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Coherent forward broadening in cold atom clouds
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It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical
depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions
causes the cloud’s spectra to depend strongly on its shape, even when the cloud is held at constant densities. These
two numerical observations can be predicted analytically by extending the single-photon wave-function model.
Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to
deviate from the exponential decay predicted by the Beer–Lambert law to the extent where the atoms at the back
of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities
relevant to recent experiments.
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I. INTRODUCTION

Since the seminal work of Dicke [1], the effects of collective
emission in an ensemble of radiators has been studied
extensively. Collective long-range interactions have shown
their import in many phenomena such as coherent forward
scattering [2,3], the collective Lamb shift [4], fault-tolerant
quantum computation [5], laser cooling [6], and homogeneous
line broadening [7]. The study of collective effects and their
role in transition lines is of particular importance for the
implementation of highly accurate atomic clocks [8–12],
where achieving narrow resonance lines is essential. As the
quest for extremely accurate atomic clocks progresses, an
understanding of the plethora of physical processes in cold
atomic gasses, such as density-dependent line broadening [8],
will need to be understood by using models that extend
the classical theories of line broadening, since these models
mainly rely on local interactions [13–15].

Although the interaction between an individual pair of
atoms or molecules in a cold, diffuse gas can be tiny, the
long-range nature of the dipole-dipole couplings can lead
to the substantial constructive buildup of small interactions
over an entire ensemble [2,3,16–20]. This understanding has
been improved by using single-photon wave-function theories
that provide analytic predictions about the line broadening
seen in an atomic cloud when driven by an extremely weak
laser [3,16,19]. Here we explore this concept for very low
atomic density, showing that the model remains valid whenever
inhomogeneous broadening is negligible. For example, the
linewidth (�′) for an N atom gas with a Gaussian density
distribution increases according to �′ = (1 + ξb0

8 )�, where b0

is the cooperativity parameter, b0 ≡ 3(N−1)
k2σ 2 , ξ is a number

parametrizing the cloud shape [see Eq. (4)], N is the number
of atoms in the cloud, and � is the single-atom linewidth
(see Fig. 1). Unlike collisional broadening where the extra
linewidth is only proportional to the average density, the extra
linewidth from the dipole-dipole interaction is proportional
to the average density and the linear size of the gas. This

*rsutherl@purdue.edu
†robichf@purdue.edu

scaling should affect the spectroscopy of cold atoms since the
extra linewidth can be substantial, even at low densities. This
also has implications for fault-tolerant quantum computation,
specifically the threshold theorem which assumes spatially and
temporally local interactions [21,22]. Here large separations
ensure the absence of collisional broadening but the dipole-
dipole interaction will still lead to an extra linewidth, implying
a faster decoherence [5].

By studying the photon-scattering rate versus detuning, we
illustrate how cold atom clouds with average densities such that
ρ̄/k3 � 1 exhibit collective effects similar to those predicted
by using single-photon wave-function theories [3,16,19]. Even
at densities where individual interactions are tiny, a cloud
can still show signs of coherence due to the buildup of the
eikr

r
term present in dipole-dipole couplings. This leads the

line broadening and the excitation distribution of a cloud to
depend strongly on its overall shape, since interactions add
constructively between atoms separated by a position vector
parallel to the direction of the driving laser (k̂ ≡ k

|k| ). For

constant ρ̄ and N , clouds that are elongated parallel to k̂ are
more broadened than those elongated perpendicular to k̂.

This work is organized as follows: In Sec. II, we describe
our numerical approach, as well as a variant of the Gauss–
Seidel iteration routine that allows us to simulate larger
numbers of atoms. In Sec. III, we provide an analytic derivation
of the dependence of a cloud’s lineshape on its density,
aspect ratio, and number of atoms. This is done by using
an improvement of the single-photon wave-function model so
that it includes a vectorized electromagnetic field, as well as
a spherically nonsymmetric Gaussian cloud. In Sec. IV, we
discuss the results of our numerical model. Here we show that,
until a cloud becomes too elongated along the line of laser
propagation, the results of our analytic model are numerically
accurate. Lastly, we show that, for clouds highly elongated
along k̂ and driven by a red-detuned laser, a counterintuitive
excitation distribution develops: the atoms at the back of
the cloud (farther along k̂) are more likely to be excited
than the atoms at the front of the cloud. This is the reverse
of the typical exponential decay predicted by the Beer–
Lambert law. We discuss experimental possibilities and pro-
vide concluding remarks in Sec. V.
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FIG. 1. The scattered radiation is studied for (i) clouds increasing
in the number of atoms while being held at constant average density
and shape, and (ii) clouds with varying shapes with respect to k̂ held
at constant average density and atom number. The figure also shows
the level diagram of the transitions focused on in this paper: the 88Sr
J = 0 to J = 1 intercombination line where the 3

P1 level can be
either (a) degenerate in MJ or (b) Zeeman split.

II. NUMERICAL METHOD

For a weak laser, a collection of atoms can be treated as
classical radiating dipoles or equivalently as coupled damped
harmonic oscillators [20,23–25],

ȧμ
α (t) = (i� − �/2)aμ

α (t) − i(d/�)Eμ(rα)

− (�/2)
∑

β �=α,ν

Gμν(rβ − rα)aν
β(t), (1)

where aμ
α represents the μth polarization amplitude of the αth

atom, d is the electric dipole matrix element, Eμ(rα) is the
μth component of the laser field at atom α, � is the detuning,
and Gμν(r) is the usual dipole-field propagator [26],

Gμν(r) = 3eikr

2ikr

{
[δμν − r̂μr̂ν]

+ [δμν − 3r̂μr̂ν]

[
i

kr
− 1

(kr)2

]}
, (2)

where r = |r|, and r̂α are the components of the vector r̂ =
r/r . These coupled equations can be rewritten in matrix-vector
form:

ȧ = Ma − i
d

�
E, (3)

and the steady-state solution (ȧ = 0) may be obtained by
inverting a symmetric 3N × 3N matrix for systems where
the atoms’ energy levels are degenerate in MJ , and an
N × N matrix for the system with Zeeman splitting. For
these calculations, we average over 1.2 × 105/N randomly
distributed atom positions for the lineshape calculations and
9.6 × 105/N randomly distributed positions for the excitation-
distribution calculations. The atoms are treated as stationary
and distributed according to a Gaussian density distribution:

ρ(r) = N

σ 3(2π )3/2
exp

( −1

2σ 2

{
ξ (y2 + z2) + x2

ξ 2

})
, (4)

where σ is the standard deviation of a spherically symmetric
cloud chosen to produce a specific average density ρ̄ =
N/(4πσ 2)3/2, and ξ is a constant that parametrizes the shape of
the cloud with respect to the laser direction. Here the laser is set
so that it propagates in the x̂ direction and is polarized in the
ẑ direction. For spherically symmetric calculations (ξ = 1),
we find that the results obtained by using a Gaussian density

distribution agree with a constant density distribution to within
5%, for up to 104 atoms.

In order to avoid the usual N3 scaling of the computation
time, we solve this matrix equation by using an adaptation of
the Gauss–Seidel [27] iteration algorithm. This may be written
in the form:

an+1 = D−1

(
id

�
E − (M − D)an

)
. (5)

For the usual Gauss–Seidel iteration routine, D would consist
of the diagonal elements of M. However, this diverges when-
ever D−1(M − D) contains an eigenvalue with an absolute
value greater than 1. We avoid this problem by allowing
D to change depending on the current row during a matrix
multiplication. When a row corresponding to a particular atom
is being updated in a, we choose D such that it contains the
current atom’s couplings to its m closest neighboring atoms.
This routine allows the largest couplings, which would lead
to the divergence discussed above to be conducted exactly,
while the majority of the smaller couplings are iterated. This
algorithm scales at a rate close to N2, allowing us to simulate
much larger numbers of atoms than we could otherwise do.
Note that this numerical method is much more efficient at
lower densities.

III. SINGLE-PHOTON MODEL FOR A NONSYMMETRIC
GAUSSIAN CLOUD

This study is conducted in the limit of weak laser intensity.
Because of this, the single-photon wave-function model [3,19]
should be a fair approximation. Following this model, we write
our wave function as

|�(t)〉 = β+(t) |+〉 |{0}〉 +
∑

α

βα(t) |−(α)〉 |{0}〉

+
∑
kλ

γkλ(t) |g〉 |{nkλ = 1}〉 , (6)

where |+〉 is the superradiant Dicke timed state:

|+〉 = 1√
N

∑
j

eik0·rj |j 〉 , (7)

where |j 〉 refers to the state where the j th atom is excited and
the rest are in the ground state, and |−(α)〉 is the αth subradiant
state defined so that it is orthogonal to |+〉.

For the purpose of simplicity, we assume that the cloud
consists of two-level atoms polarized in the x̂ direction and
driven by a laser propagating in the ẑ direction. This differs
with the rest of the paper, but it simplifies the analytic
calculation without changing any effects. We model the
Hamiltonian as

H = H0 + �

∑
j

∑
kλ

(ε̂kλ · x̂)gkπ
†
j âkλe

−iωkt+ik·rj + c.c., (8)

where H0 is the single-atom Hamiltonian, gk =
−i℘

√
2π�ωk/V is the atom-photon coupling constant

for the kλ mode, where ℘ is the dipole matrix element, π
†
j is

the raising operator for atom j , and âkλ is the photon lowering
operator for the kλ mode. Switching into the Dirac picture, if
we multiply the Schrödinger equation by 〈+|, we obtain an
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equation for β̇+(t):

β̇+(t) = −i√
N

∑
j

∑
kλ

(ε̂kλ · x̂)gke
i(k−k0)·rj +i�tγkλ(t), (9)

where � ≡ (ω0 − ωk). Similarly we obtain

γ̇kλ = −i√
N

∑
j

{
(ε̂kλ · x̂)g∗

k e
−i(k−k0)·(rj )−i�tβ+(t)

+
∑

α

cα,jβα(t)

}
, (10)

β̇(α)(t) = −i√
N

∑
j

∑
kλ

(ε̂kλ · x̂)gkcα,j e
i(k−k0)·rj +i�tγkλ(t),

(11)

where cα,j refers to the amplitude of the j th ket of the αth
subradiant state. However, in the limit kσx,y,z 
 1 and N 
 1,
there is no Agarwal–Fano coupling [3], meaning that the
(N − 1) subradiant states will not interact with the superradiant
or ground states. This allows one to write the differential
equation for β̇+(t) as

β̇+(t) = −1

N

∑
j,j ′

∑
kλ

∫ t

0
dt ′β+(t ′)ei�(t−t ′)(ε̂kλ · x̂)2|gk|2

×ei(k−k0)·(rj −rj ′ ). (12)

The sum over atom positions now gives∑
j,j ′

ei(k−k0)·(rj −rj ′ ) = N +
∑

j,j ′ �=j

ei(k−k0)·(rj −rj ′ ). (13)

Changing the sum in Eq. (13) into an integral over atom
positions in a Gaussian cloud elongated along the line of laser
propagation gives

N + N (N − 1)
∫ ∫

d3x1d
3x2

× exp

( −1

2σ 2

{
ξ
(
x2

1 + x2
2 + y2

1 + y2
2

) + z2
1 + z2

2

ξ 2

})

× exp(i{k − k0} · {r1 − r2}). (14)

Performing the integrals over atom positions gives

N + N (N − 1)

× exp

(
−σ 2

{
1

ξ
(|k0 − k|2x +|k0 − k|2y)+ξ 2|k0 − k|2z

})
.

(15)

Setting k0 = k0 ẑ, plugging Eq. (15) into Eq. (12), and
converting the sum over k into an integral gives

β̇+(t) = −V

8π3

∫ ∞

0

∫ π

0

∫ 2π

0
dkdθdφk2 sin(θ )

∫ t

0
dt ′β+(t ′)

×ei�(t−t ′)|gk|2[1 − sin2(θ ) cos2(φ)]

×
{

1 + (N − 1) exp
(

− σ 2

{
k2 sin2(θ )

ξ

+ ξ 2[k0 − k cos(θ )]2

})}
. (16)

Performing the Markovian approximation, evaluating the
angular integrals, and then keeping only the first-order terms
when invoking the limits ξ ∼ 1 and kσ 
 1 gives

β̇+(t) = −�

2

(
1 + ξb0

8

)
β+(t), (17)

where � = 4ω3|℘|2
3�c3 is the single-atom decay rate and b0 =

3(N−1)
k2σ 2 is the cooperativity parameter of the gas.

IV. NUMERICAL RESULTS

A. Line broadening

Our numerical calculations show that, for spherically sym-
metric clouds, our analytic prediction of Sec. III is accurate.
This section shows that a spherically symmetric cloud (ξ = 1)
with a density such that ρ̄k3 � 1 emits light with a linewidth
that is approximately (1 + ζb0)�, where ζ is a numerically
determined constant. Using numbers for the 1

S1 → 3
P1

transition of 88Sr, we calculate the value of ζ for two cases:
first, for the transition from the 3

P1 state without a magnetic
field, and second for the transition from the ẑ polarized state,
where 3

P1 has been Zeeman split. For the Zeeman-split case,
we choose the |Jg = 0,Mg = 0〉 to |Je = 1,Me = 0〉 transition
with the driving laser polarized in the ẑ direction. This choice
gives maximum laser coupling between the states and gives a
large effect from the dipole-dipole interaction. We show that
the fractional change in linewidth, (�′ − �)/�, is ζb0 by using
up to 3 × 103 atoms for the system that is degenerate in MJ

and up to 2 × 104 atoms for the system with Zeeman splitting.
For atoms experiencing no magnetic field, it is determined that
ζ � 0.126 and, for the Zeeman-split case, ζ � 0.127. This is
in good agreement with the result of ζ = 1/8 derived in Sec. III
when using our extension of the single-photon model. The
fact that the numerical calculations with and without Zeeman
splitting give essentially the same answer, even though one
includes four states and the other only two states, is due to the
strong forward dependence of the coherent interactions. Since
a laser polarized in the ẑ direction will only illuminate the
polarization state corresponding to ẑ, and scattered radiation
in the forward direction has the same polarization as the laser,
coherent radiation will mainly interact with states that are ẑ
polarized. Therefore, the states that coherently contribute to the
line broadening of the cloud will be the same for both systems.

For illustrative purposes, we rewrite our equation for a
system’s fractional change in linewidth as (�′ − �)/� =
12πξζ ρ̄2/3N1/3/k2 = 24π3/2ξζ ρ̄σ/k2, in the limit N 
 1.
These equations explicitly show the parametric dependence of
�′. In order to demonstrate this in our calculations, Fig. 2(a)
shows the photon-scattering rate γ versus N at a constant den-
sity of ρ̄ = 5 × 1017 m−3 (ρ̄/k3 � 6.6 × 10−4). In Fig. 2(b),
we show that (�′ − �)/(�ρ̄2/3) when plotted against N1/3

gives a straight line, which agrees with our analytic result
for values of ρ̄ between 1015 m−3 and 5 × 1017 m−3. This plot
shows no cutoff for clouds up to 2 × 104 atoms.

The power-law N1/3 scaling of the fractional change
in linewidth can be understood qualitatively by using the
following picture: Since the average spacing of the atoms
for the largest densities shown is over 1.8λ, large-scale
effects only occur if there is constructive interference in the
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FIG. 2. (a) Photon-scattering rate γ in arbitrary units versus
detuning divided by � (δ ≡ �/�), for a symmetric Gaussian cloud
with ρ̄ = 5 × 1017 m−3. (b) Broadening normalized by ρ̄2/3, η ≡
(�′ − �)/(�ρ2/3), in units of 10−12 m2 for densities 1015 m−3 to 5.0 ×
1017 m−3 compared to the broadening predicted by using the single-
photon wave-function model. These densities span a range ρ̄/k3 =
1.3 × 10−6 to 6.6 × 10−4.

sum over many photon-propagation paths. Here constructive
interference occurs because the phase difference between the
driving laser at atom α and at atom β is exactly the phase
difference a photon will gain when traveling from atom α to β if

rα − rβ

|rα − rβ | · k̂ � +1.

On the other hand if,

rα − rβ

|rα − rβ | · k̂ �= +1,

the phases will randomize, resulting in no constructive
interference. Just as in the case of coherent forward scattering,
where the scattered emission from a cloud adds coherently
along k̂ [2,3], the atom-atom interactions that contribute to
broadening also add coherently along k̂. Thus, for a given ρ̄,
the number of atoms that interact coherently and contribute to
the line broadening increases with the size of the cloud.

B. Comparison with Ref. [8]

This equation for �′ may be relevant to the density
dependent line broadening observed in Ref. [8]. For densi-
ties of 5.0 × 1017 m−3, Ref. [8] measures the homogeneous
linewidth of their sample to be �29 kHz, compared to
the measured low-density linewidth �14.5 kHz, making the
density-dependent broadening �14.5 kHz. Our equation for
line broadening predicts this value to be �26.8 kHz, assuming
a single-atom lifetime of 21.3 μs [28]. This calculation
also assumes N = 106 and a spherically symmetric cloud,
both of which were not specified in Ref. [8]. Reference [8]
does note that, at constant ρ̄, clouds containing more atoms
have larger homogeneous linewidths, which was explained
by noting that the collisional scattering lengths for atom-
atom collisions increases as the relative motion between the
molecules decreases. Alternatively, the increased broadening
with N seen in Ref. [8] could be explained by using the
above formula in which the fractional change in linewidth
increases proportionally to N1/3 for a given average density.
The difference between our extrapolated result and Ref. [8]
might be due to the simplicity of our model and/or the lack
of important information about experimental parameters (for
example, the number of atoms in particular measurements).
A more accurate calculation for this system will require the
effects of atomic collisions and nonstationary atoms as well as
knowledge of the shape of the atomic cloud. We address the
importance of the cloud shape below.

C. Dependence of lineshape on aspect ratio

Because the dipole-dipole interactions parallel to k̂ add
constructively, the scattering rate will also depend on the shape
of the atomic cloud. A cloud that is highly elongated along k̂
will have a larger fraction of its atoms interact constructively,
causing the absorption line to be significantly more broadened.
We illustrate this in Fig. 3, where we show how the Lorentzian
lineshape changes significantly as we morph the cloud from
being flattened against k̂ to being elongated along k̂. In these

FIG. 3. Photon-emission rate γ in arbitrary units versus δ (see
Fig. 2) for an axially symmetric Gaussian cloud of 104 atoms at
ρ̄ = 5 × 1017 m−3 for different values of ξ . All calculations are for
the same intensity laser.
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calculations, we parametrize the spatial distribution with the
variable ξ defined by Eq. (4), so that ρ̄ is kept constant while
the cloud is elongated parallel or perpendicular to x̂. Here, the
length-to-width ratio is proportional to ξ 3/2.

Varying the value of ξ produces several effects. First, the
linewidth of our scattered emission profile grows as the cloud
is elongated along k̂ until finally it deviates from a Lorentzian
profile. Numerically, we find that �′ = (1 + ξζb0)� for
0.0 < ξ � 2.0, which agrees with our analytic result
(1 + ξb0

8 )�. For values of ξ > 2, the lineshape of the scattered
light begins to deviate from a Lorentzian profile. Both of these
effects are shown in Fig. 3. The deviation from a Lorentzian
at large values of ξ implies that the approximation of one
superradiant state and (N − 1) noninteracting subradiant
states [3,16,19] is not valid in this regime. Also, a fitted
Lorentzian profile begins to show a redshift in the peak
position that increases with the value of ξ . These calculations
show that one must consider the shape of the ensemble
as a whole when calculating the lineshape of a cold atom
cloud. The linear dependence of the linewidth on ξ could
be beneficial in experiments where the ability to control
homogeneous broadening in a cloud is important.

D. Counterintuitive excitation distribution

Figure 4 shows the average probability that an atom is
excited in a cloud of 104 atoms versus the distance along the
laser direction for different values of ξ [Fig. 4(a)] and for
different detunings [Fig. 4(b)]. For values of ξ > 5 and red
detunings, the excitation distribution shifts towards the back
of the cloud, in contrast to the exponential decay predicted by
the Beer–Lambert law. A similar effect has been observed in

FIG. 4. The average probability of an individual atom being
excited in a 104 atom cloud for various values of δ (see Fig. 2)
and shapes ξ versus k̂ · r in units of 105a0 (setting the center of the
cloud as the origin). (a) The average probability of excitation (P )
for a cloud driven by a red-detuned laser (δ = −3.1) for increasing
values of ξ . It should be noted that, in the figure, plots with larger
values of ξ average over fewer atoms since those clouds are stretched
beyond the region plotted. (b) The “normalized” average probability
of excitation (P ′) for a cloud at ξ = 5 for positive and negative laser
detunings, where “normalized” means that each curve is divided by
its initial point.

arrays of several metallic nanospheres [29] and is due to the
constructive buildup of electric field along the line of radiators.
For clouds stretched parallel to k̂, we see that, for red-detuned
lasers, the excitation distribution of the sample is altered such
that a larger fraction of the atoms are excited, causing an
effective redshift of the scattered lineshape.

V. DISCUSSION AND CONCLUSION

All of these phenomena should be observable
experimentally. The calculations in Figs. 2–4 focus on
the 88Sr 1

S1 → 3
P1 transition, but the effects shown here are

independent of the value of � since the damping and coupling
terms in Eq. (1) both contain �. The predictions described
above should be realizable for any azimuthally symmetric
cloud of atoms with densities similar to those shown here when
the inhomogeneous broadening is negligible. Manipulating
cold atomic clouds is common in experiments [8,30–33],
which makes testing the predictions of this paper feasible.
For example, by using a magneto-optical trap (MOT), one
could create a cold atomic cloud with a Gaussian density
distribution equivalent to that in Eq. (4) and change the
values of σx,y,z [30]. In this manner, the �′ = (1 + ξζb0)�
relationship could be measured by driving the cloud with
a low-intensity laser and measuring the emitted spectra for
various numbers of atoms and cloud geometries. The predicted
excitation distribution could also be shown by measuring the
intensity of light emitted by different parts of the cloud.

In conclusion, collective effects can be manipulated in a
cold gas of atoms while keeping the average density of the
atoms constant. When ρ̄/k3 � 1, the fractional change in the
linewidth of a uniformly driven cloud of atoms undergoing
J = 0 to J = 1 transitions is �ξζb0, where ζ � 1/8 is
a numerically determined constant, b0 is the cooperativity
parameter 3(N − 1)/(kσ )2, and ξ is the shape parameter
defined in Eq. (4). This supports the dependence on b0 noted
by previous authors by using single-photon wave-function
theories [3,16] as well as provides a more quantitatively
accurate broadening rate. Because of the strong directionality
of the coherent interactions, the photon-scattering rate and
the excitation distribution become strongly dependent on the
shape of the cloud with respect to k̂. For clouds highly
elongated along k̂, a counterintuitive reversal of the excitation
distribution of the atoms develops, where atoms at the back
of the cloud have the largest excitation probability. These
calculations show that extremely small interactions can build
constructively over an entire ensemble to give a strikingly
large effect. The incorporation of new parameters such as
collisions, inhomogeneous broadening [34], and the resultant
role of subradiant states [17], will surely provide new insights
into similar systems in the future.
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