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Single photoionization of highly charged atomic ions including the full
electromagnetic-field potential
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A previous fully relativistic time-dependent close-coupling method [Phys. Rev. A 81, 063431 (2010)],
developed to study the photoionization of highly charged atomic ions, is substantially modified to include
the full electromagnetic-field potential. Expansion of a one active electron wave function for the time-dependent
Dirac equation in spin-orbit eigenfunctions yields close-coupled equations for bispinor radial wave functions.
A spherical Bessel function expansion is then used to go beyond the Lorentz gauge dipole approximation to
include higher order radiation field operators in both the Lorentz and Coulomb gauges. We test the high-order
close-coupling method on the single photoionization of U91+.
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I. INTRODUCTION

Ionization processes involving photon and electron colli-
sions with highly charged atomic ions have been studied for
many years using relativistic many-body perturbation theory
[1]. Over the last few years a number of nonperturbative
close-coupling methods have also been developed to calculate
photon and electron collisions with highly charged atomic
ions; including the standard relativistic R-matrix method [2,3],
the relativistic B-spline R-matrix method [4], the relativistic
R-matrix with pseudostates method [5], and the relativistic
converged close-coupling method [6]. In recent years the
exposure of highly charged atomic ions to intense short
radiation field pulses, as produced by the free-electron laser
in Hamburg [7], has prompted the development of methods to
solve the time-dependent Dirac equation for one active electron
atomic ions [8].

Recently, we developed a relativistic time-dependent close-
coupling method for the single and double photoionization
of highly charged atomic ions [9]. Both the one active elec-
tron and two active electron time-dependent close-coupling
methods were derived using a lowest order Lorentz gauge
for the electromagnetic-field potentials, while the two active
electron equations included an electrostatic two-body operator.
The difficulty of using many-body perturbation theory to
describe the quantal three-body breakup problem makes the
relativistic time-dependent close-coupling method for the
double photoionization of highly charged atomic ions quite
attractive.

In this article, we develop a relativistic time-dependent
close-coupling method for the single photoionization of highly
charged atomic ions that goes beyond the lowest order dipole
approximation to include the full spatial and time dependence
of the electromagnetic-field potential. Single photoionization
cross sections for U91+ are then calculated for various mul-
tipole approximations and compared with relativistic lowest
order time-independent distorted-wave results. We note that
the same all orders radiation field operators derived for the
one active electron time-dependent close-coupling equa-
tions are identical to those found for each electron in the

two active electron time-dependent close-coupling equations.
What then remains for a complete relativistic time-dependent
close-coupling method for double photoionization is the
inclusion of an electromagnetic and retardation two-body
operator.

The rest of the article is organized as follows. In Sec. II A
we present the time-dependent Dirac equation in both the
Coulomb and Lorentz gauges, in Sec. II B we derive the one
active electron time-dependent close-coupled bispinor equa-
tions, in Sec. II C we derive the radiation field matrix elements
involving the full spatial and time-dependent electromagnetic-
field operator, in Sec. II D we present the time-dependent
close-coupling (TDCC) cross section, and in Sec. II E we
present the time-independent distorted-wave (TIDW) cross
section. In Sec. III we calculate single photoionization cross
sections for U91+ using both the TDCC and TIDW methods.
In Sec. IV, we conclude with a summary and an outlook for
future work. Unless otherwise stated, all quantities are given
in atomic units.

II. THEORY

A. Time-dependent Dirac equation

The time-dependent Dirac equation for a one-electron
atomic ion in a time-varying electromagnetic field is given
by [10]

i
∂ ��(�r,t)

∂t
= H (�r,t) ��(�r,t), (1)

where

H (�r,t)

=
(

V (r) − U (�r,t) c�σ · �p(�r) + c�σ · �A(�r,t)
c�σ · �p(�r) + c�σ · �A(�r,t) V (r) − U (�r,t) − 2c2

)
,

(2)

V (r) = −Z

r
+ VHX(r), (3)
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Z is the atomic number, VHX(r) is a Hartree with local ex-
change potential, �σ is a Pauli matrix vector, and �p(�r) = −i �∇.
In the Coulomb gauge the electromagnetic-field potentials are
given by [11]

U (�r,t) = 0, �A(�r,t) = E

ω
ẑ sin(ky − ωt), (4)

while in the Lorentz gauge the electromagnetic-field potentials
are given by [11]

U (�r,t) = −Ez cos(ωt),
(5)

�A(�r,t) = E

ω
ẑ sin(ky − ωt) + E

ω
ẑ sin(ωt),

where E is the radiation field amplitude, ω is the radi-
ation field frequency, c is the speed of light, and k =
ω
c

. In lowest order we recover the usual Coulomb gauge
potentials:

U (�r,t) = 0, �A(�r,t) = −E

ω
ẑ sin(ωt), (6)

and the usual Lorentz gauge potentials:

U (�r,t) = −Ez cos(ωt), �A(�r,t) = 0. (7)

B. Time-dependent close-coupled bispinor equations

The one-electron total wave function is expanded in spin-
orbit eigenfunctions given by

��(�r,t) =
∑
κ,m

(
Pκm(r,t)

r
�+κ,m(θ,φ)

i Qκm(r,t)
r

�−κ,m(θ,φ)

)
, (8)

where

�κ,m(θ,φ) =
∑
ml,ms

Clsj
mlmsm

Ylml
(θ,φ)χms

, (9)

κ = −(l + 1) for j = l + 1
2 , κ = +l for j = l − 1

2 , s = 1
2 ,

C
lsj
mlmsm is a Clebsch-Gordan coefficient, Ylml

(θ,φ) is a spher-
ical harmonic, and χms

is a two-component spinor. Upon
substitution into the time-dependent Dirac equation, we obtain
the following set of time-dependent close-coupled partial
differential equations:

i
∂Pκm(r,t)

∂t
= V (r)Pκm(r,t) −

∑
κ ′,m′

〈κm|U (�r,t)|κ ′m′〉Pκ ′m′(r,t)

− c

(
∂

∂r
− κ

r

)
Qκm(r,t) + ic

∑
κ ′,m′

〈κm|�σ · �A(�r,t)| − κ ′m′〉Qκ ′m′(r,t). (10)

i
∂Qκm(r,t)

∂t
= [V (r) − 2c2]Qκm(r,t) −

∑
κ ′,m′

〈−κm|U (�r,t)| − κ ′m′〉Qκ ′m′ (r,t)

+ c

(
∂

∂r
+ κ

r

)
Pκm(r,t) − ic

∑
κ ′,m′

〈−κm|�σ · �A(�r,t)|κ ′m′〉Pκ ′m′ (r,t). (11)

In the Coulomb gauge the time-dependent close-coupled equations are given by

i
∂Pκm(r,t)

∂t
= V (r)Pκm(r,t) − c

(
∂

∂r
− κ

r

)
Qκm(r,t) + ic

E

ω

∑
κ ′,m′

〈κm|σz sin(ky − ωt)| − κ ′m′〉Qκ ′m′(r,t). (12)

i
∂Qκm(r,t)

∂t
= (V (r) − 2c2)Qκm(r,t) + c

(
∂

∂r
+ κ

r

)
Pκm(r,t) − ic

E

ω

∑
κ ′,m′

〈−κm|σz sin(ky − ωt)|κ ′m′〉Pκ ′m′ (r,t). (13)

In the Lorentz gauge the time-dependent close-coupled equations are given by

i
∂Pκm(r,t)

∂t
= V (r)Pκm(r,t) + E

∑
κ ′,m′

〈κm|z cos(ωt)|κ ′m′〉Pκ ′m′ (r,t) − c

(
∂

∂r
− κ

r

)
Qκm(r,t)

+ ic
E

ω

∑
κ ′,m′

〈κm|σz(sin(ky − ωt) + sin(ωt))| − κ ′m′〉Qκ ′m′(r,t). (14)

i
∂Qκm(r,t)

∂t
= (V (r) − 2c2)Qκm(r,t) + E

∑
κ ′,m′

〈−κm|z cos(ωt)| − κ ′m′〉Qκ ′m′(r,t) + c

(
∂

∂r
+ κ

r

)
Pκm(r,t)

− ic
E

ω

∑
κ ′,m′

〈−κm|σz(sin(ky − ωt) + sin(ωt))|κ ′m′〉Pκ ′m′(r,t). (15)
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C. Radiation field matrix elements

In the Coulomb gauge the lowest order radiation field matrix element is given by

〈κm|σz sin(ωt)|κ ′m′〉
= δl,l′ sin(ωt)2

√
3/2(−1)l+2j−m+ 3

2

√
(2j + 1)(2j ′ + 1)

(
l 1 l′
0 0 0

) (
j 1 j ′

−m 0 m′

) {
l 1

2 j

1 j ′ 1
2

}
. (16)

In the Lorentz gauge the lowest order radiation field matrix element is given by

〈κm|z cos(ωt)|κ ′m′〉
= r cos(ωt)(−1)j+j ′−m+ 3

2

√
(2l + 1)(2l′ + 1)(2j + 1)(2j ′ + 1)

(
l 1 l′
0 0 0

) (
j 1 j ′

−m 0 m′

) {
l 1

2 j

j ′ 1 l′

}
. (17)

Reduction of the matrix elements to standard 3j and 6j symbols is made by using the Wigner-Eckart theorem and uncoupling
formulas to reduced matrix elements [12].

In both the Coulomb and Lorentz gauges, higher order radiation field matrix elements are obtained by first using the spherical
Bessel function expansion [13]:

sin(ky − ωt) = Im

(∑
K,Q

iK (2K + 1)C∗
KQ(ŷ)jK (kr)CKQ(r̂)e−iωt

)
, (18)

where CKQ(r̂) is a spherical tensor and jK (kr) is a spherical Bessel function. For example, in the Coulomb gauge the time-
dependent close-coupled equations for K � 1 are given by

i
∂Pκm(r,t)

∂t
= V (r)Pκm(r,t) − c

(
∂

∂r
− κ

r

)
Qκm(r,t) − ic

E

ω
j0(kr) sin(ωt)

∑
κ ′,m′

〈κm|σzC00(r̂)|−κ ′m′〉Qκ ′m′(r,t)

− 3ic
E

ω
j1(kr) sin(ωt)

∑
κ ′,m′

〈κm|
√

1

2
σzC1+1(r̂) +

√
1

2
σzC1−1(r̂)|−κ ′m′〉Qκ ′m′ (r,t). (19)

i
∂Qκm(r,t)

∂t
= (V (r) − 2c2)Qκm(r,t) + c

(
∂

∂r
+ κ

r

)
Pκm(r,t) + ic

E

ω
j0(kr) sin(ωt)

∑
κ ′,m′

〈−κm|σzC00(r̂)|κ ′m′〉Pκ ′m′(r,t)

+ 3ic
E

ω
j1(kr) sin(ωt)

∑
κ ′,m′

〈−κm|
√

1

2
σzC1+1(r̂) +

√
1

2
σzC1−1(r̂)|κ ′m′〉Pκ ′m′(r,t). (20)

The matrix elements involving the σzCKQ(r̂) operators may be evaluated by the introduction of a complete set of |κ ′′m′′〉 states:

〈κm|σzCKQ(r̂)|κ ′m′〉 = 2
∑
κ ′′,m′′

〈κm|S10|κ ′′m′′〉〈κ ′′m′′|CKQ(r̂)|κ ′m′〉. (21)

For the |κm〉 = |lsjm〉 coupled state, S10 operates only on |sms〉 and CKQ(r̂) operates only on |lml〉, leading to the higher order
matrix element given by

〈κm|σzCKQ(r̂)|κ ′m′〉 = 2

√
3

2

(
l K l′
0 0 0

)
(−1)l+2j−m+j ′+K

√
(2l + 1)(2l′ + 1)(2j + 1)(2j ′ + 1)

×
∑
j ′′,m′′

(−1)j
′′−m′′

(2j ′′+1)

(
j 1 j ′′

−m 0 m′′

)(
j ′′ K j ′

−m′′ Q m′

){
l 1

2 j

1 j ′′ 1
2

}{
l 1

2 j ′′
j ′ K l′

}
. (22)

D. Time-dependent close-coupling (TDCC) cross section

A complete set of single-particle radial orbitals may be
obtained by diagonalization of the time-independent radial
Dirac equation given by

(
V (r) − 2c2 c

(
∂
∂r

+ κ
r

)
−c

(
∂
∂r

− κ
r

)
V (r)

)(
Qεκ (r)
Pεκ (r)

)
= ε

(
Qεκ (r)
Pεκ (r)

)
,

(23)

where the total energy E = ε + c2. The initial condi-
tion of the solution of the time-dependent close-coupled
equations for photoionization of the niκi ground state is
given by

Pκm(r,t = 0) = Pniκi
(r)δκ,κi

δm,mi
,

(24)
Qκm(r,t = 0) = Qniκi

(r)δκ,κi
δm,mi

.
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Following time propagation of the time-dependent close-
coupled equations, the single photoionization cross section
is given by [9]

σ = ω

IT

∑
κm

∑
εκ>0

∣∣∣∣
∫ ∞

0
drPεκ (r)Pκm(r,t → ∞)

+
∫ ∞

0
drQεκ (r)Qκm(r,t → ∞)

∣∣∣∣
2

, (25)

where I is the field intensity and T is the field pulse length.

E. Time-independent distorted-wave (TIDW) cross section

In the lowest order Lorentz gauge for the radiation field,
the perturbative distorted-wave cross section for the transition
niκi → εf κf is given by [9]

σ = 8πω

pf c

(
1 + εf

2c2

) ∑
lf ,jf

(2jf + 1)

3

(
ji 1 jf
1
2 0 − 1

2

)

×
(∫ ∞

0
rdr[Pεf κf

(r)Pniκi
(r) + Qεf κf

(r)Qniκi
(r)]

)2

,

(26)

where εf = (ω − Ip), Ip is the ionization potential, and pf =√
2εf + ε2

f

c2 . The sum over lf in Eq. (26) includes only terms
for which li + lf + 1 is an even number. The bound radial
orbitals, Pnκ (r) and Qnκ (r), are calculated using a Dirac-Fock
atomic structure code [1], while the continuum radial orbitals,
Pεκ (r) and Qεκ (r), are calculated by numerical integration
of the radial Dirac equation for specific energy values. The
continuum normalization for all the distorted waves is one
times a sine function.

III. RESULTS

We first diagonalized the Hamiltonian of Eq. (23) for U91+
on a 512-point uniform radial mesh with �r = 0.001 using a
fifth-order finite differencing scheme for the ∂

∂r
operator and

V (r) = − 92
r

. For κ = −1, we find six bound positive-energy
sea eigenfunctions and 506 continuum positive-energy sea
eigenfunctions. The ground state for κ = −1 has an energy
of −126 keV, while the highest energy continuum state has an
energy of 9432 keV. Increasing the number of lattice points will
drop the ground-state energy towards the experimental value
of −132 keV [14]. We also find 512 “filled” negative-energy
sea eigenfunctions. Six additional diagonalizations were made
for κ = +1, −2, +2, −3, +3, −4. The κ = −1 ground-state
eigenfunctions are used in the initial conditions of Eq. (24),
while the seven κ sets of continuum positive-energy sea
eigenfunctions are used in the cross-section projections found
in Eq. (25).

Using an intensity of 1018 W/cm2 and a photon energy of
200 keV, we propagated the TDCC equations for 10 radiation
field periods on a uniform time mesh with �t = 2.0 × 10−5.
We list 32 possible coupled channels in Table I. In lowest
order for both the Coulomb gauge of Eq. (16) and the Lorentz
gauge of Eq. (17), the 3j symbols involving l,l′ and j,j ′ greatly
restrict the possible coupled channels. Thus, the ground-state
channel 1 (1s 1

2
1
2 ) couples only to continuum channel 3 (εp 1

2
1
2 )

TABLE I. Coupled channels for the photoionization of U91+.

Channel κ j m l

1 −1 0.5 +0.5 0
2 −1 0.5 −0.5 0
3 +1 0.5 +0.5 1
4 +1 0.5 −0.5 1
5 −2 1.5 +1.5 1
6 −2 1.5 +0.5 1
7 −2 1.5 −0.5 1
8 −2 1.5 −1.5 1
9 +2 1.5 +1.5 2

10 +2 1.5 +0.5 2
11 +2 1.5 −0.5 2
12 +2 1.5 −1.5 2
13 −3 2.5 +2.5 2
14 −3 2.5 +1.5 2
15 −3 2.5 +0.5 2
16 −3 2.5 −0.5 2
17 −3 2.5 −1.5 2
18 −3 2.5 −2.5 2
19 +3 2.5 +2.5 3
20 +3 2.5 +1.5 3
21 +3 2.5 +0.5 3
22 +3 2.5 −0.5 3
23 +3 2.5 −1.5 3
24 +3 2.5 −2.5 3
25 −4 3.5 +3.5 3
26 −4 3.5 +2.5 3
27 −4 3.5 +1.5 3
28 −4 3.5 +0.5 3
29 −4 3.5 −0.5 3
30 −4 3.5 −1.5 3
31 −4 3.5 −2.5 3
32 −4 3.5 −3.5 3

and to continuum channel 6 (εp 3
2

1
2 ). The lowest order Coulomb

gauge cross section is found to be 139 b, while the lowest order
Lorentz gauge cross section is found to be 142 b.

Using the spherical Bessel function expansion of Eq. (18)
for K � 1, we solved the TDCC equations as found in
Eqs. (19) and (20) at the same photon energy of 200 keV. Since
the CKQ(r̂) spherical tensor operator removes restrictions on
m,m′ coupling, we carry out calculations involving the first
18 coupled channels of Table I, that is, (s 1

2m), (p 1
2m), (p 3

2m),
(d 3

2m), and (d 5
2m). The Coulomb gauge cross section is now

found to be 179 b, an almost 30% increase over the lowest
order result.

Using the spherical Bessel function expansion of Eq. (18)
for K � 2, we then solved the TDCC equations as found in
Eqs. (19) and (20) with the addition of terms involving j2(kr)
and σzC2Q(r̂) at again the same photon energy of 200 keV.
Using all 32 coupled channels of Table I, the Coulomb gauge
cross section is now found to be 172 b, indicating convergence
of the spherical Bessel function expansion.

Finally, we solved the TDCC equations for both K = 0
and K � 2 in the Coulomb gauge at photon energies of 150,
175, 200, and 250 keV. In Fig. 1, the TDCC cross sections are
compared with TIDW cross sections, obtained in lowest order
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FIG. 1. (Color online) Single photoionization of U91+. Solid
(blue) curve, TIDW calculations; squares (red), TDCC (K = 0)
calculations; circles (green), TDCC (K � 2) calculations (1.0 b =
1.0 × 10−24 cm2).

Lorentz gauge using Eq. (26) with Ip = 126 keV. The TDCC
K = 0 cross sections are found to be in good agreement with
the TIDW cross sections at all energies. The TDCC K � 2
cross sections are found to be consistently above the low-order
TDCC K = 0 and TIDW results.

IV. SUMMARY

Using the Dirac equation with a full electromagnetic-field
potential in both the Coulomb and Lorentz gauges, relativistic

time-dependent close-coupled equations were derived for the
single photoionization of one active electron highly charged
atomic ions. Key steps were the introduction of a spherical
Bessel function expansion and the reduction of matrix ele-
ments involving σzCKQ(r̂) tensor operators using a complete
sum over |κ ′′m′′〉 = |l′′s ′′j ′′m′′〉 coupled states. As a test case,
the single photoionization cross section for U91+ is found
to be converged using K � 2 spherical Bessel functions. At
photon energies ranging from 150 to 250 keV, the K � 2
time-dependent close-coupling cross sections are found to be
approximately 30% higher than low-order time-independent
distorted-wave cross sections.

In the future, we plan to derive relativistic time-dependent
close-coupling equations for two active electron highly
charged atomic ions which will include a full electromagnetic-
field potential and an electromagnetic and retardation two-
body operator. Total and differential cross sections will then
be calculated for single- and double-ionization processes
observed in x-ray-laser interactions with highly charged
atomic ions.
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