevails, giving a separable Schrodinger equation
in parabolic coordinates. Note that the length scale ry in-
dicates the range of the electron-ion interaction. Then, the
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corresponding total scattering wave function can be expressed
in a compact form via the following Lippmann-Schwinger
equation:

[Weprm) = [Weprm) + GESPYV (Wgr,) (8)

where |¥cgr,) is the energy-normalized regular solution

of the homogeneous Schrodinger equation, i.e., for V, =
0. Due to the parabolic symmetry, (r|y.gr,) expressed
in parabolic coordinates has the simple form (r|¥gr,) =
[e™9 /2 1B pr (€)Y gr (1), Where Egr,, are the eigenfunc-
tions of the upfield & coordinate and Ygr,, indicate the
regular solutions in the downfield n coordinate which are
energy normalized at n — oco. B denotes the fractional
charge for which the motion of the electron in the upfield
parabolic coordinate is bounded. Note that 8* = BF (e, F,m)
is specified at each energy e, field strength F, and azimuthal
angular momentum m. GC=5Ps = [¢ — H + V,]7! is the
principal-value Coulomb-Stark Green’s function which obeys
the physical boundary conditions everywhere.

At short distances the electric field is overwhelmed by the
combined Coulomb and electron-ion screening potentials (i.e.,
V,), which both possess spherical symmetry. This suggests that
the scattering wave function exhibits approximately spherical
symmetry in this region of the configuration space since the
electric field is negligible. Therefore, taking into account this
symmetry, the scattering wave function can be expressed in
spherical coordinates as follows:

Do (r) = feom(r) — tan(mw pe)geem(r), &)

where fdm(r) = Yl,m(f)fdm(r) [geem(r) = YZ,m(f)gelm(r)]
are the energy-normalized regular (irregular) Coulomb func-
tions expressed in spherical coordinates and Y, () corre-
sponds to the spherical harmonics. £ (m) denotes the orbital
(azimuthal) angular momentum, and ¢ indicates the total
energy of the photoelectron. pi, is the £th quantum defect which
encapsulates the influence of the residual potential of the atom
on the scattering wave function of the outermost electron and is
weakly energy dependent. In many cases the atomic potentials
are inherently complicated; however, a numerical implemen-
tation of the quantum defect theory permits us to parametrize
the short-range core potential in terms of a phase shift, i.e.,
the quantum defects p,. The latter is used as an input in order
to obtain the scattering observables asymptotically. Note that
Eq. (9) is the solution of the following Lippmann-Schwinger
equation: |q>€1£m> = |f£m> + GC,smooth Vs |q)e£m)' GC,smooth =
7T Y ¢ | feom) (geem| represents the smooth Coulomb Green’s
function in spherical coordinates, which is free of poles and
does not obey the proper asymptotic boundary conditions for
E < 01[28].

Following the prescription which is given in the previous
section, the local frame transformation [see Eq. (4)] for the
Stark problem is derived by interrelating the regular solutions
| feem) and |Yegry,) at short and large distances, respectively.

|Veprm) = Z | feem) TUT())eprm (10)
12

where the local frame transformation U contains the effect of
the Stark barrier. Note that Eq. (10) holds only in the Coulomb
zone, i.e., at distances r < F~1/2.

PHYSICAL REVIEW A 94, 013419 (2016)

Then from Eq. (6) the K matrix for the Stark effect can be
obtained simply by making the following substitutions in the
collective quantum numbers: k¥ = (¢,87,m) and A = (¢,£,m).
The complete set of states |®, ) is provided by Eq. (9), where
|®;) = |Depm). For the frame-transformation matrix elements
U needed in Eq. (6), we now insert those in Eq. (10), namely,
U, =U ZS o (for details see Ref. [2]), which are diagonal in
m. Also, the matrix elements M,, in Eq. (6) for the Stark
effect are defined as M;;, = M.

Under these considerations the K matrix for the Stark effect
reads

1 -
(K)ﬁlv‘”gm = —; Z UﬁFgm(G)tan(ﬂ/L[)MM/l
o
X an(w we)U, e, (€, (11)

where the elements ( fegm|\75|<l>d/m) in Eq. (6) obey the
following relation: <f€gm|‘7s|q)eg/m> = —‘a“(nﬂ&g.

In addition, the M, elements possess singularities which
are removed by adding and subtracting the physical Coulomb
Green’s function GEPs, More specifically, My obeys the
relation

My = (Pepm| Vs — ViGOPY V| @)

Il(’

— (Depm| Vi (GESPYs — GEPYH YD yp,),  (12)

L tan(m 1) Jypr tan(r pugr)

where the roots of the determinant of the M matrix describe
the resonant features occurring at specific values of energy
and electric field strength. Therefore, Eq. (12) contains all
the physics of rescattering effects due to the core as well as
phenomena induced by the Stark barrier. Note that that the
use of the physical Coulomb Green’s function is chosen here
since it is uniquely defined for E < 0 in spherical or parabolic
coordinates.

In view of the importance of Eq. (12) explicit expressions
are provided on the evaluation of the terms Iy and Jyp in the
following section.

B. Evaluating M, matrix elements

The first term in Eq. (12) is evaluated in spherical
coordinates. The corresponding physical Coulomb Green’s
function in spherical coordinates is expressed in terms of the
energy-normalized ( fe¢,8eem) regular and irregular solutions,
respectively. Namely, we have the relation

GEPYs(r ry =7 Z Jeem(r <)geem(r=)
¢

GC'S“’O‘“"(I‘,I")

+7 COUT) D feem() feem),  (13)
€

where the vector r. denotes that r. = max(r,7’), r_ refers
to r. = min(r,r’), and v = 1/4/—2¢. Note that the physical
Coulomb Green’s function at negative energies vanishes as
r~ > oocandr. — 0.

Using Eq. (13), the first term in Eq. (12) reads

1
Ly = ——[tan(m jug) + cotwv tan’(w ju)]8eer.  (14)
T
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The second term in Eq. (12) is evaluated in parabolic
coordinates, whereas the corresponding physical Coulomb and
Coulomb-Stark Green’s functions are expressed in terms of
regular (|42 )) and irregular (|32, )) solutions which lag
the 7 /2 phase with respect to the origin and are analytic in
energy. The index o refers to the fractional charge 87 (8) of
the Coulomb-Stark (Coulomb) Hamiltonian.

In detail, consider first the case of the physical Coulomb-
Stark Green’s function, which possesses the following form in

parabolic coordinates:
GIMEpniE d )

=7 VeprmE. G0 xeprm(E D 02),  (15)
B

where . = max(n,n’) and 5. = min(n,n’). The pair solutions
(VepFms Xeprm) indicate the energy-normalized regular and
irregular solutions of the Coulomb-Stark Hamiltonian which
obey the physical boundary condition at infinity. Namely,
asymptotically, the irregular xgr,, functions lag by 7 /2 the
regular ones, i.e., ¥egry,. By employing the multichannel
quantum defect theory in parabolic coordinates, the pair of
solutions (Vegrm, Xeprm) can be expressed in terms of an
alternative basis set according to the transformation

VA5 0 (Ao

I/feﬂFm Ryr,, B
(XeﬁFm il B g Ryr,, -0 Fm , (16)
/Aﬁ[-'m Brm /Aﬂl«'m ptm

where the pair solutions (@fﬂFm , Xfﬂfm) are the corresponding
regular and irregular functions which are analytic in energy.
Recall that the irregular functions XfﬂFm are chosen to lag by

/2 the regular @SﬁFm solutions with respect to the origin.
We should remark that the Fano-Harmin theory employs the
energy-normalized solutions. In Eq. (16) the quantity |/ Ags,,

AM[(1—BF)vtm/241/2] .
viT[(1=BF)v—m/2+1/2]° with

v = 1/4/—2¢. The amplitude Rgr,, measures the amplitude
modulation of the photoelectron wave function due to the Stark
barrier [see Eq. (44) in Ref. [2]]. In Eq. (16), the quantity g_fme
obeys the relation

is given by the relation Agr,, =

Ghrn _ _colyyrn _ 2000 = Fe,) = Py,
A/SFm Rsz 2 ’
where uzﬁpm =1/2+m/2+ (1 — BF)v and ¥ (-) denotes the

digamma function. The phase ygr, was introduced by
Harmin [2] as a consequence of the Stark barrier effect and is
the relative phase between the regular and irregular functions
which are energy normalized with respect to the origin. Details
concerning the calculation of the Rgr, amplitudes and the
¥grm Phases can be found either in Ref. [2] in terms of
Wentzel-Kramers-Brillouin (WKB) theory or in Ref. [27] in
the framework of R-matrix theory.

Using Eq. (16), the physical Coulomb-Stark Green’s
function can be expressed in terms of the pair of solutions
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(&Sﬁ,,m, )Egﬂﬁ-m) which are analytic in energy:

GC_S”"""“h(r,r')

GOSN (i) =Y Yl 69K yr (& 1)
/SF

A7 Y U €0 G, U, E ),
B

(18)

where the first term indicates the Coulomb-Stark smooth
Green’s function in parabolic coordinates. Recall that the term
“smooth” implies that the corresponding Green’s function is
free of poles and does not obey physical boundary conditions
at infinity.

Following the same arguments for F =0 the physical
Coulomb Green’s function can be constructed in the same
way as we showed for the Coulomb-Stark Green’s function.
Namely, in parabolic coordinates the physical Coulomb
Green’s function, i.e., F = 0, is expressed in terms of a pair
solutions (%,,. 2%,,) Which are analytic in energy and with

respect to the irregular solutions ¥ E‘)ﬂm lag by /2 the regular

ones, i.e., I/Afeoﬁm. Under this assumption the physical Coulomb
Green’s function in parabolic coordinates obtains the following
form:

GC.smoolh(r,r/)

G ) =7 Y Ui n IR E ¢ 05)
B

+7 Y 0%, 6.0 GV (€ ),
B

19)

where the first term is the smooth Coulomb Green’s function
in parabolic coordinates. Note that Eq. (19) is the same as
the Coulomb Green’s function in Eq. (13) since both of
them satisfy the same Schrodinger equation over the entire
configuration space. The quantity g'ﬁm obeys the relation

g 2Inv — ¥(uz,) — vt )
Zbm _ cotmy — pm pm’ (20)
Bm 2
where Ag,, = V%nrrlﬁ(lliﬂg;’;”;//z;@] is the energy-normalization

constant, with v = 1/4/—2¢. The terms u™ are given by the
relation uy, = 1/24m/2+ (1 — B)v, with /() indicating
the digamma function. Finally, the difference of Coulomb-
Stark and Coulomb Green’s functions reads

C—S.ph C.ph
G= P, r') — G5PY(r,r)

— GC—S,smooth(rJ/) _ GC,smooth(r,r/)

+ 7Y U €D mGhr, e, (€ )
ﬂF

7Y V€T ¥ ). (21
B
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Equation (21) can be used to evaluate the matrix elements
(D |V (GE—SPhys — GCPhys) Y 1d,). Due to the short-range
potential V;, Eq. (21) needs to be evaluated at small distances.
In this regime the first two terms in Eq. (21) cancel. Indeed,
by means of a Taylor expansion it can be shown that the two
smooth Green’s functions are equal in the lowest order since
they are independent of the 8 and 87 fractional charges. The
validity of this approximation is ensured due to the length-scale
separation of the Hamiltonian H.

An explicit expression for the quantity J, in the second
term in Eq. (12) is obtained by employing the relations in
Egs. (10) and (21). Then the quantity Jop reads

Jeo = Z UEﬁFm

g}’ﬂ
—§ U,Zﬁ’z(e) P U8 (€,
] Apm

'3 - U;;W (€)

(22)

where Uaém(e) (with @ = BF or B) denotes the short-range
local-frame-transformation amplitudes that omit effects of the
Stark barrier [see Eq. (20) in Ref. [2]], whereas the frame
transformations U° and U from Eq. (10) obey the relation
Ugyom(€) = (me(é)/ Ry For o = B, the pure Coulomb am-
plitude is defined to be Rg,, = 1.

The right-hand side of Eq. (22) indicates that two infinite
summations must be performed. Actually, the difference of the
two sums in Eq. (22) ensures that the left-hand side remains
finite. Note that the first sum arises from the Coulomb-Stark
Hamiltonian, whereas the second term emerges from the
Coulombic one. For 8¥,8 > 1 the terms of the first sum
are canceled by the terms of the second one, yielding in
this manner a finite J,,. Intuitively, this is understood by the
following: The outer classical turning point of the potential
in the downfield degrees of freedom 7 shifts to infinity as the
values of 87 increase. This implies that the Coulomb zone gets
larger, ensuring that the regular solutions vanish exponentially
before tunneling out to the Coulomb-Stark region. Recall that
the quantity Jy¢ arises only by the coherent sums over 87 and
B of the corresponding regular functions; that is, see the last
two terms of Eq. (21).

Figure 1 illustrates the convergence of the quantity Jy. .
More specifically, Jy is plotted versus the total number of
BT fractional charges for field strength F = 1000 V/cm and
energy € = —0.0021 a.u. Note that the polarization of the
photon is chosen to be parallel to the electric field, i.e., m = 0.
The red solid line and pluses correspond to Jp o, the green
dashed line and crosses refer to Jy 1, and the blue dotted line
and stars denote the J; | matrix element. The vertical black
line corresponds to the total number of B of locally “open”
channels, which is equal to 16. This means that there are 16
different B which are less than 1. One important point is that
the total number of 8% provides us with a maximum value of
B, e.g., Bmax- The latter is used for the numerical convergence
of the Jy matrix elements according to the prescription given
in Appendix B.

Figure 1 shows that the sums in Jy saturate as the total
number of BF increases beyond the total number of locally
open channels (i.e., the vertical black line). Actually, including
up to 26 locally open and closed 8% channels, Jy is converged
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FIG. 1. The quantity Jy as a function of the total number of 87
fractional charges. The field strength is F = 1000 V/cm, the energy
is set to € = —0.0021 a.u., and the polarization of the photon is
m = 0. The three different curves correspond to different ¢ angular
momentum combinations, i.e., Jo (red solid line and pluses), Jy i
(green dashed line and crosses), and J; ; (blue dotted line and stars).
The vertical black line indicates the total number of BF where the
corresponding fractional charges B are less than 1.

to six significant digits regardless of the particular choice of ¢
angular momentum.

C. Fano-Harmin K matrix and the corrections
from the GLFT approach

For reasons of completeness, a compact form of the GLFT
K matrix and the K matrix derived from Fano-Harmin
theory are introduced in this section. This will permit us to
unambiguously identify the main differences between the two
theoretical frameworks, i.e., the LFT and GLFT.

First, we focus on the K matrix in GLFT approach, which
is obtained by substituting Eqgs. (12), (14), and (22) in Eq. (11).
After some algebraic manipulations, the K matrix in the GLFT
yields the following relation:

KIBF’/g’F = Z UﬂF(m{[COt(T[E) —
o

-1
1™ e U[T,ﬂ,,.m,

(23)

where cot(w n) indicates a diagonal matrix whose elements
fulfill the relation cot(rwp)eer = cot(ww pue)dee. The matrix

elements of / " fulfill the following relation:

_ G
he/——cot(nv)Sw—ZUé? €) ﬂ,, USr (€

G
+ Z U@’,;*ﬁ,),(e)ﬁU,?@m(e). 24)
/3 m

Similarly, the Fano-Harmin K matrix in the LFT approach
has the following form:

Z Ugremfleot(p) — hf1™
e

KFH

iy (25)

DU v ﬂ,Fm,
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where the matrix element the is a coherent sum over the
physical 8 channels. Namely,

BF <1
cot ygry,
Y U;?m(e)Rz—ﬂUgw,m(e). (26)
ﬂF ,BFm

Comparing the K matrices from the GLFT and Fano-
Harmin approaches, i.e., Eqs. (23) and (25), respectively,
we observe that both possess the same functional form,
whereas the quantities hf, [see Eq. (24)] and hf, [see
Eq. (26)] encapsulate all the relevant information for the
resonant features of the photoabsorption spectra. However,
the quantities i}, and hf, encompass the main differences
between the two approaches. More specifically, we observe
that additional terms emerge in the improved Fano-Harmin
theory (i.e., the GLFT approach). The additional terms arise
from two important classes of corrections: (i) Fano-Harmin
theory includes only the 8 channels which possess a well in
the Coulomb-dominated zone, i.e., the locally open channels.
Indeed, in Eq. (26) the quantity hZ,, the coherent sum over
the B channels, is taken up to B values less than 1. This
indicates that in hf, only the locally open channels are taken
into consideration. On the contrary, in the present theory all
the channels are included, since the coherent sum in Eq. (24)
goes to infinity. (ii) Fano-Harmin theory assumes that the
smooth Coulomb Green’s function expressed in spherical
coordinates is approximately equal to the smooth Coulomb
Green’s function expressed in parabolic coordinates, which
in turn is equated to the smooth Coulomb-Stark Green’s
function in parabolic coordinates (for a detailed discussion see
Ref. [27]). On the contrary, here this assumption is dropped,
yielding additional corrections, as shown in the first term in
Eq. (24). The corrections arise from using the identity that
only the physical Coulomb Green’s function is the same in
spherical and parabolic coordinates and not smooth ones as
Fano-Harmin theory suggests.

IV. RESULTS AND DISCUSSION

In order to most simply demonstrate the improvements of
the GLFT method over the Fano-Harmin theory, we initially
focus on the regime of vanishing electric fields. In particular
the behavior of |i},| and |hf,| is studied for the case of
m = 0. Recall that the physical origin of these quantities is
that they describe the Stark field-induced resonant features
of the photoionization spectra. For nonzero fields |Af,| and
|h Z | for £ # ¢ are nonzero since the electric field couples the
different angular momenta. Therefore, for F — 0, |EZ,| and
|hZ,| for £ # ¢’ should vanish as well. However, as Fig. 2
illustrates at an energy € = —0.0021 a.u. that the quantity
|hZ/| (solid lines) saturates to a constant value for vanishing
field. This implies that deeply in the linear Stark regime
the Fano-Harmin theory violates the conservation of angular
momentum which stems from the fact in Fano-Harmin theory
that only the physical 8 channels are considered. Note that
physical B8 channels refer to potential curves in the downfield
degree of freedom, the 1 parabolic coordinate, which possess
a classically allowed region at small distances. On the other
hand, |hf,| (see scattered points in Fig. 2) vanishes for fields
F <1(V/cm).
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FIG. 2. An illustration of the GLFT quantities |Af, | (scattered
points) and the LFT quantities |h Z,| (solid lines) as a function of the
electric field strength F (V/cm) at an energy ¢ = —0.0021 a.u. for

¢ # {'. Note that m = 0.

As a second test, we compare the results from GLFT to that
of a full numerical solution of the Schrodinger equation. This
permits us to investigate the level of the accuracy of the present
theory in the regime where the adjacent Stark manifolds are
strongly mixed. More specifically, photoionization from 3 p-
state Na atoms is considered in the presence of a field F =
4kV/cm where the outermost electron is ionized by a single
photon. The polarization of the photon is chosen to be parallel
to the external field, i.e., m = 0. In order to highlight the
importance of the nontrivial corrections between the GLFT
and LFT approaches, the effects of electron reduced mass and
mass polarization as well as spin-orbit couplings are neglected.
In addition, Appendix A gives the details of the core potential
\A/S for a Na atom which is used in our analysis.

Figure 3 (top panel) illustrates the single-photon ionization
cross section (in arbitrary units) for Na atoms in a 3 p excited
state as a function of the energy € (in atomic units) for
F =4 kV/cm. The depicted spectrum is above the classical
ionization threshold in an energy regime where the adjacent
Stark manifolds are strongly mixed. This permits us to compare
the Fano-Harmin theory (LFT) and that derived from the GLFT
(improved Fano-Harmin theory) together with the ab initio
numerical methods. Note that the quantum defects w, are
an input parameter in LFT and GLFT approaches, and they
are numerically calculated by the core potential given in
Appendix A. Using the same core potential for the numerical
calculations the time-dependent Schrodinger equation (TDSE)
is solved by means of standard techniques (see Ref. [29])
completely uncorrelated with the LFT and improved GLFT
approaches.

The top panel of Fig. 3 shows the photoionization spectrum
over the large energy scale, i.e., Ae =44.1cm™!. In this
large energy scale the LFT, GLFT, and TDSE photoionization
spectra are indistinguishable. However, differences become
apparent when the comparison is performed on a finer energy
scale. The shaded areas in the top panel of Fig. 3 correspond,
from left to right, to zoomed-in figures in the bottom panels.
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Also the spectra of LFT, GLFT, and TDSE are scaled by the
same factor, which is chosen such that all peaks of the far right
resonance in the bottom panel of Fig. 3 are the same between
the LFT, GLFT, and TDSE approaches.

In the bottom panels the gray (black) dots indicate the LFT,
or Fano-Harmin theory (GLFT, or improved Fano-Harmin
theory), and the orange solid line indicates the TDSE method.
We observe that the resonant energies for the LFT and its
improved version, GLFT, disagree by more than 500 MHz (or
7.61035 x 10~% a.u.; see bracket arrows). More specifically,
from left to right in the bottom panels of Fig. 3 the absolute
errors indicated by the square brackets are 686, 917, 660,
and 970 MHz. In comparison, the GLFT is in excellent
agreement with the numerical TDSE results, with absolute
errors in resonance positions of 5.5, 20, 5, and 0.8 MHz, or,
in atomic units, 8.37138 x 10719,3.04414 x 1072,7.61035 x
10719, and 1.21766 x 107!, from left to right in the bottom
panel. Clearly, the GLFT improves by more than an order of
magnitude over the Fano-Harmin theory for strongly mixed
Stark manifolds.

Another feature which is depicted in the bottom panel of
Fig. 3 is that the LFT theory exhibits discrepancies also in the
amplitude of the photoionization cross section. Going from left
to right, the amplitude discrepancies between LFT and TDSE
in the first two resonant peaks are about ~6%-9%. On the other
hand, the amplitude discrepancies between TDSE and GLFT
are less than ~ 1%. This trend is fulfilled also in the extreme
case of the third resonance, whose amplitude is significantly
smaller with respect to the rest of the photoionization spectra
(see the top panel of Fig. 3). However, the LFT calculations in
this case yield a resonance peak which is twice as big as in the
GLFT and/or TDSE results.

Similar tests carried out for the photoabsorption Stark
spectra of Li atoms show similar trends. Zhao et al. [26]
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point out errors in the LFT, claiming that they originate in
the Fano-Harmin transformation of the irregular function.
However, Ref. [27] demonstrates that those errors are far less
severe than was claimed in Ref. [26] but they do matter for
high-accuracy calculations. The GLFT approach eliminates
such errors almost entirely.

V. CONCLUSIONS

The nonperturbative framework of the generalized local-
frame-transformation theory is developed, providing a sys-
tematic pathway to improve the accuracy of Fano’s ideas. The
present development can treat a broad class of Hamiltonians
which possess local symmetries in different regimes of the
configuration space due to its generic derivation. As a first
test application, the GLFT approach applied to the Stark
effect documents the role of correction terms which are
shown to yield significantly improved accuracy over the
original Fano-Harmin LFT approach. Incorporation of these
corrections yields photoabsorption spectra 10—100 times more
accurate than the Fano-Harmin theory. The GLFT agrees with
essentially exact numerical simulations to better than a few tens
of MHz. This range of precision is readily achievable in current
generation experiments [25]. The fact that the improved
Fano-Harmin theory is based on the GLFT allows us to easily
include relativistic and magnetic effects such as spin-orbit
and hyperfine coupling by means of simple recoupling frame
transformations. Thus, the treatment of the Stark effect of
heavy alkali-metal atoms is a straightforward extension of the
calculations reported here. Moreover, the present approach
can be applied to the Stark effect of multichannel Rydberg
spectra such as the alkaline-earth-metal atoms or molecular
Rydberg states [6-8,11]. Another potential application is the
investigation of the Stark effect of quasi-one-dimensional

U

Na
m =0
F=4kV/cm

AN~

~ TDSE
=&~ GLFT

-0~ LFT

~1.04414 (1077 a.)

~ TDSE

=~ TDSE
=&~ GLFT
-~ LFT

— TDSE

~ 147641 (1077 a.u.)

J——-‘ ~ 100457 (1077 au.)

-1.7348 -1.7346 -1.7344 -1.7342 -1.734 -1.7338 -1.7336

e (1073 au.)

-1.7022 -1.7018

€ (1073 auw)

-1.7014 -1.701

-1.6542 -1.654 -1.6538 -1.6536 -1.6534 -1.6532

e (1073 au.)

-1.6096 -1.6094 -1.6092 -1.609 -1.6088 -1.6086 -1.6084

e (1073 au)

FIG. 3. The top panel illustrates the single-pulse photoionization cross section for Na atoms versus energy € for F = 4 kV/cm, where the
photon’s polarization is parallel to the electric field. The shaded areas from left to right refer to resonances depicted in the bottom panel, where
three different methods are compared. The orange solid line (TDSE) denotes the full numerical calculations, whereas the gray dots refer to
the Fano-Harmin theory (LFT) results, and the black dots indicate the GLFT. Note that the arrow brackets denote the absolute difference in
resonance energies between the LFT and GLFT. In addition, in the bottom panel all the calculations are scaled by the same factor such that the
far right resonance peaks are the same in the LFT, GLFT, and TDSE approaches.
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Rydberg atoms, an experimentally achievable concept [30].
Also, the present theory might pave an insightful avenue
towards the photoionization processes of Rydberg atoms in
magnetic fields [31].
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APPENDIX A: CORE POTENTIAL FOR Na ATOMS

In the following, we provide the core potential of Na
atoms in atomic units where its construction is based on the
experimental data given by the NIST atomic database [32].
This model potential is used in the calculations of the
photoionization spectrum of Na atoms in the presence of
an external field. More specifically, this potential is used in
the calculations of the TDSE method and separately for the
computation of the quantum defects (i,

Z(ry LE+1
ot

where ¢ denotes the orbital angular momentum, « is set to
o = 0.9457 a.u., and the quantity Z(r) = 1 + fi(r) + rfa(r).
f3(r) obeys the relation

Vy(r) = —%fmz - . (AD

frr)y=1—¢ 0/, (A2)

where the cutoff radius r. is r. = 0.7 a.u.
The quantities f;(r) and f,(r) are given by the relations

fir) =10e™",  fo(r) = cpe™™", (A3)
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where the constants «;, with i = 1...3, take the values
(aq,000,003) = (3.8538,11.0018,3.0608) (in a.u.).

APPENDIX B: CONVERGENCE AND CUTOFF
FUNCTIONS FOR J;» MATRIX ELEMENTS

As we showed in the main text, the matrix elements Jgy
in Eq. (22) contain two infinite summations. However, in the
numerical evaluation of Jy, elements the sums are truncated
at a maximum S value, e.g., Bmax. Under this consideration,
formally, Eq. (22) obtains the following form:

o Gir
Joo = Z Ue;’?m(e) Aﬂ UgFKrm(E)fcutoff(.BFﬂﬁmaX)
Br prm

= g_ m
=D Ugin(©) - U () Feunair(B. B, (B1)
2 pm

where F(-,-) denotes a cutoff function.

The particular form of the cutoff function affects the speed
of the convergence of the J;» matrix elements. For example,
the choice of a step function as the cutoff function, i.e.,
Feutoff (X Bmax) = O(Bmax — X), yields a slow convergence of
the Jy matrix elements due to Gibbs oscillations. Therefore,
in order to accelerate the convergence of Jy the following
cutoff function is employed:

L, x <1,
Feutoft (X, Bmax) = Z16.1(2=L (B2)
e 5

Pmax —1 x>1,

where this particular choice serves as a smooth step function
and the constant b takes the value 4, 6, or 8, ensuring that the
matrix elements in Eq. (B1) are converged up to six significant
digits.
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