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Photoionization microscopy in terms of local-frame-transformation theory
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Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using
a standardized form of the local-frame-transformation and generalized quantum defect theory. The relevant
long-range quantum defect parameters in the combined Coulombic plus Stark potential are calculated with
eigenchannel R-matrix theory applied in the downstream parabolic coordinate η. The present formulation permits
us to express the corresponding microscopy observables through the local frame transformation, and it gives a
critical test of the accuracy of the Harmin-Fano theory.
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I. INTRODUCTION

The photoabsorption spectrum of an alkali-metal atom
in the presence of a uniform electric field constitutes a
fundamental testbed for atomic physics. Through the past
few decades, study of this class of systems has provided key
insights into their structure and chemical properties, and into
the nonperturbative effect of an applied external field. The
response of the lower-energy eigenstates of any alkali-metal
atom to a laboratory strength electric field is perturbative and
can be described in terms of the static atomic polarizability. For
states high in the Rydberg series or in the ionization continuum,
however, even a modest field strength nonperturbatively
modifies the nature of the energy eigenstates.

In fact this problem touches on fundamental issues con-
cerning the description of nonseparable quantum mechanical
systems. The Stark effect of alkali-metal atoms is one of the
simpler prototypes of such systems, because the short-distance
electron motion is nearly separable in spherical coordinates
while the intermediate- and long-distance motion is almost
exactly separable in parabolic coordinates. The evolution
of a quantum electron wave function from small to large
distances thus involves a transformation, termed a local frame
transformation (LFT) because it is derived in a localized region
of space. (The extent of this region is typically limited to within
10–20 a.u. between the electron and the nucleus.)

When one encounters a problem of nonrelativistic quantum
mechanics where the Schrödinger equation is nonsepara-
ble, one usually anticipates that the system will require a
complicated numerical treatment. This is the first and most
common approach even if the nonseparability is limited to
only two coordinates as is the case with the nonhydrogenic
Stark effect since the azimuthal angle φ is separable for
this problem (aside from the comparatively weak spin-orbit
coupling). Thus it was a major breakthrough when papers by
Fano [1] and Harmin [2–4] showed in the early 1980s how the
problem can be solved analytically and almost completely
using ideas based on the frame transformation theory and
quantum defect theory. Since that body of work introduced
the LFT method, it has been generalized to other systems
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that are similar in having an intermediate region of space
where the wave equation is separable in both the small-
and large-distance coordinate systems. Example applications
include diverse systems such as negative ion photodetachment
in either an external magnetic [5] or electric field [6–9],
and confinement-induced resonances in ultracold atom-atom
scattering [10–13] or dipole-dipole collisions [14].

The LFT theory has been demonstrated by now to have
great effectiveness in reproducing experimental spectra and
collision properties as well as accurate theoretical results
derived using other methods [15]. The deviations between
highly accurate R-matrix calculations and the LFT method
were found in Ref. [15] to be around 0.1% for resonance
positions in the 7Li Stark effect. The LFT is evolving as a
general tool that can solve this class of nonseparable quantum
mechanical problems, but it must be kept in mind that it is
an approximate theory. It is therefore desirable to quantify the
approximations made, in order to understand its regimes of
applicability and where it is likely to fail.

The goal of the present study is to provide a critical assess-
ment of the accuracy of the LFT, concentrating in particular
on observables related to photoionization microscopy. The ex-
periments in this field [16–19] have focused on the theoretical
proposal that the probability distribution of an ejected slow
continuum electron can be measured on a position-sensitive
detector at a large distance from the nucleus [20–23].

While the Harmin-Fano LFT theory has been shown in
the 1980s and 1990s to describe the total photoabsorp-
tion Stark spectra in one-electron [2,3,15] and two-electron
[24–26] Rydberg states, examination of a differential observ-
able such as the photodetachment [27] or photoionization [28]
microscopy probability distribution should in principle yield a
sharper test of the LFT. Indeed, a recent study (see Ref. [29])
identifies noticeable discrepancies between Harmin’s LFT
Stark effect theory and presumably more accurate coupled-
channel calculations. Particularly in view of the extended
applications of LFT theory to diverse physical contexts, such
as the confinement-induced resonance systems noted above,
a deeper understanding of the strengths and limitations of the
LFT is desirable. On this basis and in view of the key findings
of Ref. [29] a detailed discussion on its arguments is provided
in Ref. [30].

In this paper we develop a fully quantal implementation of
the Harmin local frame transformation, instead of relying on
semiclassical wave mechanics as in Refs. [2–4]. The relevant
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single-channel quantities in parabolic coordinates needed to
implement the LFT theory are determined accurately using
a variational R-matrix method. This allows us to disentangle
errors associated with the WKB approximation from those
deriving from the LFT approximation itself, as was shown in
Ref. [15]. For the most part this causes only small differences
from the original WKB treatment consistent with Ref. [15], but
it is occasionally significant, for instance for the resonant states
located very close to the top of the Stark barrier. Another goal
of this study is to standardize the local frame transformation
theory to fully specify the asymptotic form of the wave
function which is needed to describe other observables such
as the spatial distribution function (differential cross section)
that is measured in photoionization microscopy.

We also revisit the interconnection between the irregular
solutions from spherical to parabolic coordinates through the
matching of the spherical and parabolic Green’s functions in
the small distance range where the electric field is far weaker
than the Coulomb interaction. More specifically, a detailed
analysis is focused on the matching of the principal value
or smooth Green’s functions in both coordinates at positive or
negative energies, respectively. This allows us to quantitatively
reexamine the way the irregular solutions are specified in the
Fano-Harmin LFT, which is at the heart of the LFT method.

One of our major conclusions is that the LFT method does
not exhibit large, qualitative inaccuracies for the photoioniza-
tion microscopy of Na atoms ionized via a two-photon process
in π polarized fields. We obtain excellent agreement between
the approximate LFT theory and our virtually exact numerical
calculations. Nevertheless some minor discrepancies are noted
which may indicate minor inaccuracies of the local-frame-
transformation theory. Specifically, our detailed tests do not
confirm the problems with the LFT calculations claimed to
have been identified by Ref. [29].

This paper is organized as follows. Section II focuses
on the local-frame-transformation theory of the Stark effect
and presents a general discussion of the physical content of
the theory, including a description of the relevant mappings
of the regular and irregular solutions of the Coulomb and
Stark-Coulomb Schrödinger equation. Section III reformulates
the local-frame-transformation theory properly, including a
description of the asymptotic electron wave function. In
addition, this section defines all of the relevant scattering
observables. Section IV discusses a numerical implementation
based on a two-surface implementation of the eigenchannel
R-matrix theory. This toolkit permits us to perform accurate
quantal calculations in terms of the local-frame-transformation
theory, without relying on the semiclassical wave mechanics
adopted in Harmin’s implementation. Section V is devoted
to a discussion of our recent finding in comparison with the
conclusions of Ref. [29]. Finally, Sec. VI summarizes and
concludes our analysis.

II. LOCAL-FRAME-TRANSFORMATION THEORY
OF THE STARK EFFECT

This section reviews the local-frame-transformation theory
(LFT) for the nonhydrogenic Stark effect, utilizing the same
nomenclature introduced by Harmin [2–4]. The crucial parts

of the corresponding theory are highlighted developing its
standardized formulation.

A. General considerations

In the case of alkali-metal atoms at small length scales
the impact of the alkali-metal ion core on the motion of the
valence electron outside the core can be described effectively
by a phase-shifted radial wave function:

�ε�m(r) = 1

r
Y�m(θ,φ)[fε�(r) cos δ� − gε�(r) sin δ�],

(1)
r > r0,

where the Y�m(θ,φ) are the spherical harmonic functions of
orbital angular momentum � and projection m. r0 indicates
the effective radius of the core; δ� denotes the phase that
the electron acquires due to the alkali-metal ion core. These
phases are associated with the quantum defect parameters, μ�,
according to the relation δ� = πμ�. The pair of {f,g} wave
functions designate the regular and irregular Coulomb ones
respectively whose Wronskian is W [f,g] = 2/π . We remark
that this effective radius r0 is placed close to the origin where
the Coulomb field prevails over the external electric field.
Therefore, the effect on the phases δ� from the external field can
be neglected for typical laboratory field strengths. Note that
atomic units are employed everywhere; otherwise is explicitly
stated. In addition, we assume m � 0.

At distances r � r0 the outermost electron of the
nonhydrogenic atom is in the presence of a homogeneous
static electric field oriented in the z direction. The separability
of the center of mass and relative degrees of freedom permits
us to describe all the relevant physics by the following
Schrödinger equation in the relative frame of reference:(

−1

2
∇2 − 1

r
+ Fz − ε

)
ψ(r) = 0, (2)

where F indicates the strength of the electric field, r corre-
sponds to the electron distance from the nucleus, and ε is the
total colliding energy. Note that Eq. (2) is invariant under rota-
tions around the polarization axis, whereby the corresponding
azimuthal quantum number m is conserved to the extent that
spin-orbit and hyperfine couplings can be neglected, as is done
here. In contrast, the total orbital angular momentum is not
conserved, which shows up as a coupling among different �

states. The latter challenge, however, can be circumvented by
employing a coordinate transformation which results in a fully
separable Schrödinger equation. Hence, in parabolic coordi-
nates ξ = r + z, η = r − z, and φ = tan−1(x/y), Eq. (2) reads

d2

dξ 2
�εF

βm(ξ ) +
(

ε

2
+ 1 − m2

4ξ 2
+ β

ξ
− F

4
ξ

)
�εF

βm(ξ ) = 0,

(3)

d2

dη2
ϒεF

βm(η) +
(

ε

2
+ 1 − m2

4η2
+ 1 − β

η
+ F

4
η

)
ϒεF

βm(η) = 0,

(4)

where β is the effective charge and ε, F are the energy and
the field strength in atomic units. We remark that Eq. (3) in
the ξ degrees of freedom describes the bounded motion of the
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electron since as ξ → ∞ the electric potential energy steadily
increases. This means that the � wave function vanishes as
ξ → ∞ for every energy ε at particular quantized values of
the effective charge β. Thus Eq. (3) can be regarded as a gener-
alized eigenvalue equation where for each quantized β ≡ βn1

the �εF
βm ≡ �εF

n1m
wave function possesses n1 nodes. In this case

the wave functions �εF
n1m

(ξ ) possess the following properties.
(i) Near the origin �εF

n1m
behaves as �εF

n1m
(ξ → 0) ∼

NF
ξ ξ

m+1
2 [1 + O(ξ )], where NF

ξ is an energy-field-dependent
amplitude and must be determined numerically in general.

(ii) The wave function �εF
n1m

obeys the following normal-

ization condition:
∫ ∞

0

[�εF
n1m(ξ )]2

ξ
dξ = 1.

On the other hand, Eq. (4) describes solely the motion of
the electron in the η degree of freedom which is unbounded.
As η → ∞ the electric potential energy steadily decreases,
which in combination with the Coulomb potential forms a
barrier that often has a local maximum. Hence, for specific
values of energy, field strength, and effective charge the
corresponding wave function ϒεF

βm ≡ ϒεF
n1m

propagates either
above or below the barrier local maximum where the states n1

define asymptotic channels for the scattering wave function
in the η degrees of freedom. Note that, for βn1 > 1, the
Coulomb term in Eq. (4) becomes repulsive and therefore no
barrier formation occurs. Since Eq. (4) is associated with the
unbounded motion of the electron it possesses two solutions,
namely the solution ϒεF

n1m
(η) regular at η = 0 and an irregular

one ϒ̄εF
n1m

(η) which can be chosen according to various criteria.
This set of solutions has the following properties.

(i) Close to the origin and before the barrier the irregular
solutions ϒ̄εF

n1m
(η) lag by π/2 the regular ones, denoted

as ϒεF
n1m

(η). Note that their normalization follows Harmin’s
definition [2] and is clarified below.

(ii) Near the origin the regular solutions vanish according
to the relation ϒεF

n1m
(η → 0) ∼ NF

η η
m+1

2 [1 + O(η)], where NF
η

is an energy- and field-dependent amplitude and must be
determined numerically in general.

Next consider the behavior of the pair solutions
{ϒεF

n1m
,ϒ̄εF

n1m
} at distances past the barrier. Indeed, the regular

and irregular functions can be written in the following WKB
form:

ϒεF
n1m

(η � η0) →
√

2

πk(η)
sin

[ ∫ η

η0

k(η′)dη′ + π

4
+ δn1

]
,

(5)

ϒ̄εF
n1m

(η � η0) →
√

2

πk(η)
sin

[ ∫ η

η0

k(η′)dη′+π

4
+δn1−γn1

]
,

(6)

where k(η) = √−m2/η2 + (1 − βn1 )/η + ε/2 + Fη/4 is the
local momentum term with the Langer correction being
included, η0 is the position of the outermost classical turning
point, and the phase δn1 is the absolute phase induced by
the combined Coulomb and electric fields. The phase γn1

corresponds to the relative phase between the regular and
irregular functions, namely {ϒ,ϒ̄}. At short distances their
relative phase is exactly π/2, though as they probe the barrier

at larger distances their relative phase is altered and hence
past the barrier the short-range regular and irregular functions
differ by 0 < γn1 < π and not just π/2. We should remark
that after the barrier the amplitudes of the pair {ϒ,ϒ̄} are
equal to each other and their relative phase in general differs
from π/2. On the other hand, at shorter distances before the
barrier the amplitudes of the {ϒ,ϒ̄} basically are not equal to
each other and their relative phase is exactly π/2. This yields
that the Wronskian of the corresponding solutions possesses
the same value at all distances and provides us with insight
into the interconnection between amplitudes and relative
phases.

The key concept of Harmin’s theoretical framework is
to translate the relevant spherical coordinate phases at short
distances in the absence of an external field, i.e., δ� [see Eq. (1)]
into the scattering amplitudes and phases at large distances
in parabolic coordinates where the electric-field contributions
cannot be neglected. This can be achieved by mapping the
corresponding regular and irregular solutions from spherical
to parabolic-cylindrical coordinates as we discuss in the
following.

B. Mapping of the regular functions from spherical
to parabolic-cylindrical coordinates

The most intuitive aspect embedded in the present problem
is that the electron Hamiltonian right outside the core possesses
a spherical symmetry which at greater distances due to the
field becomes parabolic-cylindrically symmetric. Therefore, a
proper coordinate transformation of the corresponding energy
normalized wave functions from spherical to parabolic cylin-
drical coordinates will permit us to propagate to asymptotic
distances the relevant scattering or photoionization events
initiated near the core. Indeed at distances r 	 F−1/2 the
regular functions in spherical coordinates are related to
the parabolic cylindrical ones according to the following
relation:

ψεF
n1m

(r) = eimφ

√
2π

�εF
n1m

(ξ )√
ξ

ϒεF
n1m

(η)√
η

=
∑

�

UεFm
n1�

fε�m(r)

r
for r 	 F−1/2, (7)

where fε�m(r) are the regular solutions in spherical coor-
dinates with � being the orbital angular momentum quan-
tum number. The small distance behavior is fε�m(r) ≈
Nε�Y�m(θ,φ)r�+1[1 + O(r)] with Nε� a normalization constant
[see Eq. (13) in Ref. [2]]. Therefore, from the behavior at small
distances of the parabolic-cylindrical and spherical solutions
the frame transformation UεFm

n1�
has the following form:

UεFm
n1�

= NF
ξ NF

η

Nε�

(−1)m
√

4� + 2m!2

(2� + 1)!!
√

(� + m)!(� − m)!

×
�−m∑

k

(−1)k
(

� − m

k

)(
� + m

� − k

)

× νm−��(n1 + 1)�(ν − n1 − m)

�(n1 + 1 − k)�(ν − n1 + k − �)
, (8)

where n1 = βn1ν − 1/2 − m/2 and ν = 1/
√−2ε.
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FIG. 1. (Color online) Matrix elements of the local frame trans-
formation UεFm

n1� vs the number of states n1 for m = 1 where
the angular momentum acquires the values � = 1, 2, 3, and 6. The
electric-field strength is F = 640 V/cm and total collisional energy is
ε = 135.8231 cm−1. The vertical dashed lines indicate the sign and
the interval of values of the βn1 .

Figure 1 plots some elements of the local frame trans-
formation matrix U in Eq. (8) as functions of the quantum
number n1, where again the integers n1 label the eigen-
values βn1 . The elements of the local-frame-transformation
matrix U are plotted for four different angular momenta,
namely � = 1, 2, 3, and 6 where we set m = 1 at energy
ε = 135.8231 cm−1 and field F = 640 V/cm. One sees that
the matrix elements of U become significant in the interval
n1 ∈ (38,79) which essentially corresponds to βn1 ∈ (0,1). For
βn1 < 0 or βn1 > 1 the local frame transformation vanishes
rapidly. This behavior mainly arises from the normalization
amplitudes NF

ξ and NF
η , which obey the following relations:

NF
ξ ∼ βn1

1 − e−2πβn1 /k
, NF

η ∼
(
1 − βn1

)
1 − e−2π(1−βn1 )/k

. (9)

Note that these expressions are approximately valid only for
positive energies and they are exact for F = 0.

From the expressions in Eq. (9) it becomes evident that for
negative eigenvalues βn1 the amplitude NF

ξ vanishes exponen-
tially while NF

η remains practically finite. Similarly, for the
case of βn1 > 1 the amplitude NF

η vanishes exponentially, and
these result in the behavior depicted in Fig. 1. Another aspect
of the elements of the local-frame-transformation matrix U

are their nodal pattern shown in Fig. 1. For increasing � the
corresponding number of nodes increases as well. For m = 1,
every UεFm

n1�
possesses � − 1 nodes.

Figure 2 shows the LFT matrix elements at the same field
strength but negative energies, i.e., ε = −135.8231 cm−1,
whereas the azimuthal quantum number is set to be m = 1.
Unlike the case of positive energies which is demonstrated
in Fig. 1, at negative energies the presence of the Stark
barrier dominates, and controls the amplitudes of the regular
function in the η coordinate. This mainly arises due to the
fact that the corresponding function for high n1 states tunnels

- 0. 4
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- 0. 1

0

0. 1
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0. 3

0. 4

0. 5

0 5 10 15 20 25

(a)

(b)

FIG. 2. (Color online) (a) Amplitudes 1/Rn1 and (b) the matrix
elements UεFm

n1� Rn1 as a function of the number of states n1 for
m = 1. In panel (b) the angular momentum acquires the values
� = 1, 2, 3, and 6 indicated by the blue, green, yellow, and purple
solid lines, respectively. The electric-field strength is F = 640 V/cm
and total energy is ε = −135.8231 cm−1.

under the Stark barrier. Therefore, away from Stark resonances
these short-range amplitudes become strongly suppressed. In
order to view these effects one can factor the amplitude NF

η

according to the relation NF
η = NF=0

η (1/Rn1 ), where the term
NF=0

η is the amplitude that does not explicitly depend on the
Stark field, whereas the term 1/Rn1 is the amplitude that fully
encapsulates the impact of the barrier. Figure 2(a) illustrates
the dependence of the amplitude 1/Rn1 as a function of the n1

states, where we observe that as n1 increases the width of the
Stark barrier increases yielding a vanishing amplitude 1/Rn1 .
In panel (b) of Fig. 2 the LFT matrix elements are depicted
where the strong dependence on the barrier is absorbed by
multiplying them with the amplitudes Rn1 . This permits us
to observe features similar to the case of positive energies.
Namely in Fig. 2(b) the matrix elements UεFm

n1�
Rn1 behave as

the associated Legendre polynomials exhibiting � − 1 nodes
for m = 1. In addition, the considered interval of n1 states
corresponds to effective charges βn1 < 1 as in Fig. 1. However,
unlike the case of positive energies, the values βn1 > 1 are not
depicted due to the fact the regular functions of the η coordinate
become imaginary and therefore the LFT matrix elements will
acquire imaginary values.
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C. Mapping of the irregular functions from spherical
to parabolic-cylindrical coordinates

Having established the mapping between the regular
solutions of the wave function in spherical and parabolic-
cylindrical coordinates, the following focuses on the relation
between the irregular ones.

The irregular solution in parabolic-cylindrical coordinates
has the following form:

χεF
n1m

(r) = eimφ

√
2π

�εF
n1m

(ξ )√
ξ

ϒ̄εF
n1m

(η)√
η

, (10)

Recall that in order to relate Eq. (10) to the irregular functions
in spherical coordinates we employ Green’s functions as was
initially suggested in Ref. [1]. In the following, we consider
two cases with respect to positive and negative energies and
firmly address the proper matching of a specific Green’s
function of the pure Coulomb Hamiltonian with a Green’s
function of Coulomb plus Stark Hamiltonian.

For positive energies the outgoing Green’s function of the
pure Coulomb Hamiltonian, namely G(C,out)(r,r′), in spherical
coordinates is written as follows:

G(C,out)(r,r′) = G
(C)
P (r,r′) + iπ

rr ′
∑

�

fε�m(r)fε�m(r′), (11)

where the first term is the principal value Green’s function,
whereas the second term fulfills the homogeneous Schrödinger
equation. The functions f correspond to the regular functions
as they are defined in Eq. (1).

Equation (11) is uniquely defined by obeying proper
boundary conditions at the origin and at infinity. However,
in multichannel quantum defect theory one might drop the
latter boundary condition and focus on the principal Green’s
function. The principal value Green’s function consists of a
sum of products of regular and irregular functions with their
relative phase being exactly π/2 [31,32] which, expressed in
spherical coordinates, reads

G
(C)
P (r,r′) = π

rr ′
∑
�,m

fε�m(r)gε�m(r′), r < r ′, (12)

where the {f,g} solutions correspond to the regular and
irregular functions as they are defined in Eq. (1).

In general, the principal value Green’s function of the
Coulomb Hamiltonian in spherical and in parabolic-cylindrical
coordinates are equal to each other, namely G

(C),sc
P ≡ G

(C),pcc
P

(the abbreviations sc and pcc stand for spherical and parabolic-
cylindrical coordinates, respectively). In return the parabolic
coordinate principal value Green’s function for the pure
Coulomb Hamiltonian G

(C,pcc)
P (r,r′) is matched with a Green’s

function of the Coulomb plus Stark Hamiltonian G(C+F )(r,r′),
which is also expressed in parabolic-cylindrical coordinates.
Of course, in general the two Green’s functions differ from
each other since they correspond to different Schrödinger
equations. However, at small distances the field term in the
Stark Hamiltonian becomes negligible in comparison with
the Coulomb term. Therefore, in this restricted region of the
configuration space, i.e., r 	 F−1/2, the Stark Hamiltonian is
virtually identical to the Coulomb Hamiltonian. Following this
prescription allows one to interconnect the irregular functions

of both coordinate systems at positive energies. A similar
procedure can be employed for negative energies as well.

More specifically for negative energies, by analytically
continuing the {f,g} Coulombic functions across the threshold
yields the relation G(C),sc ≡ G(C),pcc. The G(C) is the so-called
smooth Green’s function, which is related to a Green’s
function bounded at r = 0 and at infinity according to the
expression [33]

G(C)(r,r′) = G(C)(r,r′) + π

rr ′
∑

�

fε�m(r) cot β(ε)fε�m(r′),

(13)
where β(ε) = π (ν − �) with ν = 1/

√−2ε is the phase ac-
cumulated from r = 0 up to r → ∞. Assume that εn (i.e.,
ν → n ∈ ℵ∗) are the eigenenergies specified by imposing the
boundary condition at infinity where n denotes a counting
index of the corresponding bound states. Then in the right-hand
side of Eq. (13) the second term at energies ε = εn diverges
while the first term is free of poles. The smooth Green’s
function is identified as the one where the two linearly
independent solutions have their relative phase equal to π/2
at small distances. Furthermore, the singularities in Eq. (13)
originate from imposing the boundary condition at infinity,
though in the spirit of multichannel quantum defect theory we
can drop this consideration and solely employ the G(C) which
in spherical coordinates reads

G(C)(r,r′) = π

rr ′
∑
�,m

fε�m(r)gε�m(r′), r < r ′ for ε < 0.

(14)

In view of the now established equality between the prin-
cipal value (smooth) Green’s functions at positive (negative)
energies in spherical and parabolic cylindrical coordinates for
the pure Coulomb Hamiltonian, the discussion can proceed
to the Stark Hamiltonian. Hence as mentioned above in the
Coulomb zone, i.e., r 	 F−1/2, the Stark Hamiltonian is
approximately equal to the pure Coulomb one. This implies
the existence of a Green’s function, G(C+F ), for the Stark
Hamiltonian which is equal to the G

(C),pcc
P (G(C),pcc), and which

in turn is equal to Eq. (12) [Eq. (14)] at positive (negative)
energies. More specifically, the G(C+F ) Green’s function
expressed in parabolic-cylindrical coordinates is given by the
expression

G(C+F )(r,r′) = 2
∑
n1,m

ψεF
n1m

(r)χεF
n1m

(r′)

W
(
ϒεF

n1m
,ϒ̄εF

n1m

) for η < η′ 	 F−1/2,

(15)

where the functions {ψ,χ} are the regular and irregular
solutions of the Stark Hamiltonian, which at small distances
(in the classically allowed region) have a relative phase of π/2.
This originates from π/2 relative phase of the {ϒ,ϒ̄} as was
mentioned is subsection A. The Wronskian W [ϒεF

n1m
,ϒ̄εF

n1m
] =

(2/π ) sin γn1 yields {ψ,χ} solutions have the same energy
normalization as in the {f,g} Coulomb functions.

From the equality between Eqs. (12) [or (14)] and (15),
hereafter with the additional use of Eq. (7), the mapping of the
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irregular solutions is given by the following expression:

gε�m(r)

r
=

∑
n1

χεF
n1m

(r) csc
(
γn1

)
(U )εFm

n1�
for r 	 F−1/2.

(16)
Additionally, Eq. (7) conventionally can be written as

fε�m(r)

r
=

∑
n1

ψεF
n1m

(r)[(UT )−1]εFm
n1�

for r 	 F−1/2. (17)

Note that in Eqs. (16) and (17) UT and [UT ]−1 are the transpose
and inverse transpose matrices of the U LFT matrix whose
elements are given by (U )εFm

n1�
= UεFm

n1�
.

In Ref. [15] Stevens et al. comment that in Eq. (16) only
the left-hand side possesses a uniform shift over the θ angles.
Quantifying this argument, one can examine the difference of
the semiclassical phases with and without the electric field.
Indeed, for a zero-energy electron the phase accumulation due
to the existence of the electric field as a function of the angle
θ obeys the expression

�φ(r,θ ) =
∫ r

k(r,θ )dr −
∫ r

k0(r)dr

≈ −
√

2

5
Fr5/2 cos θ for Fr2 	 1, (18)

where k(r,θ ) [k0(r)] indicates the local momentum with
(without) the electric field F . In Eq. (18) it is observed that
for field strength F = 1 kV/cm and r < 50 a.u. the phase
modification due to existence of the electric field is less than
0.001 radians. This simply means that at short distances both
sides of Eq. (16) should exhibit practically uniform phase over
the angle θ .

Recapitulating Eqs. (16) and (17) constitute the mapping of
the irregular and regular functions respectively from spherical
to parabolic cylindrical coordinates, respectively.

III. SCATTERING OBSERVABLES IN TERMS OF THE
LOCAL FRAME TRANSFORMATION

This section implements the Harmin frame-transformation
theory to determine the relevant scattering observables.

A. Asymptotic form of the frame-transformed irregular
solution and the reaction matrix

The irregular solutions which we defined in Eq. (6) are
not the usual ones of the scattering theory since in the
asymptotic region, namely η → ∞, they do not lag by π/2 the
regular functions, Eq. (5). Hence this particular set of irregular
solutions should not be used in order to obtain the scattering
observables which are properly defined in the asymptotic
region.

However, by linearly combining Eqs. (5) and (6) we define
a new set of irregular solutions which are energy-normalized,
asymptotically lag by π/2 the regular ones, and read

ϒ̄εF,scat
n1m

(η) = 1

sin γn1

ϒ̄εF
n1m

(η) − cot γn1ϒ
εF
n1m

(η), (19)

where this equation together with Eq. (5) correspond to a set
of real irregular and regular solutions according to the usual
conventions of scattering theory.

The derivation of the reaction matrix follows. Equa-
tions (19) and (10) are combined and then substituted into
Eq. (16) such that the irregular solution in spherical coordinates
is expressed in terms of the ϒ̄εF,scat

n1m
:

gε�m(r)

r
=

∑
n1

[
ψεF

n1m
(r) cot

(
γn1

) + χεF,scat
n1m

(r)
]
(UT )εFm

�n1
,

(20)
where χεF,scat

n1m
(r) is defined as

χεF,scat
n1m

(r) = eimφ�εF
n1m

(ξ )ϒ̄εF,scat
n1m

(η)/
√

2πξη. (21)

Hereafter, the short-range wave function [Eq. (1)] expressed
in spherical coordinates is transformed via the LFT matrix U

into the asymptotic wave function. Specifically,

�ε�m(r) =
∑
n1

ψεF
n1m

(r)
[
[(UT )−1]εFm

n1�
cos δ�

− cot γn1 (U )εFm
n1�

sin δ�

] − χεF
n1m

(r)(U )εFm
n1�

sin δ�.

(22)

Then from Eq. (22) and after some algebraic manipulations
the reaction matrix solutions are written in a compact matrix
notation as

�(R)(r) = �[cos δ]−1UT [I − cot γU tan δUT ]−1

= ψ̄(r) − χ̄ (r)[U tan δUT ][I − cot γU tan δUT ]−1,

(23)

where I is the identity matrix, the matrices cos δ, tan δ, and
cot γ are diagonal ones. Note that ψ̄ (χ̄) indicates a vector
whose elements are the ψεF

n1m
(r) [χεF

n1m
(r)] functions. Similarly,

the elements of the vector � are provided by Eq. (1). Then
from Eq. (24) the reaction matrix obeys the following relation:

R = U tan δUT [I − cot γU tan δUT ]−1. (24)

In fact the matrix product U tan δUT can be viewed as a
reaction matrix K which does not yet encapsulate the impact
of the Stark barrier on the wave function. Moreover, as shown
in Ref. [34] the recasting of the expression for the reaction
matrix R into a form that does not involve the inverse [UT ]−1

improves its numerically stability. In addition, it can be shown
with simple algebraic manipulations that the reaction matrix
is symmetric. Note that this reaction matrix R should not be
confused with the Wigner-Eisenbud R matrix.

The corresponding physical S matrix is defined from the R

matrix via a Cayley transformation, namely

S = [I + iR][I − iR]−1

= [I − (cot γ − iI )K][I − (cot γ + iI )K]−1, (25)

where clearly this S matrix is equivalent to the corresponding
result of Ref. [29]. Also, the S matrix in Eq. (25) is unitary
since the corresponding R matrix is real and symmetric.

B. Dipole matrix and outgoing wave function
with the atom-radiation field interaction

As was already discussed, the pair of parabolic regular and
irregular solutions {ψ,χ} are the standing-wave solutions of
the corresponding Schrödinger equation. However, by linearly
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combining them and using Eq. (24), the corresponding energy-
normalized outgoing-incoming wave functions are expressed
as

�̃
±

(r) = ∓�R(r)[I ∓ iR]−1

= X∓(r)

i
√

2
− X±(r)

i
√

2
[I ± iR][I ∓ iR]−1, (26)

where the elements of the vectors X±(r) are defined by the
relation [X±(r)]εFn1m

= [−χεF
n1m

(r) ± iψεF
n1m

(r)]/
√

2.
In the treatment of the photoionization of alkali-metal

atoms, the dipole matrix elements are needed to compute the
cross sections which characterize the excitation of the atoms
by photon absorption. Therefore, initially we assume that at
small distances the short-range dipole matrix elements possess
the form d� = 〈�ε�m| ε̂ · r̂ |�init〉. Note that the term ε̂ · r̂ is
the dipole operator, the ε̂ denotes the polarization vector, and
|�init〉 indicates the initial state of the atom. Then the dipole
matrix elements which describe the transition amplitudes from
the initial to each n1th of the reaction-matrix states is

D(R)
n1

=
∑

�

d�{[cos δ]−1UT [I − cot γK]−1}�n1 . (27)

Now with the help of Eq. (27) we define the dipole matrix
elements for transitions from the initial state to the incoming
wave final state which has only outgoing waves in the n1th
channel. The resulting expression is

D(−)
n1

=
∑
n′

1

D
(R)
n′

1
[(I − iR)−1]n′

1n1 . (28)

Equation (28) provides the necessary means to properly
define the outgoing wave function with the atom-field ra-
diation. As it was shown in Ref. [35] the outgoing wave
function can be derived as a solution of an inhomogeneous
Schrödinger equation that describes the atom being perturbed
by the radiation field. Formally this implies that

[ε − H ]�out(r) = ε̂ · r̂�init(r), (29)

where �out(r) describes the motion of the electron after its
photoionization moving in the presence of an electric field; H

is the Stark Hamiltonian with ε being the energy of ionized
electron. The �out(r) can be expanded in outgoing wave
functions involving the dipole matrix elements of Eq. (28).
More specifically, we have that

�out(r) =
∑
n1m

D(−)
n1m

XεF,+
n1m

(r). (30)

C. Wave-function microscopy and differential cross sections

Recent experimental advances [16–19] have managed to
detect the square modulus of the electronic wave function,
which complements a number of corresponding theoretical
proposals [20–23]. This has been achieved by using a position-
sensitive detector to measure the flux of slow electrons that are
ionized in the presence of an electric field.

The following defines the relevant observables associated
with the photoionization microscopy. The key quantity is the
differential cross section which in turn is defined through
the electron current density. As in Ref. [35], consider a
detector placed beneath the atomic source with its plane being

perpendicular to the horizontal axis of the electric field. Then,
with the help of Eq. (30) the electron current density in
cylindrical coordinates has the following form:

R(ρ,zdet,φ) = 2πω

c
Im

[
−�out(r)∗

d

dz
�out(r)

]
z=zdet

, (31)

where zdet indicates the position of the detector along the z

axis, c is the speed of light, and ω denotes the frequency of
the photon being absorbed by the electron. The integration of
the azimuthal φ angle leads to the differential cross section per
unit length in the ρ coordinate. Namely, we have that

dσ (ρ,zdet)

dρ
=

∫ 2π

0
dφ ρ R(ρ,zdet,φ). (32)

IV. ONE-DIMENSIONAL EIGENCHANNEL R-MATRIX
CALCULATION

Harmin’s Stark effect theory for nonhydrogenic atoms is
mainly based on the semiclassical WKB approach. In order
to eliminate the WKB approximation as a potential source
of error, this section implements a fully quantal description of
Harmin’s theory based on a variational eigenchannel R-matrix
calculation as was formulated in Refs. [36,37] and reviewed
in Ref. [38]. As implemented here using a B-spline basis
set, the technique also shares some similarities with the
Lagrange-mesh R-matrix formulation developed by Baye and
co-workers [39]. The present application to a 1D system
with both an inner and an outer reaction surface accurately
determines regular and irregular solutions of the Schrödinger
equation in the η degrees of freedom. The present implemen-
tation can be used to derive two independent solutions of any
one-dimensional Schrödinger equation of the form[

−1

2

d2

dη2
+ V (η)

]
ψ(η) = 1

4
εψ(η), (33)

where

V (η) = m2 − 1

8η2
− 1 − β

2η
− F

8
η. (34)

The present application of the noniterative eigenchannel
R-matrix theory adopts a reaction surface � with two
disconnected parts, one at an inner radius η1 and the other
at an outer radius η2. The reaction volume � is the region
η1 < η < η2.

This one-dimensional R-matrix calculation is based on
the previously derived variational principle [36,40] for the
eigenvalues b of the R-matrix,

b[ψ] =
∫
�

[−−→∇ ψ∗ · −→∇ ψ + 2ψ∗(E − V )ψ]d�∫
�

ψ∗ψ d�
. (35)

Physically, these R-matrix eigenstates have the same
outward normal logarithmic derivative everywhere on the
reaction surface, which consists here of these two points �1

and �2. The desired eigenstates obey the following boundary
condition:

∂ψ

∂n
+ bψ = 0 on �. (36)
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In the present application the ψ-wave functions are ex-
panded as a linear combination of a nonorthogonal B-spline
basis [41], i.e.,

ψ(η) =
∑

i

PiBi(η) =
∑
C

PCBC(η) + PIBI (η) + POBO(η),

(37)
where Pi denote the unknown expansion coefficients and Bi(η)
stands for the B-spline basis functions. The first term in the
left-hand side of Eq. (37) was regarded as the “closed-type”
basis set in Ref. [38] because every function Bc(η) vanishes
on the reaction surface, i.e., Bc(η1) = Bc(η2) = 0. The two
basis functions BI (η) and BO(η) correspond to the “open-
type” basis functions of Ref. [38] in that they are the only
B-spline functions that are nonzero on the reaction surface.
Specifically, only BI (η) is nonzero on the inner surface η = η1

(�1) and only BO(η) is nonzero on the outer surface η = η2

(�2). Moreover, the basis functions BI and BO have no region
of overlap in the matrix elements discussed below.

Insertion of this trial function into the variational principle
leads to the following generalized eigenvalue equation:

�P = b�P. (38)

In addition, the real, symmetric matrices � and � are given by
the following expressions for this one-dimensional problem:

�ij =
∫ η2

η1

[(
1

2
ε − 2V (η)

)
Bi(η)Bj (η) − B ′

i(η)B ′
j (η)

]
dη,

(39)

�ij = Bi(η1)Bj (η1) + Bi(η2)Bj (η2) = δi,I δI,j + δi,OδO,j ,

(40)

where δ indicates the Kronecker symbol and the ′ are regarded
as the derivatives with respect to the η.

It is convenient to write this linear system of equations in a
partitioned matrix notation, namely,

�CCPC + �CIPI + �COPO = 0, (41)

�ICPC + �IIPI = bPI , (42)

�OCPC + �OOPO = bPO. (43)

Now the first of these three equations is employed to eliminate
PC by writing it as PC = −�−1

CC�CIPI − �−1
CC�COPO , which

is equivalent to the “streamlined transformation” in Ref. [37].
This gives finally a 2 × 2 matrix � to diagonalize at each
ε in order to find the two R-matrix eigenvalues bλ and
corresponding eigenvectors Piλ:(

�II �IO

�OI �OO

)(
PI

PO

)
= b

(
PI

PO

)
. (44)

Here, e.g., the matrix element �II ≡ �II − �IC�−1
CC�CI , etc.

In any 1D problem like the present one, the use of a B-spline
basis set leads to a banded structure for �CC which makes
the construction of �−1

CC�CI and �−1
CC�CO highly efficient in

terms of memory and computer processing time; this step is
the slowest in this method of solving the differential equation,
but still manageable even in complex problems where the
dimension of �CC can grow as large as 104 to 105.

Again, the indices C refer to the part of the basis expansion
that is confined fully within the reaction volume and vanishes
on both reaction surfaces.

The diagonalization of Eq. (44) provides us with the bλ

eigenvalues and the corresponding eigenvectors, which define
two linearly independent wave functions ψλ, with λ = 1,2.
These obey the Schrödinger equation, Eq. (33), and have equal
normal logarithmic derivatives at η1 and η2. The final step is
to construct two linearly independent solutions that coincide
at small η with the regular and irregular field-free η solutions
fεβm(η) and gεβm(η) (cf. the Appendix). These steps are rather
straightforward and are not detailed further in this paper.

V. RESULTS AND DISCUSSION

A. Frame-transformed irregular solutions

In this subsection the convergence of the frame-transformed
irregular solutions, namely Eq. (16), is investigated both at
positive and negative energies. This permits us to analyze
the validity of the matching of the principal value Green’s
functions or the smooth ones for positive or negative energies,
respectively. In return, this allows us to investigate the
claims by Zhao et al. [29], which suggest an error in the
frame-transformed irregular functions of the Coulomb-Stark
Hamiltonian.

Figure 3 illustrates the irregular solutions in spherical
coordinates where r = (r,θ = 5π/6,φ = 0) and the azimuthal
quantum number is set to be m = 1. The energy is taken to be
ε = 135.8231 cm−1 and the field strength is F = 640 V/cm.
In addition we focus on the regime where r < 90 a.u. 	
F−1/2. In all the panels the black solid line indicates the

analytically known irregular Coulomb function, namely g
(C)
ε�m(r)

r
.

Figures 3(a)–3(c) examine the cases of angular momentum
� = 1 and 6, respectively. All the green dashed lines, the
diamonds, and dots correspond to the frame-transformed
irregular Coulomb functions in spherical coordinates, namely
g

(LFT)
ε�m (r)

r
, which are calculated by summing up from zero to n1

the irregular χεF
n1m

(r) functions in the parabolic coordinates as
Eq. (16) indicates.

The positive value of the energy ensures that all the n1

channels lie well above the local maximum in η whereby
the phase parameter γn1 is very close to its semiclassical
expected value π/2. Furthermore, since only short distances
are relevant to this comparison, namely r < 90 a.u., this
means that the summed ϒ̄εF

n1m
(η) functions on the right-hand

side of Eq. (16) in the n1th irregular χεF
n1m

(r) will be equal
to analytically known Coulomb irregular functions in the
parabolic coordinates. This is justified since at the interparticle
distances that we are interested in, namely 	F−1/2, the electric
field is negligible in comparison to the Coulomb interaction.
Then the corresponding Schrödinger equation becomes equal
to the Schrödinger equation of the pure Coulomb field, which is
analytically solvable in spherical and parabolic coordinates as
well. Thus, in the following, we employ the above-mentioned
considerations in the evaluation of the right-hand side of
Eq. (16) for Figs. 3 and 4.

Figure 3(a) compares the radial irregular Coulomb function
(black line) with those calculated in the LFT theory for
� = m = 1. In order to check the convergence of the LFT
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FIG. 3. (Color online) Irregular solutions in spherical coordi-
nates illustrated up to r = 80 a.u. where r = (r,θ = 5π/6,φ = 0).
In all panels the azimuthal quantum number is set to m = 1 and the
black solid line indicates the irregular Coulomb function in spherical

coordinates, namely
g

(C)
ε�m

(r)

r
. Panel (a) depicts the case of � = 1

where
g

(LFT)
ε�m

(r)

r
denotes the irregular function in spherical coordinates

calculated within the local-frame-transformation (LFT) framework,
for two different cases of the total amount of n1 states, namely
n

(tot)
1 = 60 (green dashed line) and n

(tot)
1 = 100 (red dots). Panel (b)

refers to the case of � = 6 where
g

(LFT)
ε�m

(r)

r
is calculated for n

(tot)
1 = 60

(green dashed line), n
(tot)
1 = 100 (blue diamonds), and n

(tot)
1 = 230

(red dots) states. Note that panel (c) is a zoomed-out plot of the
curves shown in panel (b). In all panels the energy is ε = 135.8231
cm−1 and the field is F = 640 V/cm.
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FIG. 4. (Color online) Irregular solutions in spherical coordi-
nates are shown up to r = 80 a.u. where r = (r,θ = 5π/6,φ = 0).
In all panels the azimuthal quantum number is set to be m = 1
and the black solid line indicates the analytically known irregular

Coulomb function, namely
g

(C)
ε�m

(r)

r
. Panel (a) depicts the case of � = 2

where
g

(LFT)
ε�m

(r)

r
denotes the irregular function in spherical coordinates

calculated within the local-frame-transformation (LFT) framework
for n

(tot)
1 = 100 states (red dots). Similarly, panel (b) refers to the

case of � = 3 with
g

(C)
ε�m

(r)

r
being calculated for n

(tot)
1 = 100 (red dots)

states. In all panels the energy is ε = 135.8231 cm−1 and the field is
F = 640 V/cm.

calculations with respect to the total number n
(tot)
1 different

values are considered. Indeed, we observe that the g
(LFT)
ε�m (r)

r
for

n
(tot)
1 = 60 (green dashed line) does not coincide with g

(C)
ε�m(r)

r

(black line) particularly in the interval of small interparticle
distances r . This can be explained with the help of Fig. 1,
which demonstrates that the LFT matrix U for � = 1 possesses
nonzero elements for n1 > 60, and those elements are crucial
for the growth of the irregular solution at small distances.
Therefore, the summation in Eq. (16) for � = 1 does not
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begin to achieve convergence until n1 � 100, where the
corresponding elements of the LFT matrix U tend to zero.
Indeed, when the sum over n1 states is extended to this

larger range, the irregular function g
(LFT)
ε�m

r
of LFT theory, i.e.,

for n
(tot)
1 = 100 (red dots), accurately matches the spherical

field-free irregular solution g
(C)
ε�m(r)

r
(black line) (see Fig. 3) at

small electron distances r .
Furthermore, Fig. 3(b) refers to the case of � = 6m = 1.

Specifically, for ntot
1 = 60 states the g

(LFT)
ε�m

r
(green dashed line)

agrees poorly with the g
(C)
ε�m

r
(black line). Though as in the case

of � = 1, by increasing the number of n1 states summed over in

Eq. (16) the corresponding g
(LFT)
ε�m

r
, namely to n

(tot)
1 = 100 (blue

diamonds) and to n
(tot)
1 = 230 (red dots), better agreement is

achieved with the g
(C)
ε�m

r
. In contrast to the case where � = 1,

the convergence is observed to be very slow for � = 6. The
main reason for this is that for r < 20 a.u. we are in the
classically forbidden region where g

(LFT)
ε�m

r
diverges as 1/r�+1.

From Eq. (16) it is clear that the sum will diverge due to the
divergent behavior of the irregular functions of the η direction,
namely the ϒ̄εF

n1m
(η). Hence, in order for the ϒ̄εF

n1m
(η) to be

divergent in the interval of 10 to 80 a.u. it is important to
take into account many n1 states which correspond to βn1 > 1
since only then the term (1 − βn1 )/η becomes repulsive and
producing the diverging behavior appropriate to a classical
forbidden region. Figure 3(c) is a zoomed-out version of the
functions shown in panel (b), which demonstrates that the
g

(LFT)
ε�m

r
for n

(tot)
1 = 230 correctly captures the divergent behavior

of g
(C)
ε�m

r
for r < 20.

Similarly, Fig. 4 explores the cases of � = 2 [see Fig. 4(a)]
and � = 3 [see Fig. 4(b)]. In both panels the black solid
lines indicate the field-free Coulomb function in spherical

coordinates g
(C)
ε�m

r
and the red dots correspond to the g

(LFT)
ε�m

r
for

n
(tot)
1 = 100. Both panels exhibit g

(LFT)
ε�m

r
that are in excellent

agreement with g
(C)
ε�m

r
.

Having analyzed the LFT calculations at positive energies,
Fig. 5 illustrates the corresponding LFT calculations at
negative energies, namely ε = −135.8231 cm−1 where the
field strength is set to be F = 640 V/cm. In all panels the az-
imuthal quantum number is considered to be m = 1, the solid
black lines denote the analytically known irregular Coulomb

function [ g
(C)
ε�m(r)

r
], and red dots refer to the corresponding LFT

calculations [ g
(LFT)
ε�m (r)

r
]. In Figs. 5(a)–5(d) the � = 1, 2, 3, and 6

cases are considered at r = (r,θ = 5π
6 ,φ = 0), respectively. In

addition, for all the panels of Fig. 5 in the LFT calculations
the summation over the n1 states is truncated at ntot

1 = 25 for
the considered energy and field strength values. This simply
means that the contributing terms in the summation of the
frame-transformed irregular function correspond to fractional
charges βn1 less than unit. These states essentially describe
all the relevant physics since only for these states the “down
field” part of the wave function can probe the core either
above or below the Stark barrier. Therefore, the n1 states
for which βn1 > 1 physically are irrelevant since they yield a
strongly repulsive barrier in the down field degree of freedom

shielding completely the core. However, for these states the
considered pair of regular and irregular functions in Sec. II C
for the η degree of freedom acquire imaginary parts due to
the fact that the colliding energy is below the minimum of the
corresponding Coulomb potential. Consequently, these states
are omitted from the sum of the frame-transformed irregular
function. The omission of states with βn1 > 1 mainly addresses
the origin of the accuracy in the LFT calculations.

The impact of the omitted states is demonstrated in Fig. 5
where discrepancies are observed as the orbital angular
momentum � increases since more n1 states are needed.
Indeed, in panels (a)–(c) of Fig. 5 a good agreement is
observed between the frame-transformed irregular function
and the Coulombic one (black solid line). On the other hand,
in panel (d) of Fig. 5 small discrepancies, particularly for
r > 20, are observed occurring due to poor convergence over
the summation of the n1 states. However, these discrepancies
are of minor importance since they correspond to negligible
quantum defects, and thus yield minor contributions into the
photoabsorption cross section.

The bottom line of the computations shown in this subsec-
tion is that the frame-transformed irregular Coulomb functions
g

(LFT)
ε�m

r
do not display, at least for � = 1 or 2, qualitative

inaccuracies. For negative energies, our evidence suggests
that the inclusion of n1 states with βn1 > 1 will enhance
the accuracy of the frame-transformed irregular functions as
was already demonstrated by the LFT calculations at positive
energies.

B. Photoionization microscopy

Next we compute the photoionization microscopy observ-
able for Na atoms, namely the differential cross section in
terms of the LFT theory. The system considered is a two
step photoionization of ground-state Na in the presence of an
electric field F of strength 3590 V/cm. The two consecutive
laser pulses are assumed to be π polarized along the field
axis, which trigger in succession the following two transitions:
(i) the excitation of the ground state to the intermediate
state 2P3/2, namely [Ne]3s 2S1/2 → [Ne]3p 2P3/2 and (ii)
the ionization from the intermediate state 2P3/2. In addition,
due to spin-orbit coupling the intermediate state will be
in a superposition of the states which are associated with
different orbital azimuthal quantum numbers, i.e., m = 0 and
1. Hyperfine depolarization effects are neglected in the present
calculations.

Figure 6 illustrates the differential cross section dσ (ρ,zdet)
dρ

for Na atoms, where the detector is placed at zdet = −1 mm
and its plane is perpendicular to the direction of the electric
field. Since spin-orbit coupling causes the photoelectron to
possess both azimuthal orbital quantum numbers m = 0,1,
the contributions from both quantum numbers are explored
in the following. Figure 6 panels (a) and (c) illustrate the
partial differential cross section for transitions of mint = 0 →
mf = 0, where mint indicates the intermediate state azimuthal
quantum number and mf denotes the corresponding quantum
number in the final state. Similarly, panels (b) and (d) in
Fig. 6 are for the transitions mint = 1 → mf = 1. In addition,
in all panels of Fig. 6 the red solid lines correspond to the
LFT calculations, whereas the black dots indicate the ab
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(a) (b)

FIG. 5. (Color online) Irregular solutions in spherical coordinates at negative energies, i.e., ε = −135.8231 cm−1, illustrated for r = (r,θ =
5π

6 ,φ = 0) with field F = 640 V/cm. In all panels the azimuthal quantum number is set to be m = 1 and the black solid line indicates the

analytically known irregular Coulomb function, namely
g

(C)
ε�m

(r)

r
. Accordingly, the red dots correspond to the LFT calculations of irregular

function, namely
g

(LFT)
ε�m

(r)

r
. Panels (a)–(d) depict the cases of � = 1, 2, 3, and 6, respectively. For all the LFT calculations the total number of n1

states is n
(tot)
1 = 25 which corresponds to βn1 < 1.

initio numerical solution of the inhomogeneous Schrödinger
equation which employ a velocity mapping technique and
which do not make use of the LFT approximation.

More specifically, this method uses a discretization of
the Schrödinger equation on a grid of points in the radial
coordinate r and an orbital angular momentum grid in �.
The main framework of the method is described in detail in
Sec. 2.1 of Ref. [42] and below only three slight differences
are highlighted. In order to represent a cw laser, the source
term was changed to S0(�r,t) = [1 + erf(t/tw)]zψinit(�r) with
ψinit either the 3p,m = 0 or 3p,m = 1 state. The time
dependence, 1 + erf(t/tw), gives a smooth turn-on for the
laser with time width of tw; tw is chosen to be of the
order of a few picoseconds. The second difference is that
the Schrödinger equation is solved until the transients from
the laser turn on decayed to zero. The last difference was
in how the differential cross section is extracted. The radial
distribution in space slowly evolves with increasing distance
from the atoms and the calculations become challenging as
the region represented by the wave function increases. To
achieve convergence in a smaller spatial region, the velocity
distribution in the ρ direction is directly obtained. The wave

function in r,� is numerically summed over the orbital angular
momenta � yielding ψm(ρ,z), where m is the azimuthal angular
momentum. Finally, using standard numerical techniques a
Hankel transformation is performed on the wave function
ψm(ρ,z) which reads

ψm(kρ,z) =
∫

dρ ρ Jm(kρρ)ψm(ρ,z), (45)

which can be related to the differential cross section. The
cross section is proportional to kρ |ψm(kρ,z)|2 in the limit that
z → −∞. The kρ is related to the ρ in Fig. 6 through a
scaling factor. The convergence of our results is tested with
respect to number of angular momenta, number of radial grid
points, time step, |z|max, tw, and final time. The bandwidth that
the following calculations exhibit is equal to 0.17 cm−1. In
addition, in order to check the validity of our velocity mapping
calculation we directly compute numerically the differential
cross section through the electron flux defined in Eq. (31). An
agreement of the order of percent is observed solidifying our
investigations.

One sees immediately in panels (a)–(d) of Fig. 6 that the
LFT calculations are in good agreement with the full numerical
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FIG. 6. (Color online) Differential cross section (in arbitrary units) for Na atoms as a function of the cylindrical coordinate ρ. The
red solid lines indicate the LFT theory calculations, whereas the black dots denote the velocity mapping results from a direct solution of the
two-dimensional inhomogeneous Schrödinger equation. Panels (a) and (b) refer to energy ε = −62 cm−1 for the transitions mint = 0 → mf = 0
and mint = 1 → mf = 1, respectively. Similarly, panels (c) and (d) refer to energy ε = −41 cm−1 for the transitions mint = 0 → mf = 0 and
mint = 1 → mf = 1, respectively. In all cases the field strength is F = 3590 V/cm and the detector is placed at zdet = −1 mm.

ones, with only minor areas of disagreement. In particular,
the interference patterns in all calculations are essentially
identical. An important point is that the observed discrepancies
in the frame-transformed irregular functions for orbital angular
momenta � > 1 do not exhibit any qualitative inaccuracies in
the differential cross-section calculations. As was mentioned
before this is due to the fact that the higher � states are asso-
ciated with negligible quantum defects for the case of alkali-
metal atoms yielding minor contributions in the cross section.

VI. SUMMARY AND CONCLUSIONS

The present study reviews Harmin’s Stark-effect theory
and develops a standardized form of the corresponding LFT
theory. In addition, the LFT Stark-effect theory is formulated
in the traditional framework of scattering theory including
its connections to the photoionization observables involving
the dipole matrix elements, in particular the differential
cross section. In order to quantitatively test the LFT, the
present formulation does not use semiclassical WKB the-
ory as was utilized by Harmin. Indeed, as was shown in
Refs. [15,43] the WKB approximation yields discrepancies
in the photoabsorption spectra within the LFT framework.

However, the accuracy of the LFT treatment is improved by
evaluating numerically the wave functions in the down-field
degree of freedom [15]. Therefore, here the corresponding
one-dimensional differential equations are solved within an
eigenchannel R-matrix framework. This study has thoroughly
investigated the core idea of the LFT theory, which in a nutshell
defines a mapping between the irregular solutions of two
regions, namely spherical solutions in the field-free region
close to the origin and the parabolic coordinate solutions
relevant from the core region all the way out to asymptotic
distances. For positive energies, our calculations demonstrate
that indeed the mapping formula Eq. (16) predicts the correct
Coulomb irregular solution in spherical coordinates (see
Figs. 3 and 4). On the other hand, at negative energies it
is demonstrated (see Fig. 5) that the summation over solely
down field states βn1 < 1 imposes minor limitations in the
accuracy of LFT calculation mainly for � > 3. We conjecture
that this particular feature might provide additional insight
into the origin of the differences between the numerical LFT
and R-matrix treatment which were demonstrated in Ref. [15].
However, the investigation of this point goes beyond the scope
of this study. On the other hand, our study investigates the
concept of wave-function microscopy through calculations of
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photoionization differential cross sections for a Na atom in
the presence of a uniform electric field. The photoionization
process studied is a resonant two-photon process where the
laser field is assumed to be π polarized. The excellent
agreement between the LFT and the full velocity mapping
calculation has been conclusively demonstrated.

These findings suggest that the LFT theory passes the strin-
gent tests of wave-function microscopy, and can be relied upon
both to provide powerful physical insight and quantitatively
accurate observables, even for a complicated observable such
as the differential photoionization cross section in the atomic
Stark effect.
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APPENDIX: COULOMB FUNCTIONS FOR NONPOSITIVE
HALF-INTEGER ANGULAR MOMENTUM AT NEGATIVE

ENERGIES

In this Appendix we will present the regular and irregu-
lar Coulomb functions with nonpositive half-integer, either
positive or negative, quantum numbers. The necessity for
this particular type of solutions arises from the fact that
they constitute the boundary conditions for the R-matrix
eigenchannel calculations in the down field η degree of
freedom at sufficient small distances where essentially the
field term can be neglected. This corresponds in the field free
case where the orbital angular momentum does not possess
non-negative integer values.

The Schrödinger equation in the field free case for the η

parabolic coordinate has the following form:

d2

dη2
f ε

βm(η) +
(

ε

2
+ 1 − m2

4η2
+ 1 − β

η

)
f ε

βm(η) = 0, (A1)

where the energy ε is considered to be negative. Assum-
ing that ε̄ = 2ε/(1 − β)2, ζ = 1−β

2 η, and λ = (m − 1)/2,

Eq. (A1) can be transformed into the following differential
equation:

d2

dζ 2
f ε̄

λ (ζ ) +
(

ε̄ − λ(λ + 1)

ζ 2
+ 2

ζ

)
f ε̄

λ (ζ ) = 0, (A2)

which for integer λ has two linearly independent energy
normalized solutions whose relative phase is π/2 at small
distances and negative energies

f ε̄
λ (ζ ) = A(ν̄,λ)1/2Sε̄

λ(ζ ), (A3)

gε̄
λ(ζ ) = A(ν̄,λ)1/2Sε̄

λ(ζ ) cot[(2λ + 1)π ]

− A(ν̄,λ)−1/2Sε̄
−λ−1(ζ )

sin[(2λ + 1)π ]
, (A4)

where ν̄ = 1/
√−ε̄, A(ν̄,λ) = �(λ+ν̄+1)

ν̄2λ+1�(ν̄−λ) , and the function
Sε̄

λ(ζ ) is obtained by the following relation:

Sε̄
λ(ζ ) = 2λ+1/2ζ λ+1e−ζ/ν̄

1F̄1(λ − ν̄ + 1; 2 + 2λ; 2ζ/ν̄), (A5)

where the function 1F̄1 denotes the regularized hypergeometric
function 1F1. One basic property of this function is that it
remains finite even when its second argument is a nonpositive
integer. We recall that the hypergeometric 1F1(a; b; x) diverges
when b = −1,−2,−3, . . ..

Moreover, we observe that when λ acquires half-integer
values, i.e., λ = λc, the nominator and denominator of gε̄

λ in
Eq. (A4) both vanish. Therefore, employing the l’Hospital’s
theorem on gε̄

λ in Eq. (A4) we obtain the following expression:

ḡε̄
λc

(ζ ) = 1

2π

∂f ε̄
λ (ζ )

∂λ

∣∣∣∣
λ=λc

− 1

2π cos[(2λc + 1)π ]

∂f ε̄
−λ−1(ζ )

∂λ

∣∣∣∣
λ=λc

. (A6)

Hence Eqs. (A3) and (A6) correspond to the regular and
irregular Coulomb functions for nonpositive half-integers at
negative energies, respectively. This particular set of solutions
possess π/2-relative phase at short distances and they used
as boundary conditions in the eigenchannel R-matrix calcu-
lations. A similar construction is possible with the help of
Ref. [44] for positive energies but it is straightforward and not
presented here.
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