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Closed-orbit theory for photodetachment in a time-dependent electric field
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The standard closed-orbit theory is extended for the photodetachment of negative ions in a time-dependent
electric field. The time-dependent photodetachment rate is specifically studied in the presence of a single-cycle
terahertz pulse, based on exact quantum simulations and semiclassical analysis. We find that the photodetachment
rate is unaffected by a weak terahertz field, but oscillates complicatedly when the terahertz pulse gets strong
enough. Three types of closed classical orbits are identified for the photoelectron motion in a strong single-cycle
terahertz pulse, and their connections with the oscillatory photodetachment rate are established quantitatively
by generalizing the standard closed-orbit theory to a time-dependent form. By comparing the negative hydrogen
and fluorine ions, both the in-phase and antiphase oscillations can be observed, depending on a simple geometry
of the contributed closed classical orbits. On account of its generality, the presented theory provides an intuitive
understanding from a time-dependent viewpoint for the photodetachment dynamics driven by an external electric
field oscillating at low frequency.
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I. INTRODUCTION

Quantum effects from closed (or periodic) classical orbits
in a microscopic system have been explored in many different
branches of physics [1]. One of the most typical processes in
atomic and molecular physics is the photoionization of neutral
atoms or the photodetachment of negative ions in external
fields [2]. Its studies often promise an intuitive picture of the
embedded dynamics, which not only reveals an interesting
correspondence between classical and quantum mechanics,
but also allows a better control and manipulation on a
microscopic scale. The general physical picture and formalism
are known as closed-orbit theory [3–5], which has been
applied or extended in different situations. However, almost
all the systems investigated before are time independent and
therefore energy conserving [6–15]. Time-dependent systems
have been rarely studied, with the one exception being the
photoionization of neutral atoms in a static electric field plus
a weak oscillating field [16,17]. In this paper, we demonstrate
an application of closed-orbit theory for the photodetachment
of negative ions in a time-dependent electric field.

Many kinds of specific field profiles, such as a microwave
field or a low-frequency laser pulse, could be applied to
study the time-dependent effect of an external field on the
photodetachment rate of negative ions. Recently, a strong
single-cycle terahertz (THz) pulse has been available in a
table-top experiment. As a result of its simplicity and other
peculiarities, the single-cycle THz pulse has been applied in
exploring the ionization dynamics of Rydberg atoms [18–20],
as well as controlling the alignment and orientation of polar
molecules [21,22]. Inspired in part by these results, we
consider the possibility of using a single-cycle THz field to
manipulate the photodetachment dynamics of negative ions.
Temporal interferences in the time-dependent electron flux
(or the angle-resolved energy spectrum) at large distances
were investigated in a previous paper [23] by extending the
original idea for traditional photodetachment microscopy in
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a static electric field [24–27]. The classical trajectory of the
photoelectron was tracked from the negative-ion center to a
large distance. We found that some trajectories could return to
the source region when the single-cycle pulse is strong enough.
This observation of closed classical orbits constitutes the main
motivation of this work.

Following the general picture depicted by closed-orbit
theory [3–5], an external field can modulate the photon
absorption rate in the photoionization and photodetachment
processes by driving back an outgoing electron wave to the
source region where the initial bound state is localized. The
returning electron wave interferes with the outgoing wave
near the source center. Each closed classical orbit corresponds
to one sinusoidal term in the total modulation function.
Therefore, an oscillatory photodetachment rate should be
expected if the applied single-cycle THz pulse is strong enough
that the electron can be driven back to the source region.
This is indeed observed in our quantum simulations for a
strong THz pulse. In Fig. 1, a representative case is shown
for the negative hydrogen ion (H−). It can be observed that the
photodetachment rate is quite stable in a weak THz pulse with
the maximum field strength Fm = 10 kV/cm, but oscillates
in a complex way when a stronger THz pulse is used such as
Fm = 40 kV/cm. By examining the classical trajectories, no
closed orbit is found for Fm = 10 kV/cm, while three different
types of closed orbits are found when Fm = 40 kV/cm.
These observations are qualitatively consistent with the general
predictions of closed-orbit theory. To quantitatively understand
the oscillatory behavior as in Fig. 1(b), we have to generalize
the existing formulas to include time-dependent field effects.
It turns out that the generalized formulas agree very well with
exact quantum simulations.

Comparing with the well-established closed-orbit theory
for the photodetachment dynamics in a static electric field
[14,15], the generalized formulas mainly have two differences
as follows. (a) A static electric field can always guarantee
one and only one closed orbit, and the oscillation phases
are opposite between the photodetachment rates from an
s-wave source such as negative fluorine ion (F−) and a p-wave
source such as H−. While in a time-dependent electric field
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FIG. 1. (a) Field configurations reproduced from Ref. [23] with a
slight modification. The gray curve and the solid red line represent the
weak laser field and the single-cycle THz pulse, respectively, divided
by their corresponding field amplitudes. The laser-field oscillation
cannot be resolved due to its high frequency. (b) Time-dependent
photodetachment rate obtained from exact quantum simulations for
H−. The THz pulse strengths Fm are given in the legend for different
lines, respectively. All of the curves are normalized using the value of
the photodetachment rate at t = 0 ps without the single-cycle pulse
applied (Fm = 0 kV/cm).

no closed orbit exists if the maximum momentum transfer is
not large enough, more than one closed orbit may be found if
the field is strong. Determined by a simple property of each
closed orbit, both the in-phase and antiphase oscillations can be
observed by comparing the time-dependent photodetachment
rates of H− and F−. (b) An electron’s kinetic energy is
conserved if it was driven back to the ion by a static field. In
contrast, when the electron is driven back by a time-dependent
electric field, its kinetic energy is usually different from its
initial value. Consequently, each sinusoidal term in the total
modulation function is multiplied by an additional coefficient
related to both the electron’s outgoing and returning momenta
along the corresponding closed classical orbit.

Although the single-cycle THz pulses are specifically
studied, the presented theory is quite general. The related
formulas can be used directly for the photodetachment of
negative ions in any other forms of the time-dependent electric
field, as long as the whole photodetachment process can be
divided approximately into two steps: one-photon absorption
from a weak laser field followed by the photoelectron motion
in the applied external field. The only additional work needed
for a specific system is to identify all of the possible closed
classical orbits. We note that an experiment has been done for
the photodetachment of negative chlorine ions in a microwave
field [28,29], and several theoretical studies have also been
reported [29–31]. However, all of the previous time-dependent
treatments assumed the applied field varied slowly enough so
that the electron was driven by a constant electric field during
each detachment event, which approximately corresponds to

the situation in the reported experiment [28,29]. In this sense,
our current work provides further insight into the general cases
of a time-dependent electric field.

In the following section, the theoretical model with a
specific single-cycle THz pulse is briefly summarized, as well
as the numerical method we used for quantum simulations.
The three types of closed classical orbits are identified in
Sec. III, and their corresponding returning waves are specified
in Sec. IV. The general formulas for the time-dependent
photodetachment rate are presented in Sec. V by extending
the standard closed-orbit theory for the photodetachment of
negative ions in a static electric field. Some calculations and
discussions are presented in Sec. VI, followed by a brief
conclusion in Sec. VII. Atomic units are used throughout this
work unless specified otherwise.

II. THEORETICAL MODEL AND NUMERICAL
APPROACH

We choose to study the photodetachment of negative ions
(H− and F−) in a single-cycle THz pulse as a specific system,
based on several simple reasons as introduced above. Most
importantly, this system has almost all the essential elements
expected for the other general cases, which can be seen clearly
in the following sections. In addition, a numerical solution of
Schrödinger’s equation is also possible as long as the single-
cycle pulse strength is not extremely large as in Fig. 1(b), which
allows us to examine the accuracy of closed-orbit theory.

The details of the theoretical model have been described
in Ref. [23]. Here, we give a brief summary and present the
necessary equations related to our present work. We assume
that the weak laser field and the applied single-cycle THz pulse
are both linearly polarized along the z axis. The influence of
the THz pulse is negligible on the initial ground state of the
negative ion. The much higher frequency of the laser field
relative to the THz pulse allows the whole photodetachment
process to be approximated as two successive steps: the weakly
bound electron in a short-range potential well is first released
by absorbing one photon from the weak laser field, and then
the photoelectron motion after escaping from the atom center
is mainly guided by the single-cycle THz pulse.

As in our previous paper [23], we restrict the weak laser
field within a finite width as in Fig. 1(a). The specific envelope
function has the following form:

fL(t) = 1

2

[
tanh

(
t − tu

tL

)
− tanh

(
t − td

tL

)]
, (1)

where td = −tu = 4tw with tw denoting the single-cycle pulse
duration in Eq. (3) below. The parameter tL is selected to be
large enough so that the possible acceleration and deceleration
effects are negligible in the outgoing electron wave when
the field envelope is ramping on and off. For example, the
photon energy �ωL used for H− is 0.8 eV in Fig. 1(b), and
tL = 80T0 with T0 approximately 4.6 fs after the convention in
Ref. [23]. For F−, the weak laser-field frequency is chosen
to give the same electron kinetic energy E0 as for H−,
allowing us to examine effects caused by the different angular
distributions of the initially outgoing electron waves. For those
laser parameters listed above, the generated outgoing wave at

053413-2



CLOSED-ORBIT THEORY FOR PHOTODETACHMENT IN A . . . PHYSICAL REVIEW A 93, 053413 (2016)

each initial time ti can be written as

ψ0(r,θi,φi,ti) = fL(ti)ψout(r,θi,φi)e
−iE0ti , (2)

with its amplitude approximately following the laser-field
envelope, where (r , θi , φi) denote spherical coordinates of
the electron relative to the rest atom. The spatial function
ψout(r,θi,φi) corresponds to the time-independent outgoing
wave generated by a cw laser.

The applied single-cycle THz pulse is assumed to have a
Gaussian-shape vector potential,

A(t) = −Fmtw√
2

e
− t2

t2w
+ 1

2 , (3)

which gives a time-dependent single-cycle electric field as
in Fig. 1(a) with F (t) = −dA(t)/dt . tw = 0.5 ps in Fig. 1,
and its value may be changed for the other calculations.
Both the quantum propagation approach and the semiclassical
propagation scheme have been described in Ref. [23] for
the evolution of the generated electron wave driven by a
single-cycle THz pulse. For a sufficiently strong THz pulse
as in Fig. 1(b), an exact quantum simulation is possible. The
details can be found in Ref. [23], and the basic idea is to solve
the following inhomogeneous Schrödinger equation:{

i
∂

∂t
− [Ha + HF (t) − E0]

}
�̃(r,t) = fL(t)Dϕi, (4)

on a two-dimensional space spanned by the discretized radial
points and angular momentum basis with different l values.
The source term on the right-hand side of Eq. (4) comes from
the interaction of negative ions with a weak laser field, where
D and ϕi represent, respectively, the dipole operator and the
initial bound state of negative ions. The atomic Hamiltonian
[p2/2 + V (r)] and the interaction term [F (t)z] with a single-
cycle THz pulse are denoted, respectively, by Ha and HF (t) on
the left-hand side of Eq. (4). The specific forms of the binding
potential V (r) for H− and F− are taken from Refs. [32] and
[33], respectively. The corresponding binding energies Eb are
0.02773 and 0.125116 a.u. for H− and F−, respectively, by
diagonalizing the atomic Hamiltonian matrix in a large radial
box.

The wave function �̃(r,t) in Eq. (4) multiplied by a phase
term exp(−iE0t) is the detached-electron wave function at
each time instant with a single-cycle THz pulse applied.
Therefore, the time-dependent photodetachment rate ϒ(t) can
be calculated as [17]

ϒ(t) = d

dt

∫
�̃∗(r,t)�̃(r,t)d3r. (5)

In practice, we found that quantum simulations for ϒ(t) can
be done efficiently in a smaller radial box than that in Ref. [23]
by using a mask function M(r > rc) = 1 − α[(r − rc)/(rm −
rc)]2δt to absorb the wave-function part approaching a large
distance after each time step δt . The calculation of ϒ(t)
is done in each time step before the wave function �̃(r,t)
multiplied by the mask function. The absorbing strength α,
the beginning point rc of the mask function, and the radial
box boundary rm should be adjusted carefully to make the
numerical results convergent. For our calculations in this work,
we consistently use α = 0.005. The appropriate values of rc

and rm can be chosen by referring to the classical turning points

of the possible closed orbits discussed in the following section.
For instance, rc = 6500 a.u. and rm = 8000 a.u. for Fig. 1(b)
with Fm = 40 kV/cm. For Fm = 0 and Fm = 10 kV/cm in
Fig. 1(b), we did not use the mask function.

III. CLOSED CLASSICAL ORBIT

For our purpose here, we need to find all the possible closed
classical orbits returning back to the atom center. The electron
orbit equation has been obtained as [23]

ρ(t) = k0(t − ti) sin(θi), (6)

z(t) = [k0 cos(θi) − A(ti)](t − ti) +
∫ t

ti

A(t ′)dt ′, (7)

in the cylindrical coordinates (ρ, z) with the atom center at the
origin, where k0 = √

2E0. By setting ρ(t) = 0 and z(t) = 0,
we get the following condition for the possible closed orbits:

[k0 cos(θi) − A(ti)](t − ti) = −
∫ t

ti

A(t ′)dt ′, (8)

with θi = 0 or π . This criteria can be expressed geometrically
as in Fig. 2(a), where the rectangular area below the horizontal
dashed line and the shaded area below the reversed vector-
potential curve [−A(ti)] are, respectively, the left- and right-
hand sides of Eq. (8). The solution to Eq. (8) requires an
equivalent of these two areas. Note that the crossings between
the horizontal dashed line and the reversed vector-potential
curve correspond to the spatial turning points [pz(t) = 0] of
each trajectory, and their corresponding time is

t0
< = −t0

> = −tw

√
ln

[
Am

A(ti) − k0

]
(9)

for θi = 0, and

tπ> = tw

√
ln

[
Am

A(ti) + k0

]
(10)

for θi = π , with Am = −Fmtw exp(1/2)/
√

2 denoting the
amplitude of the vector potential in Eq. (3).

After a simple geometric analysis in Fig. 2, we can easily
determine the possible range of the starting and returning time
for each closed orbit. In Figs. 2(a) and 2(c) for θi = 0, the
horizontal dashed line must cross the reversed vector-potential
curve, which requires

|A(ti) − Am| > k0 and ti < 0 if θi = 0. (11)

Therefore, the starting time ti of the possible closed orbit
must be negative and less than −tw

√
ln[Am/(Am + k0)]. The

corresponding two returning time instants tret01 and tret02 satisfy
t0
< < tret01 � t0

> and tret02 � t0
>, respectively. In addition, the

position of the second turning point z(t0
>) cannot be positive

for the trajectory returning back. In Figs. 2(e) and 2(g) for
θi = π , the same argument related to the crossing as for θi = 0
leads to

−A(ti) − k0 > 0 and |A(t) − Am| > k0 if θi = π . (12)

Accordingly, only the classical trajectories starting between
−tw

√
ln(−Am/k0) and tw

√
ln(−Am/k0) can be driven back
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FIG. 2. Graphic demonstration of the possible closed classical
orbits in a strong single-cycle THz pulse. The specific case in Fig. 1(b)
for Fm = 40 kV/cm is used as an example. Panels (i) and (ii) are two
possible cases for θi = 0, and (iii) and (iv) are two possible cases
for θi = π . In each panel, the top subplot is a geometric expression
of Eq. (8) and the bottom one shows the corresponding trajectory.
For each trajectory, the position of the vertical bold solid (blue) line
indicates the starting time, while the vertical bold dashed (red) lines
locate its returning time. Both the starting and returning time instants
are marked accordingly along each closed orbit (solid curve) in (b),
(d), (f), and (h), where the horizontal bold dashed line shows the
ion-center location, with the dotted line representing the continuation
of each trajectory.

to the source region. The returning time must be positive and
larger than tw

√
ln[Am/(Am + k0)]. Furthermore, the returning

time should also be later than the time of the turning point.
For each closed orbit, the exact starting and returning time

can be found numerically according to Eq. (8). Figure 3(a)
shows the starting time of each closed orbit as a function of
the corresponding returning instant with Fm = 40 kV/cm. To
be clear, we have categorized all the possible closed orbits into
three types according to their outgoing angle and returning
direction. The first type of closed orbit starts with θi = 0 and
goes back with θret = π , which includes the first-time returned
trajectory in Figs. 2(a) and 2(b) and the special case shown in
Figs. 2(c) and 2(d). The second-time returned trajectory as
in Figs. 2(a) and 2(b) is the second type of closed orbit with
θi = θret = 0. The other two cases depicted in Figs. 2(e)–2(h)
correspond to the third type of closed orbit with θi = π and
θret = 0. These three types of closed orbits are distinguished
in Fig. 3(a) by the blue solid curve and the red dotted and
black dashed lines, respectively. The joint point between the
blue solid curve and the red dotted line in Fig. 3(a) represents
a special situation, as demonstrated in Figs. 2(c) and 2(d),
which we call a soft return after Refs. [34,35]. In this case,
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FIG. 3. (a) Returning time plot for the relevant closed orbits
in Figs. 1(b) and 2, giving the initial, outgoing time ti for each
possible closed orbit returning back to the atom center at time t .
The three types of closed orbits are identified in order by the solid
blue curve, the dotted lines, and the dashed lines. (b) Time-dependent
photodetachment rate for H−. The bold dashed curve is given by
Eqs. (35)–(37) from closed-orbit theory (COT), while the solid
blue curve is from exact quantum simulations by directly solving
the time-dependent Schrödinger equation (TDSE) in Eq. (4). (c)
Comparison between the photodetachment rates for H− (thin blue
curve) and F− (bold red line) obtained from quantum simulations.
All of the quantum results have been normalized using the value
of the photodetachment rate at t = 0 ps without any external fields
applied.

the atom-center location is just a turning point of the electron
trajectory, and pz = 0 when the electron returns back to the
atom center.

IV. SEMICLASSICAL RETURNING WAVE

For an electron propagating along each classical trajectory,
the corresponding quantum wave can be constructed approx-
imately in a semiclassical way. To obtain the semiclassical
returning wave, we first choose an initial spherical surface
of radius R centered at the negative ion. As in the standard
procedure [5,14], the small radius R is selected near the
atom center such that the initially outgoing wave is already
asymptotic but not obviously distorted by external fields.
Accordingly, the time-independent function ψout(R,θi,φi) in
Eq. (2) has the following spherically outgoing wave form [26]:

ψout(R,θi,φi) = C(k0)Ylm(θi,φi)
eik0R

R
, (13)

on the initial spherical surface. C(k0) is a complex energy-
dependent coefficient and Ylm(θi,φi) is a spherical harmonic
function representing the initial angular distribution of the
generated photoelectron wave. For instance, H− and F− con-
sidered in this work represent a p-wave source and an s-wave
source, respectively. The semiclassical wave corresponding to
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each trajectory can be written as [17,23]

ψν(t) = fL(ti)ψout(R,θi,φi)Aνe
i(Sν−E0ti−λν

π
2 ), (14)

where the subscript ν labels the considered trajectory. A and S
denote, respectively, the semiclassical amplitude and classical
action accumulated in an augmented phase space. The Maslov
index λ is determined by the number of singularities inA along
the trajectory.

When the electron wave returns back to the source region,
the returning wave behaves approximately like a plane wave
[14,15], traveling along the returning direction of the closed
classical orbit. Therefore, by connecting the semiclassical
wave in Eq. (14) to a plane-wave form, the electron returning
wave along each closed orbit can be approximated as

ψν
ret(t) = fL(ti)e

−iE0t ψ̃ν
ret, (15)

with the reduced function ψ̃ν
ret specifically expressed as

ψ̃ I
ret = C(k0)GcoYlm(θi = 0)e−ikretz, (16)

ψ̃ II
ret = C(k0)GcoYlm(θi = 0)eikretz, (17)

ψ̃ III
ret = C(k0)GcoYlm(θi = π )eikretz, (18)

for the wave parts returned along the three types of closed orbits
as in Fig. 3(a), respectively. Note that the returning electron
momentum kret in Eqs. (16)–(18) is generally different from
the initial momentum k0 when a time-dependent electric field
is applied, which is different from the case of a static field. In
the above equations,

Ylm(θi = π ) = (−1)lYlm(θi = 0) = (−1)lNl0δm0, (19)

with Nl0 = √
(2l + 1)/(4π ), and the factor

Gco = A
R

ei(S̃−λ π
2 ) (20)

represents the wave amplitude and phase accumulated along
each closed orbit. The redefined action function S̃ in Eq. (20)
has the following form:

S̃ = S + E0(t − ti), (21)

which is called an “extended action” in Ref. [17].
The general expressions for the semiclassical amplitude A

and classical action S have been obtained in Ref. [23] for the
electron wave propagating along any classical trajectories in
a time-dependent external field. For the closed classical orbits
involved here, we have

A
R

= 1

k0(t − ti)

∣∣∣∣ k0

k0 − F (ti)(t − ti) cos(θi)

∣∣∣∣1/2

(22)

from Eq. (28) in Ref. [23] with θi = 0 or π , which can be
rewritten as an intuitive form (Appendix A),

A
R

= 1

k0(t − ti)

∣∣∣∣pz(ti)dti

pz(t)dt

∣∣∣∣1/2

, (23)

with pz(ti) and pz(t) denoting, respectively, the outgoing and
returning momenta of the corresponding closed orbit. Note that
the absolute-square-root part on the right-hand side of Eqs. (22)
and (23) becomes a unity when the energy is conserved, and
Eqs. (22) and (23) reduce to a static-field case as in [14,15].

Based on Eq. (23), the Maslov index λ can be determined
from the returning-time plot as in Fig. 3(a). For example, if
θret = θi = 0 as the second type of closed orbit in Eq. (17),
λ = 0 when the slope dt/dti in Fig. 3(a) is positive, otherwise
λ = 1. From Eq. (B9) in Ref. [23], the extended action S̃ in
Eq. (36) can be obtained as (Appendix A)

S̃ =
[
k2

0 + 1

2
A2(ti) − A(ti)k0 cos(θi)

]
(t − ti)

− 1

2

∫ t

ti

A2(t ′)dt ′ (24)

by using the condition in Eq. (8) for a trajectory returning back
to the source region.

V. CLOSED-ORBIT THEORY

Following the general picture established in Refs. [3–
5,17], the total photodetachment rate ϒ(t) in Eq. (5) can be
decomposed as

ϒ(t) = ϒ0(t) +
∑

ν

ϒν(t), (25)

where

ϒ0(t) = −2Im〈I (t)|ψdir(t)〉 (26)

is a smooth background representing the photodetachment rate
without any external fields, and

ϒν(t) = −2Im〈I (t)|ψν
ret(t)〉 (27)

is contributed by the returning electron wave ψν
ret(t) associated

with the νth closed orbit. The wave-source function I (t) in
Eqs. (26) and (27) has the following form:

I (t) = fL(t)e−iE0tDϕi, (28)

which is the source term on the right-hand side of Eq. (4) mul-
tiplied by a phase term exp(−iE0t). The smooth background
in Eq. (26) can be worked out as

ϒ0(t) = f 2
L(t)k0|C(k0)|2 (29)

according to the existing formulas in Ref. [15] after, in Eq. (26),
using the directly outgoing wave ψdir(t) given by Eq. (2) and
the wave-source function I (t) in Eq. (28).

To calculate the contributed term from the returning
electron wave, we first rewrite Eq. (27) as

ϒν(t) = −2fL(t)fL(ti)Im〈Dϕi |ψ̃ν
ret〉, (30)

using the expressions of the returning wave in Eq. (15)
and the wave-source function in Eq. (28). The overlap
integration in Eq. (30) between a static wave source Dϕi and a
reduced returning wave ψ̃ν

ret is now in a familiar form usually
encountered when a static field is applied. Accordingly, the
same manipulations as in Ref. [15] can be followed, and the
final expression is (Appendix B)

Im〈Dϕi |ψ̃ν
ret〉 = gl

2
(2l + 1)δm0Im[C∗(k0)C(kret)G∗

co], (31)

with g = 1 for a closed orbit with the same outgoing and
returning directions as in Eq. (17), and g = −1 for a closed
orbit with opposite outgoing and returning directions as in

053413-5



B. C. YANG AND F. ROBICHEAUX PHYSICAL REVIEW A 93, 053413 (2016)

Eqs. (16) and (18). Therefore, the sinusoidal term ϒν(t) in
Eq. (25) corresponding to each closed orbit is obtained as

ϒν(t) = glfL(t)fL(ti)(2l + 1)δm0

×C∗(k0)C(kret)
A
R

sin

(
S̃ − λ

π

2

)
, (32)

by substituting Eq. (31) into Eq. (30). To write Eq. (32), we
have assumed that the energy-dependent coefficient C(k) is
either a real function or a pure imaginary function, as discussed
in Refs. [36,37].

Finally, the closed-form expression for the photodetach-
ment rate can be written as a product,

ϒ(t) = ϒcH(t), (33)

by combining Eqs. (25), (29), and (32) together, where

ϒc = k0|C(k0)|2 (34)

represents the photodetachment rate in a weak cw laser field
with fL(t) = 1, and

H(t) = f 2
L(t) +

∑
ν

fL(t)fL(tνi )Hν(t) (35)

contains both the possible effects induced by an external
field and the slowly varying envelope fL(t) assumed for the
weak laser field. In the summation of Eq. (35), one of the
laser-field envelope functions fL(t) is evaluated at ti , which
was brought in by the initially outgoing wave in Eq. (2)
through the returning wave in Eq. (15). The presence of the
prefactor fL(t)fL(ti) in Eq. (35) requires the occurrence of
the laser excitations at both the instant ti and t , as well as
a quantum coherence between these two excitation events.
H(t) in Eq. (35) is usually called a modulation function
of the photodetachment rate, and Hν(t) corresponds to the
contribution from each closed orbit, which can be explicitly
written as

Hν(t) = gl(2l + 1)δm0
C(kret)

C(k0)

A
k0R

sin
(
S̃ − λ

π

2

)
(36)

from Eqs. (32)–(35). Required by a Wigner power law such
as ϒc ∝ (k0)2l+1 near the photodetachment threshold [38], the
energy-dependent coefficient C(k) is proportional to kl for
small k. For H− especially, an analytic form of C(k) needed
in Eq. (36) has been given by a well-established model in
Refs. [26,39], and

C(kret)

C(k0)
= kret(Eb + E0)2

k0(Eb + Eret)2
, (37)

with Eret = k2
ret/2. For E0 � Eb and Eret � Eb, Eq. (37)

reduces to that given by the Wigner threshold law.
At the end of this section, we would like to point out that

no specific profile has been assumed for the applied electric
field in the above derivation. All of the formulas obtained
in this section are generally applicable for the photodetach-
ment in a time-dependent electric field oscillating at low
frequency, which automatically includes the static-field case as
in Refs. [14,15]. Since the semiclassical propagation scheme
and its related formulas in Ref. [23] were also presented in a
general form for the electron propagating along any classical
trajectories, the established theory, together with Ref. [23],

provides an intuitive understanding of the photodetachment
dynamics driven by a slowly varying oscillating electric field,
which depicts a clear dynamical picture from a time-dependent
viewpoint based on the classical trajectory propagation.

VI. CALCULATIONS AND DISCUSSIONS

In this section, we present some specific calculations using
Eqs. (35) and (36) for the photodetachment driven by a single-
cycle THz pulse as illustrated in Fig. 1(a), as well as the related
discussions on the possible interesting effects expected from
the current theory. The exact quantum simulations are also
presented for several cases to examine the accuracy of the
simple formulas in Eqs. (35) and (36). For H− as a p-wave
source, the expression in Eq. (37) is used. For F− as an s-wave
source, we consistently use C(kret)/C(k0) = 1 after the Wigner
power law near the photodetachment threshold.

The photodetachment rate given by the generalized closed-
orbit theory is compared with that from exact quantum
simulations in Fig. 3(b) by taking the demonstrated case in
Fig. 1(b), for instance. Excellent agreement can be found in the
time range where the electron can be classically driven back to
the source region. Near the classical boundary corresponding
to the left-most points of the solid blue line and the dashed
black curve in Fig. 3(a), the results from closed-orbit theory
diverge as usual because dt/dti = 0 in the semiclassical
amplitude as in Eq. (23). Besides, as shown by the quantum
simulations in Figs. 3–5, the oscillatory behavior of the
photodetachment rate can also be observed in the classically
forbidden range where no closed classical orbit was found,
and the oscillation amplitude goes to zero gradually with time
t away from the classical boundary.

The above-mentioned oscillation behavior in the classically
forbidden region looks similar to that observed in Ref. [40] for
a static barrier, where the continuation of the cross-section
oscillations beyond the standard closed-orbit theory was
explained as an effect of quantum over-barrier reflection. How-
ever, our current time-dependent system is more complicated
than the static case in Ref. [40]. To quantitatively describe those
extended oscillations in the classically forbidden region, as
well as to repair the divergence near the classical boundary as in
Fig. 3(b), some sophisticated manipulations are needed beyond
our current treatment based on real classical trajectories
[11,15,40]. Nevertheless, the semiclassical formulas obtained
in Sec. V are already insightful enough to understand the
physics behind the complicated oscillations of the photode-
tachment rate as in Fig. 1(b). Therefore, in the following
discussion, we will mainly focus on the physics revealed by
Eqs. (35) and (36), instead of pursuing an appropriate way to
save the semiclassical description near the classical boundary
and in the classically forbidden region. In addition, it can be
seen from Figs. 3–5 that quantum effects in the classically
forbidden region become negligible when the THz pulse gets
stronger relative to the initial electron kinetic energy.

Beyond the specific case of H−, the established theory
in Sec. V promises an interesting discrepancy between the
oscillation behaviors of the photodetachment rates for different
negative ions. To give a general impression, the photodetach-
ment rate for F− is also displayed in Fig. 3(c) from quantum
calculations, where both the oscillation amplitude and phase
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FIG. 4. Phase dependence on a simple geometry of the closed
orbit. (a) Returning time plot for the relevant closed orbits. The solid
blue curve and the dotted and the dashed lines correspond to the closed
orbits with (θi = 0, θret = π ), θi = θret = 0, and (θi = π , θret = 0),
respectively. (b),(c) The time-dependent photodetachment rate for H−

and F−, respectively. The bold dashed and the solid blue curves are
given by closed-orbit theory and quantum simulations, respectively.
(d) Comparison between the photodetachment rates for H− (thin red
curve) and F− (bold gray line) obtained from quantum simulations.
All of the quantum results have been normalized using the value of the
photodetachment rate at t = 0 ps without any external fields applied.

are very different from those observed for H−. Since the
oscillations in Fig. 3 are too complicated to give any clear
information, we choose to first examine the two simpler cases
in Figs. 4 and 5, where the time ranges corresponding to the
three types of closed orbits are almost separated between each
other, supported qualitatively by the graphic analysis as in
Fig. 2 with Eqs. (9) and (10) together. Comparing with those
parameters in Fig. 3, the field strength is smaller in Fig. 4, while
the photon energy is higher in Fig. 5. For both of the two cases
in Figs. 4 and 5, a good agreement between closed-orbit theory
and quantum calculations can also be found in the classically
allowed range for closed classical orbits. By comparing H−
and F− in each case, as in Figs. 4(d) and 5(d), different
phase relations can be observed in different time ranges for
the oscillations of the photodetachment rates.

According to Eq. (36) for each specific closed orbit, the
modulation phase for different negative ions is only determined
by a g coefficient associated with a simple geometry of the
closed orbit. If the contributed closed orbit has the opposite
outgoing and returning directions as those identified by
the solid and the dashed curves in Figs. 3(a), 4(a), and 5(a), the
prefactor gl can be 1 or −1, depending on whether the quantum
number l is even or odd. Therefore, the photodetachment rate
for H− (p-wave source) oscillates out of phase with that for F−
(s-wave source) in the corresponding time ranges. In contrast,
if the outgoing and returning directions of the closed orbit
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FIG. 5. The same as Fig. 4, but for higher photon energy and
larger field strength as listed on the top. Here, tL in Eq. (1) was set to
be 50T0 as in Ref. [23].

are the same as the second type of closed orbit indicated by
the dotted lines in Figs. 3(a), 4(a), and 5(a), then the prefactor
gl = 1 for all l values. Accordingly, the photodetachment rates
for H− and F− oscillate in phase in the time range of the second
type of closed orbit. These arguments based on the g coefficient
in Eq. (36) successfully explain the different phase relations
between the oscillatory curves for H− and F− in the different
time ranges of Figs. 4(d) and 5(d).

More interestingly, near t ∼ 0.3 ps in both Figs. 4 and 5
where time ranges for the first and second types of closed orbits
overlap, the oscillation amplitude of the photodetachment
rate for H− becomes smaller but the amplitude for F− gets
larger. This is also caused by the g coefficient. For H−,
gl = −1 and 1 for the first and second types of closed orbits,
respectively. Therefore, the total contributions from these
two closed orbits at each time become smaller because of
a large-part cancellation between each other in Eq. (35). For
F−, both types of closed orbits have gl = 1, and accordingly
their incoherent summation in Eq. (35) makes the oscillation
amplitude larger. Nevertheless, the same phenomenon does not
appear in Fig. 3(c), which cannot be simply explained by the
g coefficient. Note that the closed orbits starting near ti = −2
ps need a much longer time to be driven back to the source
region than those starting near ti = 0 ps do. Consequently,
their contributions in Eq. (35) are negligible compared with
those contributed by the closed orbits starting much later, as a
result of their associated much weaker amplitudesA according
to Eq. (22). This can be seen clearly in the overlap range
near t = 0.4 ps in Fig. 3(c), where the oscillation behavior
is dominated by the second type of closed orbit, and the
photodetachment rates for H− and F− oscillate in phase.

Following Eq. (36), the modulation amplitude is generally
affected by both the energy-dependent coefficient C(k) and the
angular distribution of an initially outgoing wave. Specifically,
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FIG. 6. Amplitude dependence on the returning electron momen-
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the bold dashed lines in Figs. 3(b), 4(b), and 5(b), respectively, for
comparison. The bold gray lines are calculated from Eq. (36) without
the term C(kret)/C(k0) included.

for an s-wave source such as F−, the effect of C(k) is negligible
according to the Wigner power law near the photodetachment
threshold. However, for a p-wave source such as H−, the effect
of C(k) is not negligible in principle according to Eqs. (36)
and (37), and the change of the electron returning momentum
kret relative to the initially outgoing momentum k0 might
modify the oscillation amplitude of the photodetachment rate
dramatically. As a demonstration, the correct semiclassical
results in Figs. 3(b), 4(b), and 5(b) are compared in Figs. 6(a)–
6(c), respectively, with their modified calculations according
to Eq. (36) without the term C(kret)/C(k0) included. Note
that the modified results give an oscillation amplitude only
determined by the factor (2l + 1) in Eqs. (35) and (36) for
the same types of closed orbits. By comparing Figs. 6(a)–
6(c) and Figs. 3(c), 4(d), and 5(d) correspondingly, we can
conclude that the oscillation-amplitude discrepancy between
the photodetachment rates for H− and F− in Fig. 3(c) is
mainly caused by the different l values associated with
the wave-source property, while the almost equal oscillation
amplitudes observed in both Figs. 4(d) and 5(d) are induced by
the change of the returning momentum related to the external
time-dependent field.

A dynamic picture of the electron-momentum variation
and also the difference between kret and k0 can be obtained
visually from a graphic demonstration of Eq. (8) as in Fig. 2.
The vertical vector from the reverted vector-potential curve to
the horizontal dashed line as in Fig. 2(a) is just the electron
momentum vector at each time instant. The specific case
illustrated in Fig. 2 corresponds to Figs. 3 and 6(a). There

is no big difference observed between kret and k0 in Fig. 2
for most cases, especially for the first-time returning orbit in
Fig. 2(a) and those closed orbits as in Fig. 2(g) which contribute
dominantly to the final oscillation amplitude because of their
short durations. This explains the small discrepancy between
the modified results and the correct calculations in Fig. 6(a).
Besides the overall agreement, an obvious discrepancy can be
found near t = 0.2 ps in Fig. 6(a). This is because the electron
experiences a soft return as in Fig. 2(c) where the returning
momentum is zero. Accordingly, as shown in Fig. 6(a), the
oscillation amplitude from correct calculations appears smaller
than that given by the modified results without the term
C(kret)/C(k0) included in Eq. (36).

There are mainly three differences between the cases in
Figs. 6(b) and 6(c) and that in Fig. 6(a). First, all of the closed
orbits almost contribute equally to the oscillation amplitudes
in Figs. 6(b) and 6(c) as a result of their similar durations.
Second, compared with those parameters in Fig. 6(a), the field
strength is weaker in Fig. 6(b) and the photon energy is higher
in Fig. 6(c). If we make a corresponding change in Fig. 2
after Fig. 4(a) or Fig. 5(a), the obtained returning momenta
are almost always smaller than the initial values. This is the
main reason why the modified results give a larger amplitude
than the correct calculations in Figs. 6(b) and 6(c). The third
important difference is that the time range for the first and
second types of closed orbits in Figs. 4(a) and 5(a) is much
more localized near the time instant of a soft return than that
in Fig. 3(a). This is another origin for the large discrepancy
observed near t ∼ 0.4 ps in Figs. 6(b) and 6(c). An additional
interesting effect related to the soft return is the discontinuity
of the modified results as in Fig. 6, which is caused by the
sign change of gl on the two sides of the softly returning
time.

Another interesting aspect related to our present work is
about the static-field approximation in a long-wavelength limit
of the applied oscillating field. As introduced in Sec. I, it
has been found that the static-field approximation for each
photodetachment event works very well for an experiment in a
strong microwave field [28,29]. Our current theory has already
allowed us to examine this simple quasistatic picture from a
time-dependent viewpoint. For this purpose, we take H−, for
instance, and compare the time-dependent photodetachment
rate given by Eq. (35) with the quasistatic result obtained from
[14,15],

HF (t) = f 2
L(t)

[
1 + 1

SF

cos(SF )δm0

]
, (38)

whereSF = 4
√

2E
3/2
0 /(3|F (t)|) denotes the classical action of

an electron returned back to the source region along the unique
closed orbit in a static electric field. Some specific calculations
are shown in Figs. 7 and 8 by varying the single-cycle
pulse duration and strength, respectively. It can be found
that the time-dependent calculations indeed approximate the
quasistatic results gradually when the field oscillation period
gets longer or the field strength becomes larger. The agreement
observed in Figs. 7 and 8 is best near the field peak position and
worst near the zero-field locations. However, the contribution
in the time-averaged observations mainly comes from the
oscillations near the field peak position because both the
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oscillation amplitude and period near the zero-field locations
are too small to give a finite averaged signal, which confirms
the validity of the static-field approximation used before. In
Fig. 7(d), the returning-time plot is given for the relevant closed
orbits in Fig. 7(c), which illustrates the physics behind the
agreement observed in Figs. 7 and 8. Although the three types
of closed orbits as in Fig. 2 are all there, only those closed orbits
located near the line t = ti in Fig. 7(d) have an observable
effect in the oscillation amplitude of the photodetachment rate
because their durations t − ti are much shorter than the others,
and the associated returning-wave amplitudes A in Eqs. (22)
and (23) are large enough.

VII. CONCLUSION

Motivated by our recent studies on the temporal inter-
ferences in the photodetachment of negative ions driven by
a single-cycle THz pulse [23], we examined the possible
influences of a single-cycle THz pulse on the time-dependent
photodetachment rate. We found that a weak THz pulse
cannot change the total photodetachment rate. However, if the
applied THz pulse gets strong enough, the photodetachment
rate oscillates complicatedly. On the other hand, we noticed
that some classical trajectories of the photoelectron can be
driven back to the source region by a strong single-cycle
THz pulse. These observations remind us of a general picture
already recognized in the standard closed-orbit theory [3–5],
which addresses the correspondence between the oscillatory
photoionization (or photodetachment) rate and the possible
closed classical orbits embedded in the system.

To quantitatively understand the complex structures ob-
served in the time-dependent photodetachment rate, the
standard closed-orbit theory for the photodetachment in a
static electric field has been generalized to a time-dependent
form which agrees well with exact quantum simulations.
The established formulas reveal a simple dependence of the
photodetachment-rate oscillations on the properties of both
the wave source and the closed classical orbits existing
in the system. Depending on the relative direction of the
returning orbit with respect to its initially outgoing direction,
the photodetachment rates for different negative ions such
as H− and F− might oscillate in phase or out of phase.
In contrast to the case of a static electric field [14,15], the
oscillation amplitude of the photodetachment rate contributed
by each closed orbit has an additional term determined by
the electron returning momentum which is usually different
from the initially outgoing momentum. As the applied electric
field gets stronger or its oscillation period becomes longer, the
oscillatory behavior of the photodetachment rate is more and
more like that obtained from the static-field approximation as
in Refs. [28,29].

The presented theory provides a clear and intuitive pic-
ture for the photodetachment dynamics driven by a general
time-dependent electric field. Benefiting from the correlation
between the electron launch time and its later-returning time, a
similar pump-probe technique as in Ref. [41] may be a possible
candidate in future experiments for exploring the quantum
effect of closed classical orbits from a time-dependent view-
point. An immediate application of the current theory would
be the photodetachment of negative ions in a static electric

053413-9



B. C. YANG AND F. ROBICHEAUX PHYSICAL REVIEW A 93, 053413 (2016)

field plus a strong oscillating electric field, where the averaged
photodetachment rate can be detected as in Ref. [16]. For a
weak oscillating field, the perturbation formulas in Ref. [17]
can be used. More interesting physics can be expected when
the oscillating field amplitude is comparable to or even larger
than the static field strength, which is also an interesting topic
for future studies.
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APPENDIX A: THE DERIVATION OF EQS. (23)
AND (24)

The electron motion equation can be formally written as

ρ = ρ(ti ,θi,t) and z = z(ti ,θi,t) (A1)

in the cylindric-coordinate frame. If we fix the electron final
destination (ρ, z) but let the other parameters change, the
following partial differential equation can be obtained:(

∂ρ

∂t

)
ti ,θi

(
∂t

∂ti

)
ρ,z

+
(

∂ρ

∂θi

)
ti ,t

(
∂θi

∂ti

)
ρ,z

= −
(

∂ρ

∂ti

)
t,θi

,

(A2)
which can be explicitly written as

sin θi

(
∂t

∂ti

)
ρ,z

+ (t − ti) cos θi

(
∂θi

∂ti

)
ρ,z

= sin θi (A3)

using Eq. (6). Similarly, we have

[k0 cos θi + A(t) − A(ti)]

(
∂t

∂ti

)
ρ,z

− k0(t − ti) sin θi

×
(

∂θi

∂ti

)
ρ,z

= k0 cos θi − F (ti)(t − ti) (A4)

from Eq. (7). After eliminating the partial derivative ( ∂θi

∂ti
)ρ,z in

Eqs. (A3) and (A4), we get(
∂t

∂ti

)
ρ,z

= k0 − F (ti)(t − ti) cos θi

k0 + [A(t) − A(ti)] cos θi

. (A5)

For the closed orbits returning back to the atom center, the
partial derivative ( ∂t

∂ti
)ρ,z becomes dt/dti , and Eq. (23) is

obtained by combining Eqs. (A5) and (22) and also using
pz(t) = k0 cos θi + A(t) − A(ti) with θi = 0 or π .

The classical action S along an arbitrary trajectory has been
obtained as [23]

S = E0(t − ti) + z(t)�pz(t) − 1

2

∫ t

ti

[�pz(t
′)]2dt ′, (A6)

with the momentum transfer

�pz(t) = A(t) − A(ti). (A7)

For the closed orbits, z(t) = 0, and the actionS can be unfolded
as

S = E0(t − ti) − 1

2
A2(ti)(t − ti)

+A(ti)
∫ t

ti

A(t ′)dt ′ − 1

2

∫ t

ti

[A(t ′)]2dt ′, (A8)

by substituting Eq. (A7) into the last integration in Eq. (A6).
The closed-orbit condition in Eq. (8) allows the above equation
to be further simplified as

S =
[
E0 + 1

2
A2(ti) − A(ti)k0 cos θi

]
(t − ti)

− 1

2

∫ t

ti

A2(t ′)dt ′, (A9)

which gives Eq. (24) after the definition in Eq. (21).

APPENDIX B: THE DERIVATION OF EQ. (31)

To be clear, we write the oscillatory term ϒν(t) in Eq. (30)
as the following form:

ϒ±z(t) = −2fL(t)fL(ti)Im
〈
Dϕi

∣∣ψ̃ (±z)
ret

〉
, (B1)

where the notation ±z is used to indicate the returning direction
of the closed orbit. Specifically,

ψ̃
(+z)
ret = C(k0)GcoYlm(θi,φi)e

ikretz, (B2)

representing the returning electron wave along the positive-z
direction, and

ψ̃
(−z)
ret = C(k0)GcoYlm(θi,φi)e

−ikretz, (B3)

denoting the returning wave along the negative-z direction. In
both Eqs. (B2) and (B3), θi can be 0 or π , and the complex
term Gco is given by Eq. (20).

The overlap integration 〈Dϕi |ψ̃ (±z)
ret 〉 in Eq. (B1) has almost

the same form as that studied in Ref. [15], except that
the electron returning momentum kret is not conserved in
our current system. On the other hand, we note that the
inhomogeneous Schrödinger equation,[

1

2
∇2 + 1

2
k2 − V (r)

]
ψ̃

(k)
out = Dϕi, (B4)

should be valid for any values of the momenta k, where the
related outgoing wave ψ̃

(k)
out has the same asymptotic form as

in Eq. (13) but with a different momentum value. Therefore,
the same idea used in Appendix A of Ref. [15] can also be
implemented, and the imaginary part of the overlap integration
in Eq. (B1) can be converted to

Im〈Dϕi |ψ̃ret〉 = 1

2
Im

∫
(ψ̃out∇r ψ̃

∗
ret − ψ̃∗

ret∇r ψ̃out)dsr ,

(B5)
after replacing the source term Dϕi by the outgoing wave
function ψ̃

(kret)
out with k = kret in Eq. (B4). The integration in

Eq. (B5) is on a spherical surface with a radius r centered at
the negative ion.
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Following Appendix B in Ref. [15], the two relevant integrations in Eq. (B5) can be worked out as∫
ψ̃out∇r

[
ψ̃

(±z)
ret

]∗
dsr = 1

2
(±1)lClm

√
4π (2l + 1)

[
1 + ei(2kretr−lπ)

]
δm0 (B6)

and ∫ [
ψ̃

(±z)
ret

]∗∇r ψ̃outdsr = −1

2
(±1)lClm

√
4π (2l + 1)[1 − ei(2kretr−lπ)]δm0, (B7)

where

Clm = C(kret)C
∗(k0)G∗

coY
∗
lm(θi,φi). (B8)

The expression in Eq. (31) is obtained by substituting Eqs. (B6) and (B7) into Eq. (B5) with Eqs. (B8) and (19) together. Note
that the r-dependent terms in Eqs. (B6) and (B7) cancel each other.
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