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Coherence and quasistable states in a strong infrared field
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We study the quasistability of UV-pulse-train-excited H atoms in a strong infrared (IR) laser as a function of the
phase delay of the UV pulse train relative to the IR laser. The UV pulse train contains two frequency components.
When the two components have frequencies separated by two IR photons, the population of surviving electrons
is modulated by up to ten percent. When electrons are excited to right above or below the threshold, the survival
probabilities have inverted phase delay dependence, which can be explained classically. When the two frequencies
are one IR photon apart, the angular symmetry of the quasistable electrons is broken, and the asymmetry is also
controlled by the phase delay. The asymmetrical distribution can be observed while the IR is on and smoothly
evolves to a nonzero asymmetry that only weakly depends on the duration of the IR field.
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I. INTRODUCTION

When laser-excited atoms are exposed to an intense
microwave or laser field, a certain fraction will be trapped
in highly excited states for a long time [1–5], leading to their
classification as quasistable states. Classically, the electrons
in quasistable states derive their stability through orbiting in
a weakly bound trajectory where they have little chance to
absorb enough energy to escape [3,4,6]. These quasistable
states can be studied spectrally and a series of survival
peaks can be detected [2,3]. These peaks are formed because
electrons at the correct initial energy can reach the quasistable
states through multiphoton transitions, while other initial
energies will lead to ionization because the electron cannot
reach the quasistable state by absorbing integer number of
photons.

As is well known, the properties of an excited electron wave
packet in an intense infrared (IR) field will differ depending
on whether it was created by a single ultraviolet (UV) pulse
or a train of them [7]. The properties of electrons excited by a
single UV pulse are mainly determined by the IR intensity
and frequencies. However, the behavior of electron wave
packets produced by a UV pulse train is also affected by
coherence, such as the large peak-to-peak modulation observed
experimentally [7]. The coherence, timing, and varied energy
of electrons could be controlled independently by changing
the properties of the UV pulse train. A recent experiment
can be seen in Ref. [8] for Li atoms in a microwave field,
where they observed modulation of the population of weakly
bound electrons by changing the delay in the pulse train and
the detuning relative to threshold. Studying these features
surely provides a novel, powerful tool to explore strong-field
interactions [7,9].

In this paper, we numerically study the survival probability
of H in quasistable states as a function of the phase delay of
a UV pulse train relative to an intense IR laser. The system is
similar to the experiment [8], while we replace the microwave
field by an intense IR field. The UV pulse train is created by
combining two UV lasers with frequencies ω1 and ω2, as shown
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in Fig. 1(a). The phase delay between the pulse train and the
IR laser is controlled by changing the initial phase of the two
UV lasers. In our simulation, the two UV lasers are treated
as two separate sources of excitation due to the linearity of
the Schrödinger equation. Thus, a modulation by coherence in
the survival probability is expected if the surviving electrons
from each source have the same quantum numbers. This is
satisfied when the two UV frequencies are separated by two
IR photons (ω2 − ω1 = 2ωIR), since the wave packets that
reach the quasistable states will have the same even or odd
parity [10]. In this case, a modulation of the population of
weakly bound electrons is observed and is closely related to
the phase delay. The peak-to-peak modulation in the survival
probability varies for different launch energies. The launch
energy is defined as the initial energy of electrons excited by
the UV laser with frequency ω1. When the launch energies
are right above and below the threshold, the modulations are
phase inverted, which is the same as the experimental result
in Ref. [8]. When the two UV frequencies are only one IR
photon apart (ω2 − ω1 = ωIR), no coherence in the survival
probability is seen. However, an interesting phenomenon is
observed that the angular symmetry of the bound wave packet
is broken and is also controlled by the phase delay. This
asymmetrical distribution can be observed while the IR is on
and smoothly evolves to a final value that only weakly depends
on the IR duration. In the sections that follow, we introduce
the numerical approach that we use, present the results and
analysis, compare them to our expectations, and comment on
their implications.

We use atomic units except where explicitly stated other-
wise.

II. THEORY AND METHOD

In a simulation, H atoms are prepared in the ground state
at the beginning. Then a weak UV pulse train is turned on to
bring the electrons to the desired states through one-photon
absorption. The UV pulse train is created by turning on two
UV lasers with frequencies ω1 and ω2, as shown in Fig. 1. The
beat frequency of the two lasers is assumed to be a multiple
of an intense IR field so that the beats stay in phase with
the IR over many cycles. After the UV pulse, the excited
electrons continue to evolve in the presence of the intense
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(a) (b)

FIG. 1. (a) Each black line corresponds to an energy level of
the H atom. The red arrows show the electron being brought to the
desired states by the UV lasers. Then the electron (blue arrows)
continues evolving in the presence of the intense IR field plus atomic
potential. (b) A sketch for the UV pulse train and IR field, where
ω2 − ω1 = 2ωIR . The IR laser lasts 1.6 × 104 a.u. in time. �φ is the
phase delay of the UV with respect to the IR.

IR field. The energy and angular momentum of the electrons
change through multiphoton transitions. By tuning the initial
phase of the UV lasers, the envelope of the UV pulse train can
be shifted relative to the IR field. Figure 1(b) schematically
shows the phase delay between the UV pulse train and the IR
laser, where the UV frequency separation is two IR photons.
In the simulation, the weak UV pulse train is treated as a
source term in the Schrödinger equation. The duration of the
pulse train should be short on the scale of the IR duration and
long on the scale of one IR cycle. As long as this condition
is satisfied, the actual duration of the pulse train becomes
less important. In the simulation, we make the pulse train last
about four IR cycles. The IR field lasts about 1.6 × 104 a.u.
and its wavelength is 1000 nm, giving the frequency ωIR ∼
0.0455 a.u. The IR intensity is chosen to be I = 4.256 ×
1012 W/cm2. Similar to Ref. [10], the intensity is weak in
the sense of affecting the H ground state, while strong in the
sense of interacting with its excited states.

The dynamics is approximately governed by the following
time-dependent Schrödinger equation with a source term [10],

i
∂�e(�r,t)

∂t
− H̃�e(�r,t) = S(�r,t), (1)

where �e(�r,t) is the excited wave function of the electron after
absorbing one UV photon and it is initially zero everywhere
before the UV pulse train is on. The source term is

S(�r,t) = {FUV 1(t) exp[−i(ω1t + σ1)]

+FUV 2(t) exp[−i(ω2t + σ2)]}z�g(�r) exp(−iEgt),

(2)

which provides the source of amplitude for the excited wave
function. The UV lasers in the source take a Gaussian envelope,
FUV (1,2)(t) ∝ exp(−t2/2t2

w), and tw is chosen to make sure they
last four IR periods in time. H̃ is the electron Hamiltonian
without the UV interaction,

H̃ = −1

2
∇2 + V (�r) − FIR(t)z, (3)

where the third term is the interaction (using the dipole
approximation) between the electron and the IR field (linearly
polarized), and V (r) is the interaction of the electron with the

nucleus. FIR(t) reads

FIR(t) = Fm cos(ωIRt)

{
erf

[
(t − ti)

tw

]
− erf

[
(t − tf )

tw

]}
.

(4)

The error function is used to smoothly turn the IR laser on and
off. Noticing the linearity of Eq. (1), we can separate it into
two parts, in which each of them treats only one UV laser. By
doing this, the numerical calculation is greatly simplified. The
excited wave function can be written as �e(�r,t) = �e1(�r,t) +
�e2(�r,t). Thus the separated equations are

i
∂�ei(�r,t)

∂t
− H̃�ei(�r,t) = Si(�r,t), (5)

in which

Si(�r,t) = FUV i(t)z�g(�r) exp[−i(Egt + ωUV it + σi)]. (6)

The index i = (1,2). The phase delay of the UV pulse train
relative to the IR can be changed by tuning σi (the initial phase
of UV lasers).

The quantum simulation is performed by numerically
solving Eq. (5). Each wave function is represented on a
two-dimensional (2D) space spanned by discrete radial points
and an angular momentum basis. For the radial part, we use
a nonlinear square-root mesh. The propagation operator is
constructed using a split-operator technique of the form

U (δt) = U1

(
δt

2

)
U2(δt)U1

(
δt

2

)
, (7)

where the approximation Ui(δt) = (1 − iHiδt/2)/(1 +
iHiδt/2) is used. During the time propagation, an absorbing
potential is used such that the ionized electrons are efficiently
absorbed. One can refer to [11] for the details of the numerical
technique. The final wave function in the quasistable states is
obtained by adding �e1 and �e2. In the sections that follow,
one will see that most of the interesting effects are from the
interference between these two wave packets.

III. RESULTS AND DISCUSSION

The UV pulse train is simulated by turning on two UV
lasers which act as two independent sources in the system. In
order to study the survival spectrum, the frequency of the first
UV laser (ω1) is scanned such that the electrons have initial
energies ranging from E = −0.17 to E = 0.11 a.u. relative to
the ionization threshold. For each frequency ω1, the frequency
of the second UV laser is tuned to satisfy ω2 = ω1 + N ∗ ωIR

(N = 1 or 2). For each launch energy, the data is accumulated
after the intense IR laser is smoothly turned off.

Refer to Eq. (5), where the final wave function can be
written as

�e(�r,t) = �e1(�r,t) + �e2(�r,t)
= ψe1(�r,t) exp(−iσ1) + ψe2(�r,t) exp(−iσ2), (8)

where ψei(�r,t) are the solutions to Eq. (5) when σi =0 (i =1
or 2). In principle, any observable Â can be obtained through
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evaluating

〈Â〉 =
2∑

i=1

〈ψei | Â |ψei〉

+ 2Re{〈ψe2| Â |ψe1〉 exp[i(σ2 − σ1)]}. (9)

The second term shows clearly how the coherence is manifest
in the value of an observable. By tuning the value of σi (i =
1 or 2), the phase delay of the UV pulse train relative to the
IR laser will change accordingly, and so will the value of 〈Â〉.
In the following sections, observables Â = Î and Â = cosθ
are discussed. They respectively correspond to the survival
probability and orientation of electrons that survive the intense
IR field. While the IR laser is on, the angular symmetry as a
function of time is also discussed.

A. Coherence for two ωI R separation

Equation (9) gives the population of survival electrons
when the observable Â = Î . The coherence in the survival
population is greatly determined by the overlap 〈ψe2|ψe1〉.
Since ψe1 and ψe2 are the electron wave functions in the
quasistable states, they will have similar principal quantum
numbers. Moreover, they tend to have even (odd) angular
quantum numbers if their initial energies are an odd (even)
number of IR photons away from the threshold [10]. When
the two UV lasers have frequencies separated by two IR
photons (N = 2), they will create two electron wave packets
with initial energies separated by two IR photons. As a result,
ψe1 and ψe2 will concurrently have either odd or even angular
quantum numbers when they reach the quasistable states. Thus,
the overlap between ψe1 and ψe2 becomes significant, and
coherence is expected in the electron’s survival probability.

Figure 2 shows the survival spectrum for two different phase
delays of the UV pulse train relative to the IR. The equally
separated train of peaks is formed by electrons trapped in the
quasistable states, which is discussed in Refs. [2,3,10]. The
height of the peaks in Figs. 2(a) and 2(b) is quite different,
indicating the level of coherence in the electron population.
Continuously changing the phase delay will lead to a change
in the interference term in Eq. (9). This phase sensitivity is
evidence that after the UV excitation, most of the energy
transfer from the IR to the excited electrons happens during

(a) (b)

FIG. 2. The survival probability in quasistable states (with prin-
cipal quantum number n > 6) as a function of the launch energies.
Each figure has a given phase delay between the UV pulse train and
the IR. The digits from 1 to 6 are to label each peak close to different
launch energies. Peaks 5 and 6 are multiplied by 4 to make them
visible. (a) and (b) are plotted in the same scale. (a) The phase delay
is �φa = π/2. (b) The phase delay is �φb = π .

(a) (b)

(c) (d)

(e) (f)

FIG. 3. The integrated probability for each peak in Fig. 2 as a
function of the phase delay of the UV pulse train relative to the
IR. The integrated probability is obtained by integrating the survival
probabilities of each peak in the spectrum of Fig. 2 and dividing it by
twice its average over phase delay. Graph (a)–(f) correspond to the
peaks 1–6 in Fig. 2. All curves oscillate around 0.5. The bigger the
oscillation is, the more the peak is in contrast with different phase
delay.

the first few IR cycles, as suggested by the three-step model
[4,5,12]. In order to clearly show this, for each phase delay, we
integrate the survival probabilities of each peak in the spectrum
and divide it by twice the average over phase delay. This
quantity oscillates around 0.5, which contrasts the survival
probabilities of different phase delays. The result is shown
in Fig. 3. Each line from Figs. 3(a) to 3(f) corresponds to
each peak in Fig. 2, from the left to the right. Each curve
is oscillating with a period of π in terms of phase delay.
The period π is determined by the fact that the UV pulse
train repeats itself when its envelope shifts by π . What is
more, the survival probability of electrons with different launch
energies has varied phase delay dependence. For those peaks
right above and below the threshold, shown by the gray,
green, and black curves in Fig. 3, they tend to have inverted
phase delay dependence because of the fact that the ionization
and recombination happen at the same time when electrons
are tuned below or above the threshold. For those peaks far
below the threshold, shown by the red curve, the phase delay
dependence is not inverted compared to the above-threshold
curve, which is a topic that deserves further study.

B. Coherence for one ωI R separation

When the frequencies of the two UV lasers are separated by
one IR photon (N = 1), although ψe1 and ψe2 still have similar
principal quantum numbers, they will have different parity
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(a) (b)

FIG. 4. The digits are used to track each peak. Peaks 5 and 6 are
multiplied by 4 to make them visible. (a) The survival spectrum for
the two components of the UV pulse train being separated by one IR
photon. The shape of the spectrum remains unchanged for any phase
delay. (b) The straight lines denote the integrated survival probability
of each peak in (a) in terms of the phase delay. Those lines are straight
because no modulation is observed in this case.

(even for one and odd for the other) [10]. Thus, the overlap
〈ψe1|ψe2〉 is expected to be zero, indicating no coherence in
the survival probability. As shown in Fig. 4(a), the height of
the survival peaks remains the same for any phase delay of the
UV pulse train relative to the IR. As a result, the integrated
probability for each peak will approximately be a constant,
which is shown by the horizontal lines in Fig. 4(b).

However, the parity difference of the two wave packets
indicates a broken angular symmetry. The angular symmetry
of an electron can be evaluated by the quantity (the orientation),

orientation = 〈�e(�r)|cosθ |�e(�r)〉
〈�e(�r)|�e(�r)〉 , (10)

where θ is the polar angle. Obviously, the orientation takes the
value between [−1,1], and it being larger (smaller) than zero
means the electrons are distributed more at the upper (lower)
half sphere. From Eq. (9), when the observable Â = cosθ , the
first term will vanish because the angular integral is nonzero
only if the functions in the integral have angular quantum
numbers that differ by one (�l = ±1). So, the numerator in
Eq. (10) simplifies to

〈cosθ〉 = 2Re{〈ψe2| cosθ |ψe1〉 exp[i(σ2 − σ1)]}. (11)

Thus, the orientation is also phase delay dependent. Mean-
while, 〈ψe2| cosθ |ψe1〉 is nonzero since the two wave packets
exclusively have even or odd angular quantum numbers (if
l = 1,3,5, . . . for ψe1, then l = 2,4,6, . . . for ψe2, or vice
versa), which contributes to a nonzero integral. In Fig. 5,
four different launch energies are picked. Each line records
the orientation in terms of the phase delay. The oscillation
of each line indicates that the surviving electron’s angular
distribution switches between the upper and lower half sphere
when continuously tuning the phase delay. Since the energy
transfer from the IR to the electron (after being excited) mostly
happens at the first few IR cycles [5], the time of the electron
being excited (controlled by phase delay) becomes crucial in
determining the phase of the electron wave packets trapped at
the quasistable states. As a result, tuning the phase delay will
change the orientation, as indicated by Eq. (11). Figure 5 also
reveals different phase delay dependence for varied launch
energies. The below-threshold behavior, shown by Figs. 5(a)
and 5(b), has inverted phase delay dependence with respect to

(a) (b)

(c) (d)

FIG. 5. The orientation of the survival population as a function
of the phase delay of the UV pulse train relative to the IR. Graph (a),
(b), (c), and (d) correspond to the launch energy E = −0.077 a.u.,
−0.034 a.u., 0.011 a.u., and 0.057 a.u. Each line is oscillating
periodically around zero, indicating that the phase delay is controlling
the angular symmetry of the survival wave packets.

the above-threshold behavior, shown by Fig. 5(d). However,
they are not inverted with respect to Fig. 5(c), and more study
is needed to understand this contrary result.

We want to check the angular symmetry while the IR
is still on. In the following discussion, we use the quantity
〈�e(�r,t)|cosθ |�e(�r,t)〉, which is time dependent since the
IR is still on. First, 〈cosθ〉 is oscillating in time while the
IR is on, as depicted by the black lines in Figs. 6(a) and
6(b). The cases shown in Figs. 6(a) and 6(b) have the same
launch energy, E = −0.082 a.u. They have inverted angular

(a) (b)

(c) (d)

FIG. 6. 〈cosθ〉 as a function of time while the IR is on (black
lines). The plot is normalized by the final bound population (u =
〈�e(�r)|�e(�r)〉). The red curves are the IR. The launch energy E =
−0.082 a.u. and N = 1 for (a)–(c). (a) �φ1 = π/2. (b) �φ2 = π .
(c) The IR field is being smoothly turned off, while 〈cosθ〉 stabilizes
close to the peak value. (d) For E = −0.127 a.u. and when the two
laser has a frequency separation of 2ωIR , 〈cosθ〉 (black line) oscillates
around zero and vanishes as the IR is turned off. Similar results apply
to any phase delays.
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(a) (b)

FIG. 7. The bound population (BP) of electrons
(〈ψe1(t)|P̂ |ψe1(t)〉). The plot (blue curve) is normalized by
the final bound population (u = 〈ψe1|ψe1〉). The peak is going lower
due to ionization. The launch energy E = −0.082 a.u. The red
curve is the IR field. (a) The IR is on. (b) The IR is being turned
off.

distribution because their phase delays differ by π/2, which
match the results in Fig. 5. The peak in the black line repeats
every half of one IR cycle and follows the IR intensity. Also,
when we smoothly turn off the IR field, 〈cosθ〉 stops oscillating
and stabilizes near the peak value, as depicted in Fig. 6(c).
In order to find the reason, we calculate 〈ψe1(t)|P̂ |ψe1(t)〉
as a function of time, where P̂ is a projection operator to
all bound states. Figure 7(a) reveals that the population of
bound electrons also oscillates periodically while the IR is on.
During each IR cycle, the electrons experience ionization and
combination twice due to the ponderomotive motion, which
is the reason for the periodical oscillation of 〈cosθ〉. As the
IR is being turned off, shown in Fig. 7(b), the population
of bound electrons stabilizes, which is the final amount of
electrons that survives the IR laser. This amount of electrons
contributes both to the maximal of 〈cosθ〉 while the IR is on
and to the stable value of it when the IR is off, as shown in
Fig. 6(c).

Second, the final stable value of the orientation does not
depend on the time of turning off the IR. Figure 6(c) shows
the behavior of the orientation when the IR is being turned off
at time t = 13.5 × 103 a.u. Similar behavior is observed when
we turn off IR at other longer or shorter times, although the
survival population varies. As a final point, we also calculate
〈cosθ〉 for N = 2. As expected, a symmetrical distribution
(〈cosθ〉 ∼ 0) is obtained for any phase delay. Figure 6(d) shows
that 〈cosθ〉 (black line) oscillates about zero while the IR is on
and goes to zero when it is off. The magnitude of oscillation
is approximately an order smaller than that in Fig. 6(c).

IV. CONCLUSION

Quasistability of highly excited atoms in a strong
field has been extensively discussed in the past 50 years
[13–15]. Various mechanisms of stabilization and many related
experiments can be found [16–21]. The fact that Rydberg
atoms have a lower chance to absorb energy keeps the electron
bound for a relatively long time. Those surviving electrons,
besides the same principal quantum number, tend to have the
same even or odd (depending on the initial energy) angular
quantum numbers [10]. Thus, a coherent effect is expected if
electrons are being excited from different laser sources. The
UV pulse train can be divided into two components, and they
could separately act as a source, contributing electrons to the
quasistable states.

In conclusion, we have studied the quasistability of UV-
pulse-train-excited atoms in a strong IR field. When the two
frequencies are separated by two IR photons, the survival
probability will be a coherent superposition of the two
contributions. By tuning the phase delay between the IR
and the UV pulse train, we can coherently modulate the
probability. The same coherence in the survival probability is
not expected if the frequency separation is only one IR photon,
where the survival probability is an incoherent addition of the
two contributions. However, an asymmetry of the electron’s
angular distribution is observed in this case. By evaluating the
orientation, we show the symmetry is oscillating as a function
of the phase delay. And, interestingly, the value of 〈cosθ〉
oscillates periodically in time while the IR is on. The period
is half the IR cycle, and it stabilizes after the IR is turned off.
The oscillation of 〈cosθ〉 is due to the electrons experiencing
recombination and ionization in each IR period, which is an
interesting picture of quasistability in strong IR fields. With
the growing techniques of attosecond physics [22], faster laser
control and more accurate detection become possible. The
above discussed coherence and angular distribution should be
detectable in the laboratory. When studying pulse-train-excited
atoms, the coherent effect shown above is surely of great
importance to consider.
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