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Photoexcitation of Na Bose-Einstein condensates
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The photoexcitation of Na Bose-Einstein condensates is studied by direct solution of the Gross-Pitaevskii
equation in both cylindrical and Cartesian coordinates. As the frequency of a Bragg scattering potential is varied
the first dipole mode of the ground state is brought into resonance. The dipole mode frequency is verified by
diagonalization of the Bogoliubov–de Gennes matrix in cylindrical coordinates. Dipole mode frequencies are
found for Na condensates bound in both isotropic and nonisotropic magnetic traps.
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I. Introduction. Photoexcitation has played a vital role in
the understanding of atomic and molecular structure. Over
the years, the photoexcitation of excited states has progressed
from an understanding of low-lying bound states to resonance
bound states embedded in the continuum. For example, the
R-matrix method [1] has been used quite succcessfully to map
out complicated resonance structures in the photoionization
of many atoms and small molecules. Recently, R-matrix
calculations have been performed for the photoionization of
N [2] and of both N2 and NO [3].

Photoexcitation is beginning to play a role in the un-
derstanding of the complex excited state structure of Bose-
Einstein condensates. Solution of the Gross-Pitaevskii [4,5]
equation with the inclusion of a Bragg scattering potential [6,7]
has provided a means to search for vortices and to better un-
derstand the rich excited mode spectrum. Recent experiments
[8–10] have begun to map out photoexcitation resonances of
condensates using Bragg spectroscopy. Bragg spectroscopy
has also been used to photoionize condensates to study scat-
tering by distinct colliding condensate wave packets [11,12].

Recently [13], we calculated the collective modes of Bose-
Einstein condensates by diagonalization of the Bogoliubov–de
Gennes matrix [14–16] in cylindrical coordinates. We also
checked our matrix solution by solving the Gross-Pitaevskii
equation with the inclusion of a radial time-dependent potential
in both cylindrical and Cartesian coordinates to obtain the
lowest breathing modes. In this article, we solve the Gross-
Pitaevskii equation with the inclusion of a Bragg scattering
potential to search for dipole modes of Na Bose-Einstein con-
densates found in isotropic and nonisotropic magnetic traps.
The dipole mode frequencies are verified by diagonalization
of the Bogoliubov–de Gennes matrix.

This article is organized as follows. We present the time-
dependent Gross-Pitaevskii equation and the Bogoliubov–de
Gennes matrix in Sec. II. We present results for the photoex-
citation of Na condensates in both isotropic and nonisotropic
magnetic traps in Sec. III. A brief summary is found in Sec. IV.

II. Theory. The ground and excited states of a Bose-Einstein
condensate may be found by relaxation of the Gross-Pitaevskii
(GP) equation in imaginary time (τ = it):

− h̄
∂�(�r,τ )

∂τ
= [H (�r) + V (�r,τ )]�(�r,τ ), (1)

where

H (�r) = − h̄2

2m
∇2 + Vtrap(�r), (2)

m is the mass of the atom, and �(�r,τ ) is normalized to 1. A
general harmonic trap potential is given by

Vtrap(�r) = 1
2m( �ω · �r)2, (3)

where �ω is the trap frequency (f = ω/2π in Hz). The
nonlinear potential is given by

V (�r,τ ) = 4πh̄2aN

m
|�(�r,τ )|2, (4)

where a is the scattering length and N is the number of atoms.
The photoexcitation of Bose-Einstein condensates may be

studied by propagation of the GP equation in real time:

ih̄
∂�(�r,t)

∂t
= [H (�r) + V (�r,t) + VB(�r,t)]�(�r,t). (5)

The Bragg scattering potential is given by

VB(�r,t) = AB(t) cos (�qL · �r − ωLt), (6)

where AB(t) is a time-varying amplitude, �qL is a two-laser
wave vector difference, and ωL is a two-laser frequency
difference.

The set of collective modes for a ground-state solution,
�0(�r), with an energy E0, as determined by relaxation of
Eq. (1), may be found by diagonalization of the Bogoliubov–de
Gennes (BdG) matrix given by

MBdG =
(

H (�r) + 2V0(�r) − E0 V0(�r)

−V0(�r) −H (�r) − 2V0(�r) + E0

)
,

(7)

where

V0(�r) = 4πh̄2aN

m
|�0(�r)|2. (8)

The wave function for a Bose-Einstein condensate may be
expressed in scaled cylindrical coordinates:

�(�r,t) = P (ρ,z,t)√
ρ

eimlφ

√
2π

, (9)

where the spatial scaling factor is l = √
h̄/mωρ and the energy

scaling factor is h̄ωρ . For the ground state of the condensate
we choose ml = 0. Using lattice techniques [13] to obtain a
discrete representation of the wave function and associated
operators on a two-dimensional uniform grid, the GP equation
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in real time becomes

i
∂P (ρi,zj ,t)

∂t

= −1

2

(
c+
i P (ρi+1,zj ,t) + c−

i P (ρi−1,zj ,t) − 2P (ρi,zj ,t)

	ρ2

)
− 1

2

(
P (ρi,zj+1,t) + P (ρi,zj−1,t) − 2P (ρi,zj ,t)

	z2

)

+ 1

2

(
ρ2

i + λ2z2
j

)
P (ρi,zj ,t) + 4πQ

|P (ρi,zj ,t)|2
2πρi

P (ρi,zj ,t) + ĀB(t) cos (q̄Lzj − ω̄Lt)P (ρi,zj ,t), (10)

where c+
i = ρ

i+ 1
2

ρiρi+1
, c−

i = ρ
i− 1

2
ρiρi−1

, λ = ωz

ωρ
, Q = aN

l
, ĀB = AB

h̄ωρ
, q̄L = qL

l
, and ω̄L = ωL

ωρ
. Similar lattice expressions may also be

obtained for the GP equation in imaginary time and the BdG matrix.
The wave function for a Bose-Einstein condensate may also be expressed in scaled Cartesian coordinates:

�(�r,t) = P (x,y,z,t), (11)

where the spatial scaling factor is l = √
h̄/mωx and the energy scaling factor is h̄ωx . Using lattice techniques, the GP equation

in real time becomes

i
∂P (xi,yj ,zk,t)

∂t

= −1

2

(
P (xi+1,yj ,zk,t) + P (xi−1,yj ,zk,t) − 2P (xi,yj ,zk,t)

	x2

)
− 1

2

(
P (xi,yj+1,zk,t) + P (xi,yj−1,zk,t) − 2P (xi,yj ,zk,t)

	y2

)

− 1

2

(
P (xi,yj ,zk+1,t) + P (xi,yj ,zk−1,t) − 2P (xi,yj ,zk,t)

	z2

)
+ 1

2

(
x2

i + λ2
1y

2
j + λ2

2z
2
k

)
P (xi,yj ,zk,t)

+ 4πQ|P (xi,yj ,zk,t)|2P (xi,yj ,zk,t) + ĀB(t) cos (q̄Lzk − ω̄Lt)P (xi,yj ,zk,t), (12)

where λ1 = ωy

ωx
and λ2 = ωz

ωx
. A similar lattice expression may

also be obtained for the GP equation in imaginary time.
III. Results. We searched for the lowest energy dipole mode

of a Na condensate with an atomic scattering length of a =
2.9 nm and the number of atoms N = 4400. We chose a fairly
small number of atoms to keep the kinetic energy term of
Eq. (2) and the nonlinear potential of Eq. (4) to be of roughly
equal importance. In cylindrical coordinates we chose fρ =
25 Hz for the magnetic trap, resulting in a length scaling factor
of l = 4.19 × 10−4 cm and an energy scaling factor of h̄ωρ =
1.03 × 10−13 eV (1.20 nK). We employed a 50 × 100 point
numerical lattice with ρ = 0.0 → +10.0 with 	ρ = 0.20 and
z = −10.0 → +10.0 with 	z = 0.20.

Upon relaxation of the GP equation in imaginary time
for an isotropic magnetic trap with fρ = 25 Hz and fz =
25 Hz, we obtained a ground state with energy E0 = 2.74.
We then propagated the GP equation in real time, as given
by Eq. (10). The time-dependent amplitude for the Bragg
scattering potential is given by

ĀB(t) = Ā sin2 (πt/2T ) for 0 < t < T, (13)

ĀB(t) = Ā for T < t < 9T , (14)

ĀB(t) = Ā sin2 [π (10T − t)/2T ] for 9T < t < 10T ,

(15)

where Ā = 0.3 and T = 2π/ω̄L. For q̄L = 1.0, we varied the
Bragg scattering frequency ω̄L from 0.9 to 1.1 while keeping
track of the energy given by

E(t) = 〈�(�r,t)|H (�r) + V (�r,t) + VB(�r,t)|�(�r,t)〉. (16)

We present the results for E(5T ) and E(10T ) as a function of
ω̄L in Fig. 1. Clearly, there is a resonance around ω̄L = 1.0,
and the energy becomes more sharply peaked for longer pulse
durations.

In Cartesian coordinates, we chose an isotropic magnetic
trap with fx = fy = fz = 25 Hz. We employed a 100 × 100 ×
100 point numerical lattice with x = −10.0 → +10.0 with
	x = 0.20, y = −10.0 → +10.0 with 	y = 0.20, and z =
−10.0 → +10.0 with 	z = 0.20. Upon relaxation of the GP
equation in imaginary time, we again obtained a ground state
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FIG. 1. (Color online) Photoexcitation of a Na condensate in
an isotropic magnetic trap with fρ = 25 Hz and fz = 25 Hz.
Circles: Energy at t = 5T . Squares: Energy at t = 10T (energies
and frequencies are in scaled units of h̄ωρ = 1.03 × 10−13 eV).
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FIG. 2. (Color online) Probability densities for various modes of a Na condensate in an isotropic magnetic trap with fρ = 25 Hz and
fz = 25 Hz. (a) Ground mode at ε = 0.00, (b) dipole mode at ε = 1.00, (c) tripole mode at ε = 1.64, and (d) quadrupole mode at ε = 2.35
(cylindrical coordinates are in scaled units of l = 4.19 × 10−4 cm).

with energy E0 = 2.74. We then propagated the GP equation in
real time, as given by Eq. (12). With the same time-dependent
Bragg scattering potential as used before with ω̄L = 1.0, we
obtained E(10T ) = 7.19, in agreement with the cylindrical
coordinate result in Fig. 1.

Upon diagonalization of the BdG matrix of Eq. (7) in
cylindrical coordinates for fρ = 25 Hz and fz = 25 Hz,
we obtain a ground mode of eigenenergy ε = 0.0 and a
number of various types of modes at higher eigenenergies. The
probability densities for selected modes of a Na condensate
are presented in Fig. 2. The dipole mode in Fig. 2(b) at an
eigenenergy of ε = 1.0 is the mode being excited by the Bragg
scattering calculations near ω̄L = 1.0.

Upon relaxation of the GP equation in imaginary time for a
nonisotropic magnetic trap with fρ = 25 Hz and fz = 10 Hz,
we obtain a ground state with energy E0 = 2.00. We then
propagated the GP equation in real time with a Bragg scattering
potential of Eqs. (13)–(15), Ā = 0.10, and q̄L = 0.40. We
varied the Bragg scattering frequency ω̄L from 0.35 to 0.45 and
kept track of the energy of Eq. (16). We present the results for
E(5T ) and E(10T ) as a function of ω̄L in Fig. 3. Clearly, there
is a resonance around ω̄L = 0.40, and the energy becomes
more sharply peaked for longer pulse durations.

In Cartesian coordinates, we chose a nonisotropic magnetic
trap with fx = fy = 25 Hz and fz = 10 Hz. Relaxation of the
GP equation in imaginary time yielded an energy of E0 =
2.00, while propagation of the GP equation in real time with
ω̄L = 0.40 yielded an energy of E(10T ) = 3.78, both energies
in agreement with the cylindrical coordinate results.

Upon diagonalization of the BdG matrix of Eq. (7) in
cylindrical coordinates for fρ = 25 Hz and fz = 10 Hz,
we obtained a ground mode and various types of excited
modes. The probability densities for selected modes of a Na

condensate are presented in Fig. 4. The dipole mode in Fig. 4(b)
at an eigenenergy of ε = 0.40 is the mode being excited by
the Bragg scattering calculations near ω̄L = 0.40.

We then propagated the GP equation in real time with a
Bragg scattering potential of Eqs. (13)–(15) with Ā = 0.10 to
hunt for the tripole mode at ε = 0.69 and the quadrupole mode
at ε = 1.01, as seen in Figs. 4(c) and 4(d). For q̄L = 1.0, we
carried out nine calculations varying ωL from 0.66 to 0.74 and
an additional nine calculations varying ωL from 0.92 to 1.08.
The peaking of the energy seen in Fig. 3 around the dipole
mode at ε = 0.40 was not found in the energies near the tripole
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FIG. 3. (Color online) Photoexcitation of a Na condensate in
a nonisotropic magnetic trap with fρ = 25 Hz and fz = 10 Hz.
Circles: Energy at t = 5T . Squares: Energy at t = 10T (energies
and frequencies are in scaled units of h̄ωρ = 1.03 × 10−13 eV).
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FIG. 4. (Color online) Probability densities for various modes of a Na condensate in a nonisotropic magnetic trap with fρ = 25 Hz and
fz = 10 Hz. (a) Ground mode at ε = 0.00, (b) dipole mode at ε = 0.40, (c) tripole mode at ε = 0.69, and (d) quadrupole mode at ε = 1.01
(cylindrical coordinates are in scaled units of l = 4.19 × 10−4 cm).

and quadrupole modes. We note that symmetry considerations
preclude the dipole excitation of the tripole mode and overlap
factors must significantly reduce the dipole excitation of the
quadrupole mode.

IV. Summary. In summary, we have investigated the
photoexcitation of a Na Bose-Einstein condensate by direct
solution of the GP equation in both cylindrical and Cartesian
coordinates with a time-dependent Bragg scattering potential.
Dipole resonances were mapped out for Na condensates
in both isotropic and nonisotropic magnetic traps by mon-
itoring the time-dependent energy as the Bragg scattering
frequency was varied. The dipole mode frequencies were

verified by diagonalization of the BdG matrix in cylindrical
coordinates.

In the future, we plan to study the photoexcitation of other
alkali-metal-atom condensates in various types of magnetic
traps. We also plan to extend our photoexcitation studies to
multispecies condensates.
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