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Comment on “Test of the Stark-effect theory using photoionization microscopy”
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An article by Zhao et al. [Phys. Rev. A 86, 053413 (2012)] tests the local frame transformation (LFT)
theory by comparing it with benchmark coupled-channel calculations. The system under consideration is an
alkali-metal atom that is two-photon ionized in the presence of a static external electric field. Zhao et al. state
that the differential cross sections computed in the LFT theory disagree with their supposedly more accurate
coupled-channel calculations. They went on to diagnose the discrepancy and claimed that it originates in an
inaccurate correspondence between the irregular functions in spherical and parabolic-cylindrical coordinates, a
correspondence that lies at the heart of LFT theory. We have repeated the same tests and find that our calculations
rule out the discrepancies that were claimed in Zhao et al. [Phys. Rev. A 86, 053413 (2012)] to exist between
the LFT approximation and the exact calculations. This Comment thus helps to clarify the accuracy of the
Harmin-Fano theory and demonstrates that it is in fact remarkably accurate not only for the total photoionization
cross section in the Stark effect, but also for the differential cross section in photoionization microscopy.
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I. INTRODUCTION

The Stark-effect theory for nonhydrogenic atoms was for-
mulated by Harmin [1–3] and Fano [4], and it was an impres-
sive breakthrough that enabled the quantitative interpretation
of both resonant and nonresonant photoabsorption spectra.
One of the main points of the Harmin-Fano theory lies in the
fact that the scattering observables at long electron distances
can be interconnected with the scattering information, such
as quantum defects determined at short distances. This is
permitted because the Coulomb-Stark Schrödinger equation
is separable over a large range of electron distances in
both spherical coordinates (r,θ,φ) and parabolic-cylindrical
coordinates (ξ,η,φ). For example, for an electric field of
strength 1 kV/cm this range is identified to be at least 50 atomic
units. The interrelation is achieved by means of a local frame
transformation (LFT) at distances far shorter than Stark’s
barrier maximum, i.e., r � F−1/2 where F is the field strength
and r is the separation distance. In this manner, the LFT
allows the mapping of the regular and irregular solutions from
spherical to parabolic-cylindrical coordinates [4]. Specifically,
the regular solutions between the two coordinate systems obey
the following relations:

fε�m(r)

r
=

∑

n1

ψεF
n1m

(r)[(UT )−1]εFm
n1�

for r � F−1/2, (1)

where � and m indicate the orbital and azimuthal angu-
lar momentum quanta, respectively. The index n1 labels
successive eigenstates of the fractional charge βn1 and is
essentially the number of nodes in the up-field parabolic-
cylindrical coordinate ξ (see Eq. (3a) in Ref. [1]). The
crucial quantity [(UT )−1]εFm

n1�
is a matrix element of the local

frame transformation where ε denotes the energy and F is
the strength of the electric field. fε�m(r)r−1 are the regular
solutions in spherical coordinates which vanish at the origin,
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and they correspond to the Coulombic regular functions.
Similarly, the term ψεF

n1m
(r) represents the regular functions

in parabolic-cylindrical coordinates.
On the other hand the mapping of the irregular solutions

reads

gε�m(r)

r
=

∑

n1

χεF
n1m

(r) csc(γn1 )(U )εFm
n1�

for r � F−1/2,

(2)

where gε�m(r)r−1 is the irregular function in spherical coordi-
nates and it essentially corresponds to the irregular Coulomb
function which lags the regular solution by π/2 at short
distances r � F−1/2. Note that this Eq. (2) coincides with
Eq. (20) of Ref. [5], except that the notation has been revised
to agree with that of Ref. [1] where this formula was initially
derived. Here γn1 indicates the phase that the electron’s wave
function has accumulated before and through the Stark barrier
in the down-field coordinate η. The factor csc(γn1) ensures
that the right-hand side (RHS) of Eq. (2) has the same energy
normalization amplitude at small r as the irregular Coulomb
function (see the discussion of Eq. (48) in Ref. [1]).

Equations (1) and (2) are the key parts of the LFT theory,
and they permit the asymptotic scattering observables to be
expressed in terms of the photoabsorption dipole amplitudes
determined close to the origin. Having clarified and briefly
reviewed the key concepts of LFT theory, the following section
focuses on the claims of Ref. [5].

II. COMMENT

In Ref. [5] Zhao et al. [5] observe noticeable discrepancies
between Harmin’s LFT theory for the Stark effect of alkali
atoms [1–3] and the presumably accurate coupled-channel
theory in their calculations of the differential cross sections for
the two-photon π -polarized ionization process of Na atoms in
the presence of a uniform electric field. These discrepancies
were then claimed by Zhao et al. [5] to originate in an
erroneous mapping of the irregular functions Eq. (2) from
one coordinate system to another.
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Because Zhao et al. [5] raise serious criticisms of the LFT
theory, it is important to further test their claims of error and
their interpretation of the sources of error. Their contentions
can be summarized as follows:

(i) The Harmin-Fano LFT accurately describes the total
photoionization cross section, but it has significant errors in
its prediction of the differential cross section that would be
measured in a photoionization microscopy experiment. They
deduced this by comparing the results from the approximate
LFT with a numerical calculation that those authors regard as
essentially exact.

(ii) The errors are claimed to be greatest when the atomic
quantum defects are large and almost negligible for an atom,
such as hydrogen which has vanishing quantum defects. They
then present evidence that they have identified the source of
those errors in the LFT theory, namely, the procedure first
identified by Fano that predicts how the irregular spherical
solution evolves at long distances into parabolic coordinate
solutions. Their calculations are claimed to suggest that the
local frame transformation of the solution, regular at the
origin from spherical to parabolic coordinates [see Eq. (1)],
is correctly described by the LFT, but the irregular solution
transformation is incorrect [see Eq. (2)].

Here we reinvestigate the main points of Ref. [5] with
the Harmin-Fano LFT and present evidence that both of their
claims are erroneous.

III. RESULTS AND DISCUSSION

Consider the differential cross section of photoionization
microscopy as shown in Fig. 1 as a function of the cylindrical
coordinate ρ that is transverse to the applied field direction.
This example refers to the two-photon π -polarized ionization
process of Na atoms in the presence of an external electric
field for parameters of the case addressed in Fig. 1 of Ref. [5].
The first pulse excites a ground-state Na atom into the 3p

orbital, and the second pulse excites the valence electron
up to a high Rydberg state energy. The strength of the
field is F = 3590 V/cm, the energy is ε = −62 cm−1, and
the detector is placed at zdet = −1 mm. The red solid line
refers to the LFT results calculated within the R-matrix
framework, and the black dots denote the ab initio numerical
solution of the time-dependent Schrödinger equation through a
“velocity mapping” technique (for further details see Ref. [6]).
Figure 1(a) includes coherent contributions from the dipole
transitions 3s → 3p → εs and 3s → 3p → εd orbitals with
an intermediate azimuthal angular momentum mint = 0 to a
final mf = 0. Figure 1(b) corresponds instead to the dipole
transitions from the 3s → 3p → εd orbital with mint = 1 to
mf = 1. Note that the atomic fine structure has been neglected
here and in the corresponding study by Zhao et al.

Clearly, our LFT and numerical calculations are in excellent
agreement, which contradicts the disagreement found by
Ref. [5]. In fact, our calculations agree well with the LFT
calculations of Zhao et al. as can be seen in the corresponding
panels in Fig. 1 of Ref. [5] (within an overall normalization
factor). Interestingly, in panel (a) of Fig. 1 our LFT (red solid
line) agrees with our numerical results (black dots). Hence, the
disagreement observed by the Zhao et al. originates from errors
in those authors’ coupled-channel calculations and not from
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FIG. 1. (Color online) The differential cross section for pho-
toionization microscopy of a Na atom is shown as a function of
the cylindrical coordinate ρ. The red solid lines indicate the LFT
theory calculations, whereas the black dots denote the velocity
mapping results from our direct solution of the two-dimensional
inhomogeneous Schrödinger equation. Panels (a) and (b) refer to
energy ε = −62 cm−1 for the transitions mint = 0 → mf = 0 and
mint = 1 → mf = 1, respectively. In all cases the field strength is
F = 3590 V/cm, and the detector is placed at zdet = −1 mm. Note
the excellent agreement that is evident between the LFT calculation
and the accurate full numerical treatment, which contrasts with the
poor agreement for the same parameters that was observed in the
calculations shown in Fig. 1 of Ref. [5].

inaccuracies of the LFT mapping of the irregular functions
from spherical to parabolic coordinates [see Eq. (2)].

Indeed, Figs. 5(b) and 5(c) of Zhao et al. document their
contention that the left and right sides of Eq. (2) are not even
approximately equal. We have repeated those calculations
for identical choices of field strength, energy, and quantum
numbers, and our results give evidence that if the summation
on the RHS of Eq. (2) is converged, the equation is satisfied
accurately.

Figure 2 compares the analytically known irregular
Coulomb function g

(C)
ε�m(r)r−1 (black solid line) with the

corresponding frame-transformed-(FT-) irregular function
g

(LFT)
ε�m (r)r−1 (red dots) at energy ε = −135.8231 cm−1 [7]

and field strength F = 640 V/cm. Both irregular functions
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FIG. 2. (Color online) The irregular solutions in spherical coor-
dinates at negative energies, i.e., E = −135.8231 cm−1, illustrated
for r = (r,θ = 5π

6 ,φ = 0). In all panels the orbital angular momentum
and the azimuthal quantum number are set to be � = 1, m = 1, and the
black solid line indicates the analytically known irregular Coulomb
function, namely, g(C)

ε�m(r)r−1. Accordingly, the red dots correspond to
the LFT calculations of the irregular function, namely, g

(LFT)
ε�m (r)r−1.

Panels (a)–(c) depict the LFT calculations for a maximum number
of n1 states equal to n

(tot)
1 = 12, 19, and 25, respectively. All the n

(tot)
1

correspond to βn1 < 1.

are expressed in spherical coordinates with angles being fixed
according to the expression r = (r,θ = 5π

6 ,φ = 0). In addi-
tion, the orbital and azimuthal angular momentum are set to be
� = 1, and m = 1. These are the same as in Fig. 5(b) of Ref. [5].

In Fig. 2 panels (a)–(c) correspond to the FT-irregular
function with different total numbers of n1 states included
in the sum of Eq. (2). More specifically, panels (a)–(c) refer
to a total number of n1 states equal to n

(tot)
1 = 12, 19, and

25, respectively. Notice that for an increasing number of n1

states the FT-irregular function (red dots) converges better and
better to the corresponding Coulomb irregular function (black

solid line). Specifically, panel (c) shows excellent agreement,
and the correct nodal pattern is predicted. Our panel (c) does
not exhibit the discrepancies presented in the corresponding
Fig. 5(b) of Zhao et al. Ref. [5].

A major conclusion here is that the convergence criteria of
Ref. [5] in Fig. 5(b) are not sufficient since Fig. 2 implies that
one must in general consider all the n1 states that fulfill the
relation of βn1 < 1, i.e., n

(tot)
1 = 25 for this case and not only

a few of them. Analysis of the RHS of Eq. (2) shows that the
frame transformation matrix elements UεFm

n1�
decrease rapidly

for n1 � 7 (i.e., UεFm
n1=15,� = −1.5236×10−22). This behavior

arises from the amplitude 1/Rn1 of the regular function of the
down-field degree of freedom which vanishes due to tunneling
under the Stark barrier (i.e., 1/Rn1=15 = 6.3946×10−22).
Furthermore, the amplitude 1/Sn1 of the χ -parabolic irregular
functions in Eq. (2) for n1 � 7 vanishes as well (i.e., for
1/Sn1=15 = 3.3501×10−22). Note that here we strictly follow
the notation of Ref. [1]. On the other hand the quantity
csc(γn1 ) = Rn1Sn1 (see Eq. (47) in Ref. [1]) rapidly increases
for n1 � 7 (i.e., csc γn1=15 = 4.6678×1042). Therefore, on
the RHS of Eq. (2) the quantities, 1/Rn1 , 1/Sn1 , and csc γn1

simplify yielding nonvanishing matrix elements for all the n1

states with βn1 < 1. The calculations of these quantities are
based on R-matrix eigenchannel theory (see Ref. [6]). This
quantitative analysis shows that photoabsorption observables
rapidly converge as n1 is increased mainly due to the
amplitudes 1/Rn1 , whereas the frame-transformed irregular
function converges far more slowly.

For almost all applications, the states with βn1 < 1 are the
physically relevant ones since they correspond to an attractive
Coulomb potential in the down-field degree of freedom η. Only
for these states can the wave function probe the ionic core,
which represents the only part of the Hamiltonian that couples
the different n1 parabolic channels. On the other hand the states
for βn1 > 1 correspond to a repulsive Coulomb potential in the
η degree of freedom, that effectively shields the ionic core.
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FIG. 3. (Color online) The irregular solutions in spherical coor-
dinates at a negative energy, namely, E = −135.8231 cm−1, illus-
trated for r = (r,θ = 5π

6 ,φ = 0) and � = 6, m = 1. The black solid
line indicates the analytically known irregular Coulomb function,
namely, g

(C)
ε�m(r)r−1, and the red dots correspond to the FT-irregular

function, namely, g
(LFT)
ε�m (r)r−1. In the LFT calculations the total

number of n1 states is n
(tot)
1 = 25. The field strength is F = 640 V/cm.
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Our calculations do confirm, however, one example of
difficulty with the local frame transformation theory that was
pointed out by Zhao et al., specifically Fig. 5(c) of Ref. [5] is
presented in Fig. 3. We use the same parameters as in Fig. 2,
and the total number of n1 states is set to n

(tot)
1 = 25. Here the

FT-irregular function for � = 6 (red dots) does not exhibit the
same convergence to the exact irregular Coulomb function as
was observed for the case of � = 1 in Fig. 2(c). The biggest
discrepancies occur in classically forbidden region, namely,
10 a.u. < r < 25 a.u. Such a high-� state is unusual because
most of the disagreement shown in this comparison (see Fig. 3)
resides in a classically forbidden range of r; hence the solutions
plotted are testing the LFT in a region not typically expected
to have strong excitation.

The study by Ref. [5] has thus been useful in pointing
out that regimes, such as the � = 6 case exist where the LFT
irregular function is inaccurate. Nevertheless it should be kept
in mind that those discrepancies for high � are nearly always
unimportant because such states for any atom in the periodic
table are associated with negligible quantum defects, whereby
the irregular function plays virtually no role since it is always
multiplied by sin πμ�.

To summarize, the Harmin-Fano theory does not show
the inaccuracies claimed by Zhao et al., and the LFT is

sufficiently accurate to describe the differential cross section
of an alkali atom in the presence of an external electric field.
Our calculations further show that the crucial element of the
LFT theory, namely, the frame transformation of the irregular
function in Eq. (2) accurately predicts the correct Coulomb
irregular function in the field-free zone, namely, close to the
origin. Furthermore, one factor that can restrict the accuracy
of Eq. (2) has been demonstrated in our study, namely, the
limited number of n1 states that contribute to the summation
because of the restriction of βn1 to the range of 0 < βn1 < 1.
This limitation is sufficiently accurate for low-� states, e.g.,
with � � 2, but needs to be improved if any application is
sensitive to the small-r irregular function for high �, such as
the � = 6 example considered here and by Zhao et al.
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