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Dichotomy between tunneling and multiphoton ionization in atomic photoionization:
Keldysh parameter γ versus scaled frequency �
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It is commonly accepted in the strong-laser physics community that the dynamical regime of atomic ionization
is characterized by the Keldysh parameter γ . Two distinct cases, where γ < 1 and γ > 1, are associated with
ionization mechanisms that are predominantly in the tunneling and in the multiphoton regimes, respectively. We
perform fully three-dimensional quantum simulations for the ionization of the hydrogen atom by solving the
time-dependent Schrödinger equation for a wide range of laser parameters encoded by the Keldysh parameter. We
find that the meaning of the Keldysh parameter γ changes when the laser frequency ω is changed, and demonstrate
that γ is useful in determining the dynamical ionization regime only when coupled with the scaled laser frequency
� when a large range of laser frequencies and peak intensities are considered. The scaled frequency � relates
the laser frequency ω to the classical Kepler frequency ωK of the bound electron. Together with the Keldysh
parameter, the pair (γ,�) refers to a more realistic picture of the dynamical ionization regime. We refer to final
momentum distributions of the ionized electrons at several interesting points on the (γ,�) landscape in order to
infer whether the tunneling or the multiphoton mechanism is dominant in these regions.
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I. INTRODUCTION

It has been ubiquitous in strong-laser physics that the
dynamical regime of atomic ionization, whether it be tunneling
or ionization through absorption of photons, is associated with
the Keldysh parameter γ [1,2]. In strong lasers, the Coulomb
field experienced by the atomic electron is depressed by the
strong laser field. Depending on the peak field strength of
the laser field, this depression can be substantial so as to
result in a potential barrier oscillating at the laser frequency.
Quantum mechanically, there is nonvanishing probability that
the electron can tunnel through this barrier and escape into
the continuum. The likelihood of ionization in this manner is
quantified by the conditions in which the Keldysh parameter
is less than unity, γ < 1. This is commonly referred to as the
quasistatic limit, in which the depressed Coulomb barrier is
essentially static as seen by the electron. When γ > 1, the atom
ionizes by absorption of a number of photons and the electron
escapes through either direct or indirect paths of ionization.
However, γ > 1 does not necessarily mean that there is no
tunneling contribution to the ionization; it implies that the
tunnel ionization is least likely, and the electron is more likely
to escape by absorbing photons.

Keldysh theory is strictly a theory of tunneling [1,2].
In Keldysh-like strong-field theories, the classical action is
always complex regardless of γ , therefore its description is
always contained within the tunneling picture. In other words,
ionization through a classically allowed path does not occur
in Keldysh-like theories. Therefore, the statement that γ > 1
corresponds to multiphoton ionization is not a statement made
directly by the Keldysh theory, but rather is a deduction which
incorporates conservation of energy with the prediction that
γ < 1 refers to ionization dynamics governed predominantly
by tunneling. It predicts the ionization rates when tunneling
is most likely, and when there is ionization with γ > 1, we
deduce that it must have followed an ionization path that is not
tunneling, i.e., one characterized by absorption of photons.

This is the step that incorporates the conservation of energy
into the argument which ultimately decides that the ionization
happens through photon absorption.

Several shortcomings of the Keldysh-like theories are evi-
dent from the approximations made to the S-matrix elements to
allow for closed analytical expressions. For example, theories
such as the strong-field approximation (SFA) involve no
dynamics within the potential barrier, are not gauge invariant,
and the result usually depends on the choice of the origin
[3–6]. Less obvious shortcomings of the applicability of the
Keldysh parameter as an index for assessing ionization regimes
have also been demonstrated and it has been shown to be
unsuitable to describe laser-induced ionization when a wide
range of frequencies is considered. Even when γ < 1, the
laser frequency can be so high as to allow for ultraintense
fields, while keeping the Keldysh parameter small. In such
instances, the γ → 0 limit converges to the fully relativistic
conditions, where the ponderomotive energy Up = F 2/4ω2

becomes comparable to the rest energy of the electron [7] (we
use atomic units throughout this paper). This invalidates the
γ → 0 limit as the static field limit in which ionization simply
occurs through field ionization (tunneling or over the barrier).
In another study [8], it was shown that high-energy plateau
structures regularly attributed to tunneling in above-threshold
ionization (ATI) and high-order harmonic generation (HHG)
spectra can be seen in the multiphoton regime, provided that
the photon energy is much smaller than the ponderomotive
potential. This suggests that rescattering can occur even though
the electron initially ends up in the continuum with substantial
kinetic energy, as opposed to having no initial kinetic energy
if it was to escape through tunneling.

The reasoning behind the Keldysh parameter is the fol-
lowing: In the standard Keldysh theory, the tunneling length is
L ∼ Ip/F , where Ip and F are the ionization potential and the
peak electric-field strength, respectively. The velocity in the
classically forbidden region, where the combined Coulomb
and electric-field potential is larger than the total energy of
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the electron, can be obtained using the WKB approximation
to be roughly v ∼ √

2Ip/2. Then the time it takes for the
electron to tunnel through the depressed Coulomb potential
is essentially τ ∼ L/v = √

2Ip/F . The ratio of this tunneling
time to the laser period is a measure of how fast the barrier
oscillates compared to the time it takes for the electron to tunnel
ionize, i.e., ωτ , where ω is the laser frequency. This ratio is
γ = ω

√
2Ip/F and is referred to as the Keldysh parameter.

It tells how static the oscillating potential is as seen by the
bound electron. The barrier is effectively static with regard
to the time it takes the electron to tunnel ionize when γ < 1
(or T > τ ), and oscillating if γ > 1 (or T < τ ). The problem
with exploiting the Keldysh parameter for a wide range of
frequencies is immediately evident from this definition. Note
that γ is linearly proportional to ω, whereas it is inversely
proportional to F . Therefore, for a fixed laser wavelength, one
can vary the laser intensity in ways such that any value for the
Keldysh parameter can be attained. Conversely, fixing the field
intensity, one can vary the wavelength to get any γ desired.
This point of view does not necessarily take into account
conservation of energy and the possibly relevant time scales
other than the laser period, such as the classical orbital period
of the electron. As a result, incorrect deductions can be made
for ionization dynamics for certain sets of laser parameters.
For example, assuming a fixed γ � 1, we can keep choosing
smaller and smaller intensities for a laser pulse, which may
push the photon energy well into the x-ray region. However,
it would be unreasonable to expect that ionization by such a
laser pulse would happen through tunneling.

Experiments such as the ones in Refs. [9,10] have suggested
that the ratio of the laser frequency ω to the classical orbital
frequency ωK of the bound electron, i.e., ω/ωK , could be just
as relevant in deducing the dominant physical mechanisms as
the laser frequency ω itself. This ratio is termed the scaled
frequency and is given by � = ωn3 for atoms. The reasoning
behind this is evident if one considers that absorption of a
photon by an atomic electron is most likely when the electron
is near the nucleus. This happens once in every classical period
2πn3. When � < 1, the effect of the field is similar to that
of a static field and the field strength required for ionization
scales like F ∼ 1/9n4. When � → 1, multiphoton transitions
occur to higher n states, which are more easily ionized. In
this regime, the ionization rate scales ∼F 2N , where N is the
number of photons absorbed during ionization. � > n/2 or
ω > 1/2n2 is the single-photon ionization limit after which
photoionization occurs through absorption of a single photon
of higher frequency, and the field strength needed for ionization
drops below 1/9n4.

For our purposes, it is more natural to express the Keldysh
parameter in terms of the scaled parameters, � and F = Fn4,
rather than ω and F . Scaling the field strength by 1/n4 and
noting that ω = �/n3, we can rewrite the Keldysh parameter
in terms of the scaled frequency and the electric-field strength:

γ = ω
√

2Ip

F
→ (�/n3)

√
1/n2

F/n4
= �

F , (1)

where the scaled frequency is � = ωn3 ∼ ω/ωK . It is im-
portant to notice that after scaling the field strength and the
frequency, the Keldysh parameter has no n dependence.

We perform two sets of calculations for the ionization of a
hydrogen atom out of 1s, 2s, 8s, and 16s states in laser fields:
one for the ionization rate and one for the ionization probability
for a large set of (γ,�) pairs. We map out a landscape in
(γ,�) space, which shows regions bearing characteristics that
can be attributed to either tunneling or multiphoton features.
Then, calculating final momentum distributions of the ionized
electrons at a select few points on the (γ,�) map for large
and small γ , we investigate whether tunneling or multiphoton
ionization is dominant in these regions. Unless explicitly stated
otherwise, we use atomic units throughout this paper.

II. NUMERICAL SIMULATIONS

In our simulations, we drive the atom using a continuous-
wave (cw) laser field in the rate calculations and a laser
pulse in the probability calculations. All of our simulations
are based on ab initio solutions of the three-dimensional
time-dependent Schrödinger equation in the length gauge.
We represent the total wave function on an (l,r) grid with
a square-root mesh in the r direction. We use the lowest-order
split operator technique for the time propagation of the
Schrödinger equation, where each split piece is propagated
using an O(δt3) implicit scheme. This is an exactly unitary
propagator and enables us to use larger time steps during the
time propagation compared to those needed for an explicit
scheme. We use a mask function, which runs from 2/3 of the
distance from the origin to the box edge, to remove the ionized
part of the wave function in order to evade spurious reflections
from the box edge. A detailed account of the O(δt3) implicit
method and the split operator technique employed in this work
can be seen in Ref. [11]. Below we only discuss the differences
in our simulations for the ionization rates and probabilities.
The number of the (γ,�) pairs we include in our simulations
is 12 000, which is achieved by massive parallelization over
all (γ,�) pairs.

We use a time-dependent method inspired by the time-
dependent perturbation theory for our rate calculations. We
split the total Hamiltonian of the system into two pieces,
such that H (r,l,t) = HA(r,l) + HL(r,t) − E0, where HA is the
atomic Hamiltonian and HL is the Hamiltonian describing the
interaction of the atom with the laser field in the length gauge:

HA(r,l) = −1

2

d2

dr2
− 1

r
+ l(l + 1)

2r2
, (2)

HL(r,t) = F (t)z cos(ωt). (3)

We subtract the energy of the initial state E0 from the Hamilto-
nian, and express the total wave function as a superposition of
the initial eigenstate of HA and the time-dependent correction,
ψ(r,l,t) = ψ0(r,l) + ψ1(r,l,t), to write the time-dependent
Schrödinger equation as[

i
∂

∂t
− H (r,l,t)

]
ψ1(r,l,t) = HLψ0, (4)

with HL(r,t)ψ0(r,l) acting as a source term. Dividing up the
wave function into ψ0 and ψ1(t) in this manner is particularly
useful when the amplitude in ψ1(t) is much smaller than
the amplitude in ψ0. In this case, solving for ψ1(t) by itself
substantially reduces the round-off errors when it comes to
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extracting ψ1(t) from the total wave function. Given that
ψ(t) = ψ0 + ψ1(t), and that ψ0 is an eigenstate of HA, Eq. (4)
is exact and allows for atomic processes of all orders, such
as absorption of multiple photons, as well as single-photon
processes and tunneling. The wave function ψ1(t) is zero
everywhere before the laser pulse is turned on and it encodes
the time-dependent corrections to the initial wave function ψ0.
As the laser field is turned on, amplitude pours out of the
initial state ψ0 into ψ1 at a rate defined by the instantaneous
field strength. The time-dependent envelope for turning on the
cw laser field is

F (t) =
{
F0 exp[−(t/
t)4], t < 0

F0, t � 0,
(5)

where we take 
t to be ten laser periods. We found that
faster turn-on times result in ringing in the ionization flux,
which starts to increase the propagation time required for the
ionization rate to settle down at a steady state. On the other
hand, slower turn-on rates also result in higher computational
overhead since they prolong the total propagation time of
Eq. (4).

After the peak of the laser envelope is reached (t � 0), we
wait for the time-dependent ionization flux JR(t) to settle down
at a steady state, which we then interpret as the ionization rate.
The time-dependent flux JR(t) through a spherical surface far
away from the origin is

JR(t) = −Re

[
i

∑
l

ψ∗
1 (R,l,t)

∂ψ1(r,l,t)

∂r

∣∣∣∣
r=R

]
. (6)

Here, R is the radius of the spherical surface through which we
evaluate the flux. It is also the distance from the origin beyond
which the mask function becomes effective.

In a second set of calculations, we explore the ionization
probabilities in the (γ,�) parameter space. In contrast with
the ionization rate simulations described above, this would
yield results which can be interpreted as actual ionization cross
sections from a finite width laser pulse. This way we can more
directly associate structures seen in the (γ,�) landscape with
different ionization mechanisms and furthermore investigate
momentum distribution of the escaping part of the wave
function. To calculate the ionization probabilities, we solve
the time-dependent Schrödinger equation:[

i
∂

∂t
− H (r,l,t)

]
ψ(r,l,t) = 0, (7)

with the initial wave function being a bound state of hydrogen
with l = 0, i.e., 1s, 4s, and 8s. Note that the operator acting
onto ψ(r,l,t) on the left-hand side is the same operator as in
Eq. (4). However, in this case, a laser pulse is used rather than a
cw laser field, and the pulse envelope is Gaussian with a width
of 160 classical periods at FWHM. We evaluate the ionization
probability as the norm of the wave function, which is absorbed
by the mask starting from 2/3 of the distance from the box
origin, with the initial wave function normalized to unity.
In contrast to the rate calculations, the amount of ionization
probability depends on the width of the laser pulse used.

In all of our calculations, we regularly perform convergence
checks on several relevant numerical parameters, such as the
number of grid points and angular momenta as well as the

size of the time steps taken during the propagation of Eqs. (4)
and (7). Since there are two inherent time scales involved in
the problem, i.e., the Rydberg period τR of the electron and
the laser period 2π/ω, we pay special attention to our choice
of the time step to make sure that we have enough points in
time within the smallest time scale for a given (γ,�) pair.

In choosing the number of grid points N for a box of size
R using the square-root mesh in the r direction, we make sure
that max(kδr) < 1 everywhere inside the box. Specifically,
we monitor kδr where the mask function starts at the box
edge [max(kδrR)]. Given that we use a square-root mesh with
rj = j 2R/N2 (0 � j < N), and a mask function starting from
1/3 of the way from the box edge, we deduce that

max(kδrR) = 2R

N
[2�max/n3]1/2, (8)

where k = (2E)1/2 and �max is the maximum � we consider in
the (γ,�) space. The grid spacing δrR = 2R/N is the largest
grid spacing at the end of the radial box. We find that our
results for the rate calculations are reasonably converged when
max(kδrR) ∼ 0.76 for n = 1, ∼0.36 for n = 4, and ∼0.32
for n = 8. In the probability calculations, we had max(kδrR)
values smaller than these by a factor of 4 because we only go up
to � = 4 in the probability calculations, whereas the maximum
� is 64 in the rate calculations. Note that the effective kδr in
these calculations is smaller than the one given by Eq. (8)
because δrR is the grid spacing at the box edge, where the
ionized part of the wave function is already absorbed and
removed from the box.

III. RESULTS AND DISCUSSION

A. Ionization rate

Figure 1 shows the steady flux of ionizing electrons, which
we interpret as the ionization rate �, from initial states of 1s,
4s, 8s, and 16s for a hydrogen atom. The scaled frequency �

ranges from 0.05 to 64 and is plotted in log2 scale to display
such a wide range of frequencies in a single plot. The vertical
axes are the Keldysh parameter γ , which ranges from 0.1 to
2 a.u. and is plotted in linear scale. The ionization rates � are
plotted in log10 scale and the contours decrease from yellow
(bright) to blue (darker). For a fixed �, the ionization rate
ultimately increases as γ decreases because γ is inversely
proportional to the field strength at fixed �. This is expected
since no matter what the frequency is, there is a high enough
field strength which will result in ionization. For the lowest �

value in Fig. 1, F varies from 1.3 × 107 to 6.4 × 107 V/cm
as γ varies from 2 to 0.1, which corresponds to intensities of
∼9 × 1015 and ∼4 × 1014 W/cm2. On the other hand, for the
highest �, the electric-field strength varies between 32 and
640 a.u. as γ varies from top to bottom, which corresponds
to ultrahigh intensities of ∼1018 and ∼2 × 1019 W/cm2,

respectively. These four intensities correspond to the four
limiting cases situated at the four corners of each (�,γ ) map.

Photon energies in eV corresponding to the � values are
also indicated on the upper horizontal axis for reference. Note
that even the minimum of these intensities is fairly large for a
hydrogen atom. This stems from our choice for the ranges of
� and γ in Fig. 1, which is motivated by the desire to straddle
γ = 1 in an � range that runs from � � 1 to � � 1. In reality,
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FIG. 1. (Color online) Ionization rate � vs the Keldysh parameter
γ and the scaled frequency � for n = 1, 4, 8, and 16 with the atomic
wave packet launched as an s wave. Along the solid, dashed, and
dotted black lines, F = 0.05, 0.1, and 0.5 a.u. from left to right,
where F is the peak electric-field strength. The � axes are in log2

scale, whereas the γ axes are in linear scale. The ionization rates �

are plotted in log10 scale with the brightest yellow being 2 a.u. and
the faintest blue being −4.5 a.u. The dashed green lines mark the
classical orbital frequency 1/(2πn3) for each initial state.

for most of the (�,γ ) pairs in Fig. 1, complete ionization
occurs for a laser pulse that spans even a few classical periods
of the electron. The important thing to remember here is that
Fig. 1 is a map for the ionization rate.

The fact that ionization would saturate immediately for
most of the maps in Fig. 1 is evident from the green
contours. The regions enclosed by these contours are where
the ionization rates are larger than the classical frequency
1/(2πn3), i.e., where the ionization happens in less than a
classical orbital period of the electron. In this case, rate as
a concept ceases to be meaningful, and any structure within
these interior regions of the green curves tells little about the
dynamics leading to ionization since the ionization probability
will very quickly saturate.

One striking feature in these maps is the ridge structure,
which can be seen for 1s most clearly. Although they do not
appear to be vertically straight due to the log2 scaling of the
� axis, each of these ridges are at a fixed � value. Also
note that there is more than one ridge in these figures. These
correspond to the � that are the 1-, 2-, . . . , N -photon ionization
thresholds and can be written as �N = ωN/ωK = n/(2N ).
Here ωN is the laser frequency needed for N -photon ionization.
The most prominent ridges are those for N = 1 (single-photon
ionization), and the smaller subsequent ridges to its left are
the ones that correspond to multiphoton ionization with the
absorption of two or more photons. In this multiphoton region,
� < n/2, and the ridges gradually disappear as � → 0, when

the oscillation of the laser field becomes much slower than
the classical orbital motion of the electron. In this case, the
depressed Coulomb potential is essentially static with regard
to the tunneling time of the electron, and ionization mainly
occurs through tunneling for all γ . For � < n/2 with γ > 0.5,
the ionization rate drops drastically, even well before γ = 1 is
reached.

To the right side of the single-photon ionization ridge, the
ionization rate drops with increasing photon energy for a fixed
γ . In this region of high scaled frequency, ionization is sup-
pressed and higher and higher photon intensities are required
to maintain a given rate of ionization if � is increased. This
suppression of ionization has been observed in experiments
for microwave ionization out of high-Rydberg states [12,13].
It can be understood considering that the higher the �, the
smaller fraction of its orbit the electron will spend near the nu-
cleus, where it is most likely to absorb a photon, thus rendering
the electron less able to absorb photons. An alternative way to
think about this is that absorption of a photon with a larger �

would result in a larger energy change. The bigger the energy
change in the final wave function, the smaller the region of
space is where the initial and final wave functions have similar
momenta k(r). The absorption of a single photon is sufficient
for ionization in this region. For instance, at 1.7 keV for 1s, γ

needs to be less than 0.3 for � > 16 in order to maintain the
same ionization rate for � ∼ 4. Clearly, we cannot say that
ionization at these high � occurs through tunneling, and the
statement that γ < 1 refers to tunneling is misleading.

On top of the (γ,�) maps in Fig. 1, we plot lines along
which the peak electric-field strength is a constant. The solid,
dashed, and dotted lines correspond to F = 0.05, 0.1, and
0.5 a.u., respectively, and such slices in Fig. 1 can be taken
to extract the energy spectrum at a fixed intensity. In the left
column of Fig. 2, we take the spectroscopic point of view for
photoionization and depict ionization rates as a function of
� for three individual field strengths for the initial states of
1s, 4s, and 8s corresponding to the constant F slices seen in
the (γ,�) maps of Fig. 1. The ionization rate which equals
the classical frequency 1/(2πn3) is indicated for each initial
state by the horizontal dashed lines in the left column of Fig. 2
(corresponding to green contours in Fig. 1). Portions of the
curves that lie above the green lines in Fig. 1 correspond to
cases in which ionization occurs in less than a classical period
and should not be interpreted as ionization rates. The rates are
plotted in log10 scale as in Fig. 1, although the � axis is now in
linear scale. F = 0.5, 0.1, and 0.05 a.u., from top to bottom in
each panel on the left, and, as expected, the overall magnitudes
of the ionization rates drop as the peak field strength decreases.
This is due to the well-known power-law dependence of the
rate on the intensity for an N -photon absorption process, � ∼
F 2N (see [2] and references therein). Although the intensities
seen in this column are somewhat high for hydrogen, ionization
with two distinct characteristics can be easily identified in the
low- and the high-frequency regions. In the low-� part of the
spectra, the rates drop much faster with the decreasing intensity
when compared with the higher-frequency region. This is a
manifestation of the �-independent decay in the tunneling
regime, where the decay rate decreases exponentially with the
inverse of the field strength, i.e., � ∼ exp[−2(2Ip)3/2/(3F )]
in the static field limit [2]. On the other hand, before the sharp

053407-4



DICHOTOMY BETWEEN TUNNELING AND MULTIPHOTON . . . PHYSICAL REVIEW A 86, 053407 (2012)

10-12

10-10

10-8

10-6

10-4

10-2

100

 0  0.6  1.2  1.8  2.4  3  3.6

Γ 
(a

.u
.)

Ω

8s

10-10

10-8

10-6

10-4

10-2

100

 0  0.6  1.2  1.8  2.4  3  3.6

Γ 
(a

.u
.)

4s

10-6
10-5
10-4
10-3
10-2
10-1
100
101

 0  0.4  0.8  1.2  1.6  2

Γ 
(a

.u
.)

1s

10-8

10-6

10-4

10-2

100

 0  0.1  0.2  0.3  0.4  0.5

Fn4 (a.u.)

8s

10-8

10-6

10-4

10-2

100

 0  0.1  0.2  0.3  0.4  0.5

4s

10-8

10-6

10-4

10-2

100

 0  0.1  0.2  0.3  0.4  0.5

1s

Ω = 0.05
Ω = 0.10
Ω = 0.20
Ω = 0.30
Ω = 0.50
Ω = 0.75

FIG. 2. (Color online) Left column: Ionization rates � as a
function of the scaled frequency � out of n = 1s, 4s, and 8s states
of the hydrogen for three different peak field strengths: F = 0.05,
0.1, and 0.5 a.u. from top to bottom. These correspond to intensities
of 1.8 × 1017, 3.6 × 1015, and 1.8 × 1015 W/cm2. The � axes are in
log10 scale. The dashed lines mark the classical frequency of the elec-
tron in its initial state for each panel. Right column: � as a function of
the scaled peak electric-field strength Fn4 for several � for ionization
out of the same states. Again, the � axes are plotted in log10 scale.

drop in the rate is reached for small �, there is a relatively flat
region which shows little dependence on the scaled frequency.
This �-independent part of the spectra is the tunneling region,
in which � obeys the exponential decay of the ionization rate.

In contrast, the rate displays structures in the higher-
frequency region, which correspond to the multiphoton res-
onance structure of the atom. The Rydberg-sequence structure
of the multiphoton peaks marks the indirect paths of excitation
followed by multiphoton ionization from an excited state. The
positions of these peaks experience ac stark shifts from the
laser field, and the position of �1 is closest to n/2 for the lowest
F . This regime persists until the higher � region is reached
beyond the single-photon ionization limits �1 = 0.5, 2, and
4 for n = 1, 4, and 8. The ionization in this region is mainly
described by Fermi’s golden rule and the drop in the rate in this
case is due to the power-law dependence of � on the intensity.
An important caveat here is that when we refer to multiphoton
ionization, we are not making any distinction between direct
and indirect paths of ionization through absorption of many
photons.

After the multiphoton structure is diminished beyond
the single-photon ionization limit, the ionization is again
suppressed, as discussed in [12,13] for Rydberg atoms in
microwaves. This suppression is argued to be a quantum-
mechanical interference effect, and the field needed for
ionization tends to be n independent. Such a trend can also
be seen in the left column in Fig. 2; as the region of high
� is penetrated beyond �1, the order of magnitude rates
qualitatively start agreeing for n = 4 and 8.

Assuming the strong-field physics point of view, the right-
hand column of Fig. 2 shows the ionization rates out of
the same set of initial states of the hydrogen as a function
of the scaled electric-field strength Fn4 for various scaled
frequencies. These plots correspond to constant vertical �

slices in Fig. 1, and they are plotted as a function of the field
strength �/γ rather than the Keldysh parameter. Notice that
for the low values of �, there is a flat plateau region after
Fn4 � 0.2, suggesting that the ionization rate drops like 1/n4

in this region. This is a signature of the static field tunnel
ionization regime, and the distinction between ionization rates
for different � disappears in this region. This is especially so
for the higher n. The higher the principal quantum number, the
more independent is the rate from the scaled frequency �. The
rate at the single-photon ionization limit is only plotted for 1s

(�1 = 0.5), and higher-order photoionization peaks appear at
the low-field end of the 4s and the 8s plots. For the lowest fields
in these figures, � for the higher frequencies drops much faster
than the lower ones, which is a behavior more pronounced for
the higher n states. This can again be understood considering
that at low �, the rates decay according to the exponential law
� ∼ exp[−2(2Ip)3/2/(3F )]. Recalling that the field scales like
∼1/n4, and the ionization potential like ∼1/n2, the exponent
would increase as ∼n when plotted against the field strength,
resulting in the diminishing of the ionization rate.

B. Ionization probability

Figure 3 shows the ionization probabilities out of 1s, 4s,
and 8s states for hydrogen in (γ,�) space, where γ varies
between 0 and 64, and � varies between 0.025 and 4. In
contrast to the rate calculations, the probability calculations
are performed using a finite-duration laser pulse with a width
of 160 Ry periods at FWHM. This corresponds to a pulse
width of 80 fs for 1s, ∼1.5 ps for 4s, and ∼12 ps for the 8s

state. The contours are color coded such that the bright yellow
regions indicate saturation of the ionization probability, i.e.,
complete ionization. An important difference to keep in mind
when relating Fig. 3 to Fig. 1 is that the γ and � axes span
different ranges in these figures. The γ axis goes up to 2 in
Fig. 1 and up to 64 in Fig. 3, whereas the � axis goes up to
64 in Fig. 1 and up to 4 in Fig. 3. Also the � axis is in linear
scale in Fig. 3, which is why the curved ridges seen in Fig. 1
are replaced by the straight peaks occurring at fixed values
of � in Fig. 3. Regions with γ < 2 in Fig. 3 are essentially
all saturated for the pulse width used for these simulations as
needed to go up in γ as high as ∼60, to see the larger picture.
For a shorter pulse than ours, the extent of the saturated regions
for all � would recede to lower γ , and eventually ranges seen
in Fig. 1 are recovered when the pulse duration is shortened to
a couple of classical periods. In that case, however, the pulse
duration is at the attosecond scale, and even some of the high
� would then be considered in the field-ionization regime.

As in Fig. 1, the multiphoton ionization peaks are un-
mistakable and they extend to high values of the Keldysh
parameter due to the long pulse duration. The single-photon
ionization frequency �1 is again situated at n/2, and it is
here that the ionization probability is the largest for the widest
range of γ . This would be expected from Fig. 1; however,
one feature that was not clear from Fig. 1 is that the broad
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FIG. 3. (Color online) Quantum ionization probabilities for ionization out of 1s, 4s, and 8s states of the hydrogen for a laser pulse with a
width of 160 Ry periods at FWHM. Both � and γ axes are in linear scale and the ionization probabilities are in log10 scale. The yellow regions
indicate complete ionization, and the multiphoton ionization peaks as well as the suppression at high scaled frequencies are clearly visible.
Momentum distributions for the points marked as A and B in each panel are seen in Fig. 4.

region centered at �1 is split into subpeaks for n = 4 and 8.
We believe that these peaks are due to the energy splitting
between the degenerate l states inside the n manifolds, and the
number of these peaks matching almost one unit of � supports
this suspicion. As in the rate calculations, multiphoton peaks
lead to the single-photon ionization limit and mark regions
of ionization involving multiphoton processes following both
direct and indirect paths. Many of these paths result in
ionization following an excitation to an excited state, which
is evident from the Rydberg-series-like structure leading up to
�1. However, regions in which the ionization happens through
a direct multiphoton transition to the continuum, or via an
assisted indirect process, are not distinguishable in these (γ,�)
maps. The slow-decaying tail of the ionization probability
beyond the single ionization limit �1 is again indicative of
the suppression of ionization at high scaled frequencies due to
the stabilization seeded by quantum interferences, as reported
in Refs. [12,13].

The entire (γ,�) region seen in Fig. 3 is for γ � 1. This is
a result of the long laser pulse we use to keep the laser duration
reasonably long for the entire � range we considered. Here
reasonably long means longer than what would be considered
an attosecond pulse duration. For laser pulses shorter than the
one we used, ionization probabilities would be lower and they
would saturate at smaller values of γ than seen in Fig. 3. From
the common Keldysh parameter point of view, this is to say that
everything seen in Fig. 3 is in the multiphoton regime, and no
tunneling takes part in constructing the landscape depicted in
Fig. 3. Although Fig. 3 does not distinguish tunneling regions
from the multiphoton regions in any way beyond the Keldysh
criteria, one may be inclined to assume the Keldysh viewpoint
due to the multiphoton peaks that appear for � < n/2 and
extend high up in γ . In order to assess the extent of the
multiphoton character in these regions, and to determine if
any tunneling contributes to the overall ionization, we look
at the momentum distributions of the ionized part of the wave
function at various points on the (γ,�) landscape seen in Fig. 3.

IV. MOMENTUM DISTRIBUTIONS

In order to evaluate the momentum distribution of the
ionized electrons, we follow the same procedure outlined in

Ref. [9]. For the sake of completeness, here we briefly describe
the method. In the rate and probability calculations we reported
so far, the ionized part of the wave function is removed from
the box every time step during the propagation of Eq. (7),
in order to prevent unphysical reflections from the radial box
edge. This is done by multiplying the wave function with a
mask function m(r), which is unity up to a distance of 2/3
of the box size from the origin, and decreases quadratically
with distance until the box edge from there on. We retrieve the
removed part of the wave function by evaluating


ψl(r,t
′) = [1 − m(r)]ψl(r,t

′) (9)

at every time step, and Fourier transform it to get the
momentum-space wave function 
φ(pρ,pz,t

′),


φ(pρ,pz,t
′) = 2

∑
l

(−i)l Yl,m(θ,ϕ)

×
∫ ∞

0
jl(pr)
ψl(r,t

′)r2dr. (10)

Here the momentum p = (p2
ρ + p2

z )1/2 is in cylindrical coor-
dinates and jl(pr) are the spherical Bessel functions. We then
time propagate 
φ(pρ,pz,t

′) to a later final time t using the
classical action S,


φ(pρ,pz,t) = 
φ(pρ,p1z,t
′)e−iS . (11)

This is numerically exact under the assumption that the
dynamics of the electron in the laser field after ionization
is treated classically. For the time-dependent laser field F (t),
action S is calculated numerically by integrating p2

z along the
laser polarization direction,

S = 1

2
p2

ρ(t − t ′) + 1

2

∫ t

t ′
p2

z (t ′′)dt ′′, (12)

pz(t
′′) = p1z −

∫ t ′′

t ′
F (t)dt, (13)

p1z = pz +
∫ t

t ′
F (t ′′)dt ′′. (14)

We are assuming that the ionized electron is freely propagating
in the classical laser field in the absence of the Coulomb field
of its parent ion.
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FIG. 4. (Color online) Momentum maps for the γ > 1 region for selected points from the ionization probability landscapes of Fig. 3. The
momentum distributions have only the momentum component parallel to the laser polarization marked as the p|| axis and the perpendicular
component is implied from the cylindrical symmetry of the problem. Dashed semicircles marked as ω, 2ω, 3ω, etc. are the momentum rings
corresponding to the multiphoton ionization from each initial state for a given (γ,�) pair. Similarly, the momentum rings corresponding to the
10Up limit are also marked. The probabilities are plotted in logarithmic scale of base e to bring out both multiphoton and tunneling features on
the same plot.

We picked two points in each panel of Fig. 3 to point out
features that are commonly attributed to either multiphoton or
tunneling ionization in the momentum distributions in the large
γ region. We label these points as A and B in Fig. 3, and the
corresponding momentum distributions are seen in Fig. 4, with
the horizontal axis being the momentum component parallel to
the laser polarization. The three columns in Fig. 4 correspond
to the three panels in Fig. 3 for 1s, 4s, and 8s, respectively.
The momentum distributions are in logarithmic scale with
the contours decreasing in factors of e in all cases. In all
of these momentum distributions, momenta corresponding to
three different energies are marked with dashed semicircles:
(a) energy of the electron when it escapes by absorbing the
necessary number of photons from its initial state (labeled as
ω, 2ω, 3ω, etc. rings) and (b) the 10Up limit. Classically,
the electron can acquire kinetic energy up to 2Up in the
laser field, which is the maximum energy it can attain if it
tunnels into the continuum and then escapes via the laser field
alone without rescattering with its parent ion. The electron
can acquire additional energy beyond this limit if rescattering
occurs, and typically there is a relatively flat plateau region in
the energy distribution of the photoelectrons following 2Up,
which cuts off around ∼10Up [14,15].

There are a few common physical characteristics seen in
the momentum maps of Fig. 4. First, ionization by photon ab-
sorption is manifested as rings with radii p 	 √

2(Nω − Ip),
where N is equal to or greater than the minimum number
of necessary photons required for ionization. These rings
are centered at p = 0 a.u., suggesting that the ionization is
directly from the initial state and the electron escapes without
rescattering with the ion. The centers of these rings can be
shifted by as much as ∼10Up when rescattering occurs [16].
Another common feature, seen in Fig. 4, is that the distributions
are symmetric with respect to the reflection about the p|| = 0
plane because the laser pulses at the points marked as A and

B in Fig. 3 are many-cycle pulses. Since the ejected electron
escapes essentially along the polarization axis of the laser, the
multiphoton rings and the tunneling momentum distributions
are more intense close to the polarization direction. The
ionization yield drops when the observation angle is increased
off the laser polarization axis, which is clear from the
momentum distributions in Fig. 4. Since we start from s states
of the hydrogen atom in all of our calculations, absorption
of an even number of photons results in an even �, whereas
absorption of an odd number of photons results in an odd �

of the ejected electron. This information is encoded in the
multiphoton rings of Fig. 4 as nodes along the momentum
rings. For example, the momentum rings due to electrons
ejected by absorption of an odd number of photons have nodes
in the direction perpendicular to the polarization axis, whereas
rings resulting from absorption of an even number of photons
have maxima.

All of the momentum distributions seen in Fig. 4 are
dominated by multiphoton ionization rings. For instance, in
the first column of Fig. 4, � = 0.24 for point A, and the
atom needs to absorb at least three photons to ionize from
the 1s state. The corresponding three-photon absorption ring
is stronger than the four-photon absorption ring, which is not
surprising since the photoabsorption rate drops as ∼F 2N for
a given F , where N is the number of the absorbed photons.
Similar observations can be made for the 4s and the 8s columns
of Fig. 4. Since all of the points in Fig. 3 have γ much larger
than one, the appearance of the photoabsorption rings in Fig. 4
is not surprising, and it is in agreement with the statement
that γ > 1 corresponds to multiphoton ionization. However,
there are also points with a substantial amount of amplitude
at low momenta despite their large γ . For instance, the points
marked as B in the 1s and the 8s panels of Fig. 3 display
low-momentum components in their momentum distributions
in Fig. 4. Although low-momentum distributions are usually
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FIG. 5. (Color online) Momentum distribu-
tions for the low Keldysh parameter γ = 0.4
for ionization out of the 1s and the 4s states.
In each column, � is varied from low to high
going from top to bottom, while γ is kept fixed.
The minimum number of photons �1/� is also
shown to the right of each row. Semicircles mark
the photoabsorption momentum rings (labeled
as ω, 2ω, etc.), as well as the 2Up and the 10Up

limits.

recognized as electrons which escape through tunneling, they
are not necessarily a definite signature of tunnel ionization.
In other words, electrons can be ejected with low momenta
even though their escape cannot be attributed to tunneling. For
example, if the atom is driven exactly on resonance with the
single-photon ionization threshold, then the ejected electrons
have no kinetic energy upon escape. Depending on the width
of the laser pulse in energy, these electrons would appear as
low-momentum electrons in the momentum distribution with a
certain spread around p = 0. In fact, both of the points labeled
as B in the 1s and the 8s panels of Fig. 3 are just below their
respective single-photon ionization limits in �. On the other
hand, both of these points manifest a p-wave character in their
momentum distributions at low momenta in Fig. 4. Combined
with the fact that all of our calculations start with an s state
and both points lie just below their single-photon ionization
thresholds, it is clear that the low-momentum distributions seen
at these points are due to electrons ejected by the absorption
of a single photon in the spectral tails of the laser pulse and
cannot be attributed to tunneling.

We have investigated many other points than those whose
momentum distributions are seen in Fig. 4 and we did not
encounter any cases where tunneling plays a role. This is in
complete accord with the argument based on the value of the
Keldysh parameter that γ > 1 implies multiphoton ionization.
In the opposite case, where γ < 1, the same argument predicts
that tunneling dominates the ionization dynamics. To find a
case contradicting this, we look at momentum distributions
for ionization out of the 1s and the 4s states at a fixed
Keldysh parameter γ = 0.4, while scanning the frequency
from low � to high �. The momentum distributions for
five values of � varying in factors of 2 are seen in Fig. 5.
The first column is for ionization out of the 1s state and the
second column is for ionization from 4s. To the right of the
columns, we give the minimum number of photons �1/� that
would be necessary for photoionization for the corresponding
values of � in each row. For example, � = 0.25 for 1s

and � = 1 for 4s correspond to the two-photon resonance
in both states, whereas the � in the first row correspond
to the 16-photon and the 32-photon resonances, respectively.
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Similar to the momentum maps in Fig. 4, these distributions
are also plotted in logarithmic scale with contours decreasing
in factors of e. Along with the photoabsorption rings, we also
label the classical 2Up limits in Fig. 5. The values of the
2Up are the same for all values of � for a given initial state
because varying the scaled frequency while retaining γ keeps
the ponderomotive potential Up ∝ F/ω unchanged. For the
lowest � values in the top two rows of Fig. 5, tunneling
is the controlling mechanism for ionization as suggested by
the low-momentum distributions, which are elongated in the
laser polarization direction with a spread filling the 2Up

semicircles for both initial states. Also note that the minimum
number of photons required for photoionization in these cases
provides momenta substantially below that which would be
provided by the 2Up energy change induced by the classical
laser field. Around �1/� ∼ 2, the spread at low momenta
elongated in the p|| direction for low � coalesces into a
more spherically symmetric distribution around p = 0 a.u.,
and the photoabsorption rings are now more comparable in size
with the 2Up semicircles. Although �1/� ∼ 2 corresponds to
frequencies which are a factor of two below the single-photon
ionization limit for both initial states in Fig. 5, the continuous
tunneling distributions at low momenta start separating into
multiphoton absorption rings. These rings appear despite the
fact that the frequency is below the single-photon absorption
resonance due to the energy spread of the laser pulse. When
the scaled frequency surpasses the �1 limit, multiphoton
ionization clearly takes over and the momentum distributions
display multiphoton ionization rings at high scaled frequencies
with �1/� = 0.5 and 0.25 in Fig. 5. For �1/� = 2 and
below, ionization takes place through absorption of photons in
the region � > �1 for each initial state, even though γ < 1.
The crossover between the tunneling and the multiphoton
regimes is also evident from the time-dependent ionization
probabilities in Fig. 6, which are for the lowest � in the top
row of Fig. 5 and �1/� = 0.5. For the low scaled frequencies

FIG. 6. (Color online) Time-dependent ionization probabilities
for �1/� = 0.5 and 16 from the initial state of 1s (black curves),
and �1/� = 0.5 and 32 from 4s (blue curves). While the high-�
curves show no structure, the low-frequency curves display stepwise
increase of the ionization probability, with the period matching the
period of the driving laser. The laser pulse for n = 1 runs from −1600
to 1600 a.u., and the time axis is scaled by the factor n3 to display the
4s curves inside the same time scale as the curves for 1s.

(or high �1/�) in Fig. 6, the black and blue solid curves
show ionization in stepwise jumps with twice the frequency
of the driving laser. This is a distinct signature of tunneling
since ionization happens only at the peaks of the laser field. In
the opposite case with the high � (or low �1/�), ionization
happens continuously and there is no structure in the ionization
probabilities directly bearing information about either the laser
field or the atomic motion.

The usual Keldysh parameter argument stating that γ < 1
corresponds to tunneling does not apply in the high-� region
of the (γ,�) space, and it is true only when we use a factor
of 2 or more below the single-photon ionization threshold
in �. Tunneling prevails when the time scales associated
with the electronic motion are much faster than the time
scale set by the laser period and γ < 1. Another way to say
this is that tunneling takes over when γ < 1 and the energy
gained from the lowest-order multiphoton transition leading
to continuum is much smaller than the classical 2Up limit.
In the opposite limit where the laser period is much shorter
than the electronic time scales inside the atom, photoionization
takes over even though γ < 1. The converse does not appear
to be true, however; i.e., in the large-γ regime, the crossover
between the atomic time scale and the laser period does not
result in a crossover between the tunneling and the multiphoton
ionization regimes, and multiphoton ionization always prevails
in the γ > 1 regime.

V. SUMMARY

In conclusion, we have presented photoionization rates
and probabilities out of the 1s, 4s, 8s, and 16s states of the
hydrogen atom for wide ranges of the Keldysh parameter γ and
the scaled frequency �. We map the ionization rates using a cw
laser and the probabilities using a laser pulse in (γ,�) space.
By taking constant field strength and constant frequency slices
from the (γ,�) maps, well-known hallmarks and structures for
ionization rates can be reconstructed from both the common
strong-field standpoint (� versus F ) and the spectroscopic
standpoint (� versus �) [2,6]. High-frequency suppression
of ionization can also be seen beyond the single-photon
ionization limit �1 = n/2 in both the ionization rates and the
ionization probabilities in (γ,�) space, which was reported in
Refs. [12,13].

We investigated momentum distributions of the ejected
electrons at several points in the (γ,�) space in order to
distinguish between tunnel ionization and photoionization for
various ranges of γ and �. For the points we investigated
in the large-γ region, the momentum distributions only show
photoabsorption rings regardless of what the scaled frequency
is, which is in agreement with the argument behind the Keldysh
parameter that γ > 1 corresponds to multiphoton ionization.
On the other hand, whether the multiphoton or the tunnel
ionization dominates depends on the scaled frequency in
the γ < 1 region. Although the Keldysh parameter argument
predicts a tunneling picture for ionization when γ < 1,
tunneling only prevails when � is also small compared to the
single-photon ionization frequency �1 = n/2. Even though
γ < 1, ionization takes place through photoabsorption in the
region beyond �1 for each initial state. Depending on the
spectral width of the laser pulse, photoabsorption rings can
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still be seen in the momentum distributions of the ejected
electrons, even when the scaled frequency gets a factor of 2
below �1. The tunneling can be though of as the limit when
the atomic time scales are much shorter than the time scale
set by the laser field only when γ < 1. Alternatively, this
can also be expressed by saying that the tunneling prevails
when the momentum, which the electron gains by absorbing
the minimum necessary number of photons to escape, is
small compared to the momentum to be gained from the
ponderomotive motion in the laser field.

Pairing the Keldysh parameter with the scaled frequency
serves to complement γ for its inadequacy to account for the
relevance of the time scale inherently present in the bound
electron dynamics, i.e., the classical period of the electron,
as Keldysh-like theories assume no dynamics for the electron

inside the potential well prior to ionization. The dynamical
characterization outlined by γ is augmented by inclusion of
the scaled frequency in this picture because the tunneling-
multiphoton dichotomy suggested by the Keldysh parameter
does not observe conservation of energy since it comes about
within a strictly tunneling scenario. Both dynamical regimes
of ionization may be attained for a chosen value of γ < 1 by
varying the scaled frequency.
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