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A fully relativistic time-dependent close-coupling method is developed based on Dirac’s covariant formu-
lation of quantum mechanics. The expansion of a one-electron wave function in spin-orbit eigenfunctions
yields the well-known coupled Dirac equations in two radial wave functions, while the expansion of a two-
electron wave function in coupled spin-orbit eigenfunctions yields close-coupled Dirac equations in four radial
wave functions. The time-dependent Dirac equations are solved directly using numerical methods that avoid
the Fermi doubling pathology. Test calculations are carried out using the one-electron coupled equations for
j= 1

2 elastic potential scattering from Ne9+ at 2.00 keV and using the two-electron close-coupled equations for
J=0,1 ionization of Ne9+ at 4.15 keV.
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I. INTRODUCTION

The electron-impact direct ionization of an atom or
atomic ion yields two continuum electrons moving in the
Coulomb field of the residual ion: the quantal three-body
breakup problem. For neutral atoms and low-charged atomic
ions, a low-order perturbative treatment of the problem is not
very accurate. The perturbative distorted-wave method can
be up to 40% high for total peak cross sections, while for
certain energies and angles the differential cross sections can
be off by a factor of 2 or more. Over the last two decades the
converged close-coupling, R matrix with pseudostates, and
time-dependent close-coupling methods �1–3� have gener-
ated accurate total and differential ionization cross sections
for a number of atoms and low-charged ions using a nonper-
turbative solution of the nonrelativistic Schrödinger equa-
tion.

For highly charged atomic ions, a low-order perturbative
solution of the fully relativistic Dirac equation �4,5� is rea-
sonably accurate for total ionization cross sections. In the
next few years, experiments at new ion-beam facilities �6�
may be able to begin observations of differential ionization
cross sections for highly charged ions. Recently, convergent
close-coupling �7� and R matrix with pseudostates �8� meth-
ods have been developed based on a nonperturbative solution
of the fully relativistic Dirac equation. Although only model
problems were tested with the new methods, total and differ-
ential ionization cross sections of highly charged atomic ions
will appear soon.

In this paper, a time-dependent close-coupling method is
developed for the direct solution of the Dirac equation. Us-
ing spherical polar coordinates, a one-electron wave function
is expanded in spin-orbit eigenfunctions to derive the well-
known coupled Dirac equations in two radial wave functions
�9,10�. An expansion of a two-electron wave function in
coupled spin-orbit eigenfunctions yields close-coupled Dirac
equations in four radial wave functions �11�. The one- and
two-electron time-dependent Dirac equations are solved di-

rectly using numerical methods developed previously for the
one- and two-electron time-dependent Schrödinger equations
�12�. Care is taken to choose discretization methods that
avoid the Fermi doubling pathology �13�. The one-electron
time-dependent coupled equations are solved for j= 1

2 elastic
scattering off the Hartree potential for Ne9+ by 2.00 keV
incident electrons. The two-electron time-dependent close-
coupled equations are solved for J=0,1 ionization of Ne9+

by 4.15 keV incident electrons. In both test calculations,
comparisons are made with cross-section results obtained by
solving the time-dependent Schrödinger equation.

The rest of the paper is organized as follows. In Sec. II we
develop a fully relativistic time-dependent close-coupling
method for the electron-impact ionization of atomic ions. In
Sec. III we apply fully relativistic time-dependent methods to
calculate electron-impact elastic and inelastic cross sections
for Ne9+. In Sec. IV, we conclude with a summary and an
outlook for future work. Unless otherwise stated, all quanti-
ties are given in atomic units.

II. THEORY

A. General time-dependent equations

The time-dependent Dirac equation for one electron mov-
ing in the Coulomb field of the nucleus is given by �9,10�

i
��� �r�,t�

�t
= H�r���� �r�,t� , �1�

where

H�r�� = � V�r� c�� · p��r��
c�� · p��r�� V�r� − 2c2 � , �2�

V�r�=− Z
r , Z is the nuclear charge, �� are the Pauli matrices,

and p��r��=−i�. The one-electron wave function may be ex-
panded in spin-orbit eigenfunctions,
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�� �r�,t� =�
P��r,t�

r
�+�,m��,��

i
Q��r,t�

r
�−�,m��,�� � , �3�

where

��,m��,�� = 	
ml,ms

Cmlmsm
lsj Ylml

��,���ms
, �4�

�=−�l+1� for j= l+ 1
2 , �=+l for j= l− 1

2 , s= 1
2 , Cmlmsm

lsj is a
Clebsch-Gordan coefficient, Ylm�� ,�� is a spherical har-
monic, and �ms

is a two-component spinor. Substitution of
Eq. �3� into Eq. �1� and projection onto the spin-orbit eigen-

functions yields the time-dependent coupled equations,

i
�P��r,t�

�t
= V�r�P��r,t� − c� �

�r
−

�

r
�Q��r,t� , �5�

i
�Q��r,t�

�t
= �V�r� − 2c2�Q��r,t� + c� �

�r
+

�

r
�P��r,t� . �6�

The time-dependent Dirac equation for two electrons
moving in the Coulomb field of the nucleus is given by �11�

i
��� �r�1,r�2,t�

�t
= H�r�1,r�2��� �r�1,r�2,t� , �7�

where

H�r�1,r�2� =�
V�r�1,r�2� c�� · p�1 c�� · p�2 0

c�� · p�1 V�r�1,r�2� − 2c2 0 c�� · p�2

c�� · p�2 0 V�r�1,r�2� − 2c2 c�� · p�1

0 c�� · p�2 c�� · p�1 V�r�1,r�2� − 4c2
� , �8�

V�r�1 ,r�2�=V�r1�+V�r2�+ 1

r�1−r�2
 , and one neglects magnetic and retardation effects. The two-electron wave function may be

expanded in coupled spin-orbit eigenfunctions for each total angular-momentum symmetry J,

�� �r�1,r�2,t� =�
	
j1,j2

PP�1�2

J �r1,r2,t�

r1r2
	

m1,m2

Cm1m2M
j1j2J �+�1,m1

��1,�1��+�2,m2
��2,�2�

i 	
j1,j2

QP�1�2

J �r1,r2,t�

r1r2
	

m1,m2

Cm1m2M
j1j2J �−�1,m1

��1,�1��+�2,m2
��2,�2�

i 	
j1,j2

PQ�1�2

J �r1,r2,t�

r1r2
	

m1,m2

Cm1m2M
j1j2J �+�1,m1

��1,�1��−�2,m2
��2,�2�

	
j1,j2

QQ�1�2

J �r1,r2,t�

r1r2
	

m1,m2

Cm1m2M
j1j2J �−�1,m1

��1,�1��−�2,m2
��2,�2�

� , �9�

where Cm1m2m3

j1j2j3 are Clebsch-Gordan coefficients. Substitution of Eq. �9� into Eq. �7� and projection onto the coupled spin-orbit
eigenfunctions yields the time-dependent close-coupled equations,

i
�PP�1�2

J �r1,r2,t�

�t
= �V�r1� + V�r2��PP�1�2

J �r1,r2,t� + 	
�1�,�2�

W+�1,+�2,+�1�,+�2�
J �r1,r2�PP�1��2�

J �r1,r2,t�

− c� �

�r1
−

�1

r1
�QP�1�2

J �r1,r2,t� − c� �

�r2
−

�2

r2
�PQ�1�2

J �r1,r2,t� , �10�

i
�QP�1�2

J �r1,r2,t�

�t
= �V�r1� + V�r2� − 2c2�QP�1�2

J �r1,r2,t� + 	
�1�,�2�

W−�1,+�2,−�1�,+�2�
J �r1,r2�QP�1��2�

J �r1,r2,t�

+ c� �

�r1
+

�1

r1
�PP�1�2

J �r1,r2,t� + c� �

�r2
−

�2

r2
�QQ�1�2

J �r1,r2,t� , �11�
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i
�PQ�1�2

J �r1,r2,t�

�t
= �V�r1� + V�r2� − 2c2�PQ�1�2

J �r1,r2,t� + 	
�1�,�2�

W+�1,−�2,+�1�,−�2�
J �r1,r2�PQ�1��2�

J �r1,r2,t�

+ c� �

�r1
−

�1

r1
�QQ�1�2

J �r1,r2,t� + c� �

�r2
+

�2

r2
�PP�1�2

J �r1,r2,t� , �12�

i
�QQ�1�2

J �r1,r2,t�

�t
= �V�r1� + V�r2� − 4c2�QQ�1�2

J �r1,r2,t� + 	
�1�,�2�

W−�1,−�2,−�1�,−�2�
J �r1,r2�QQ�1��2�

J �r1,r2,t�

− c� �

�r1
+

�1

r1
�PQ�1�2

J �r1,r2,t� − c� �

�r2
+

�2

r2
�QP�1�2

J �r1,r2,t� . �13�

The electron-electron coupling operator is given by

W�1,�2,�1�,�2�
J �r1,r2� = �− 1�2j1�+j2+j2�+J+1��2l1 + 1��2l1� + 1��2l2 + 1��2l2� + 1���2j1 + 1��2j1� + 1��2j2 + 1��2j2� + 1�

� 	
	

r

	

r�
	+1�l1 	 l1�

0 0 0
��l2 	 l2�

0 0 0
�� l1

1

2
j1

j1� 	 l1�

� l2

1

2
j2

j2� 	 l2�

� j1 j2 J

j2� j1� 	
� , �14�

where r
=min�r1 ,r2�, r�=max�r1 ,r2�, and standard 3j and
6j symbol notation is used.

A complete set of single-particle radial orbitals, P���r�
and Q���r�, may be obtained by Hamiltonian diagonalization
of the one-electron radial Dirac equation given by

� V�r� − 2c2 c� �

�r
+

�

r
�

− c� �

�r
−

�

r
� V�r� ��Q���r�

P���r�
� = ��Q���r�

P���r�
� ,

�15�

where the total energy E=�+c2. For electron scattering from
highly charged ions, the incoming large component radial
wave packet is given by

F��r� = Ne−�r − a�2/2w2
e−i�pr+q̃/p ln�2pr�−l̃
/2+�l̃�, �16�

where N is a normalization constant, a is the localization
radius of the wave packet, w is the width of the wave packet,
p=��2+2c2� /c is the relativistic momentum, q̃=q�1+ �

c2 �, q

is the asymptotic charge, l̃�l̃+1�=���+1�− �q2 /c2�, and �l̃ is
the Coulomb phase shift. From Eq. �15� the incoming small
component radial wave packet is given by

G��r� =
c

� + 2c2 +
q

r

� a

w2 −
r

w2 − i�p +
q̃

pr
� +

�

r
�F��r� .

�17�

B. One-electron elastic scattering

The one-electron time-dependent coupled �TDC� equa-
tions of Eqs. �5� and �6� may be used to investigate electron-

impact elastic potential scattering from hydrogenic ions. The
initial radial wave functions are given by

P��r,t = 0� = F��r� , �18�

Q��r,t = 0� = G��r� . �19�

For scattering off ions in the ground state, the TDC equations
are propagated in the potentials

Va�r� = −
Z

r
+ �

0

� 1

r�

��P1s�1/2��r���2 + �Q1s�1/2��r���2�dr�

�20�

and

Vb�r� = −
�Z − 1�

r
, �21�

where P1s�1/2��r� and Q1s�1/2��r� are obtained by diagonaliza-
tion of the Hamiltonian with V�r�=− Z

r . Following time
propagation of the TDC equations, the elastic potential scat-
tering probability is given by

P��� = 	
��0
��

0

�

drP���r��P�
a�r,t → �� − P�

b�r,t → ���

+ �
0

�

drQ���r��Q�
a�r,t → �� − Q�

b�r,t → ����2

,

�22�

where P���r� and Q���r� are obtained by diagonalization of
the Hamiltonian with V�r�=− �Z−1�

r . The total elastic potential
scattering cross section is given by
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�pot =



4�0
	
�

�2j + 1�P��� , �23�

where �0 is the incident energy.

C. Two-electron inelastic scattering

The two-electron time-dependent close-coupled �TDCC�
equations of Eqs. �10�–�13� may be used to investigate
electron-impact ionization of hydrogenic ions. The initial ra-
dial wave functions are constructed as symmetric or antisym-
metric products of the bound radial orbital of one electron
and the incoming radial wave packet of the other electron.
For example, for 1s 1

2�s 1
2 J=0,1 even-parity scattering, the

initial radial wave functions are given by

PP�1=−1�2=−1
J �r1,r2,t = 0�

=�1

2
�P1s�1/2��r1�F�s�1/2��r2� + �− 1�JF�s�1/2��r1�

�P1s�1/2��r2�� , �24�

QP�1=−1�2=−1
J �r1,r2,t = 0�

=�1

2
�Q1s�1/2��r1�F�s�1/2��r2� + �− 1�JG�s�1/2��r1�

�P1s�1/2��r2�� , �25�

PQ�1=−1�2=−1
J �r1,r2,t = 0�

=�1

2
�P1s�1/2��r1�G�s�1/2��r2� + �− 1�JF�s�1/2��r1�

�Q1s�1/2��r2�� , �26�

QQ�1=−1�2=−1
J �r1,r2,t = 0�

=�1

2
�Q1s�1/2��r1�G�s�1/2��r2� + �− 1�JG�s�1/2��r1�

�Q1s�1/2��r2�� , �27�

with all other PP�1�2

J �r1 ,r2 , t=0�, QP�1�2

J �r1 ,r2 , t=0�,
PQ�1�2

J �r1 ,r2 , t=0�, and QQ�1�2

J �r1 ,r2 , t=0� radial wave
functions for �1�−1 and �2�−1 set to zero. Following time
propagation of the TDCC equations, the total ionization
probability is given by

P�J� = 2 	
�1,�2

	
�1��2

	
�2�0

��
0

�

dr1�
0

�

dr2P�1�1
�r1�P�2�2

�r2�PP�1�2

J �r1,r2,t → ��

+ �
0

�

dr1�
0

�

dr2Q�1�1
�r1�P�2�2

�r2�QP�1�2

J �r1,r2,t → ��

+ �
0

�

dr1�
0

�

dr2P�1�1
�r1�Q�2�2

�r2�PQ�1�2

J �r1,r2,t → ��

+ �
0

�

dr1�
0

�

dr2Q�1�1
�r1�Q�2�2

�r2�QQ�1�2

J �r1,r2,t → ���2

. �28�

The total ionization cross section is given by

�ion =



8�0
	

parity
	

J

�2J + 1�P�J� , �29�

where �0 is the incident energy.

III. RESULTS

A. One-electron elastic scattering

To construct the Hartree potential of Eq. �20� for Ne9+, we
begin by a diagonalization of the Hamiltonian of Eq. �15�
with �=−1 and V�r�=− 10

r . We choose a 500 point mesh with
a uniform mesh spacing of �r=0.01. For the discretization
choice

�P�r�
�r

=
P�ri+1� − P�ri−1�

2�r
, �30�

�Q�r�
�r

=
Q�ri+1� − Q�ri−1�

2�r
, �31�

we obtain a complete set of 500 “negative-energy sea” solu-
tions, spanning �1=−190,687 eV to �500=−69.1 eV, and a
complete set of 500 “positive-energy sea” solutions, span-
ning �1=−1362.4 eV to �500=+143,275 eV. The symmetric
discretization of Eqs. �30� and �31� results in a doubling of
some of the positive-energy sea eigenvalues, that is, �2=�3
=−341.1 eV and �4=�5=−151.6 eV. For the discretization
choice
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�P�r�
�r

=
3P�ri+1� + 10P�ri� − 18P�ri−1� + 6P�ri−2� − P�ri−3�

12�r
,

�32�

�Q�r�
�r

=
Q�ri+3� − 6Q�ri+2� + 18Q�ri+1� − 10Q�ri� − 3Q�ri+1�

12�r
,

�33�

the Fermi doubling problem �13� is removed. In other words,
central differences lead to a bivalued relativistic energy dis-
persion relation, while backward-forward differences lead to
a single valued relativistic energy dispersion relation �see
Fig. 1 of Ref. �14��. The lowest-energy positive-energy sea
eigenfunctions, P1s�1/2��r� and Q1s�1/2��r�, are then used to
construct the ground-state Hartree potential for Ne9+.

The TDC equations of Eqs. �5� and �6� with �=−1 are
propagated for 25 000 time steps with a uniform time step of
�t=0.000 02 using both potentials Va�r� of Eq. �20� and
Vb�r� of Eq. �21� with Z=10. Radial derivatives make use of
the nonsymmetric discretization choice of Eqs. �32� and �33�.
The initial conditions of Eqs. �18� and �19� use radial wave
packets with an incident energy of 2.00 keV, a localization
radius of a=2.50, and a width of w=0.625. Following time
propagation of the TDC equations, the elastic potential scat-
tering probability is extracted using Eq. �22� with the 494
��0 positive-energy sea eigenfunctions found from diago-
nalization of the Hamiltonian with V�r�=− 9

r . The j= 1
2 elastic

Hartree potential scattering cross section for Ne9+ at 2.00
keV from Eq. �23� is found to be 15.5 kb, where 1.0 kb
=1.0�10−21 cm2. A similar calculation using the time-
dependent Schrödinger equation �12� yields an l=0 cross
section of 16.3 kb. Additional calculations obtained by inte-
grating the time-independent radial Schrödinger and Dirac
equations for Hartree potential phase shifts yield similar
s-wave elastic potential cross sections.

B. Two-electron inelastic scattering

To calculate the J=0,1 ionization cross section for Ne9+,
we begin by diagonalization of the Hamiltonian of Eq. �15�
with �= �1, �2, �3 and V�r�=− 10

r . We choose a 512 point
mesh with a uniform mesh spacing of �r=0.01 and the non-
symmetric radial discretization of Eqs. �32� and �33�. The
initial conditions of Eqs. �24�–�27�, on a 512�512 point
lattice with �r1=�r2=0.01, use the lowest-energy positive-
energy sea eigenfunctions P1s�1/2��r� and Q1s�1/2��r� from the
�=−1 diagonalization and radial wave packets with an initial
energy of 4.15 keV, a localization radius of a=2.50, and a
width of w=0.625.

The TDCC equations of Eqs. �10�–�13� for the six
coupled channels listed in Table I are propagated for 36 000
time steps with a uniform time step of �t=0.000 01. Radial
derivatives make use of the nonsymmetric discretization
choice, that is, Eq. �32� for �

�r1
and �

�r2
on PP�1�2

J �r1 ,r2 , t�, Eq.

�33� for �
�r1

and �
�r2

on QQ�1�2

J �r1 ,r2 , t�, and appropriate mix-
tures for QP�1�2

J �r1 ,r2 , t� and PQ�1�2

J �r1 ,r2 , t�. To make use
of massively parallel computers, the 512�512 point lattice
is partitioned over processors in the r2 coordinate. Following

time propagation of the TDCC equations, the ionization
probabilities are extracted using Eq. �28� with the appropri-
ate simple products of P�1�1

�r1�P�2�2
�r2� positive-energy sea

eigenfunctions and �1��2�0. The J=0 ionization cross sec-
tion for Ne9+ at 4.15 keV from Eq. �29� is found to be 0.291
kb, while the J=1 cross section is 0.045 kb. A similar four
coupled channels calculation using the time-dependent
Schrödinger equation yields an L=0, S=0 cross section of
0.295 kb and an L=0, S=1 cross section of 0.057 kb. Addi-
tional calculations obtained using perturbative distorted-
wave methods for the time-independent Schrödinger and
Dirac equations yield similar total s-wave ionization cross
sections. We note that while the number of coupled channels
needed for s-wave cross sections is relatively small, the num-
ber of coupled channels needed for higher l-wave cross sec-
tions can become quite sizeable.

IV. SUMMARY

In analogy with the derivation of the time-dependent
coupled Dirac equations for one electron in a central field,
the time-dependent close-coupled Dirac equations have been
derived for two electrons moving in a central field and inter-
acting through an electrostatic repulsion. Each coupled chan-
nel is described by four radial wave functions, while the
interaction between coupled channels is expressed in terms
of a standard multipole expansion of the electrostatic opera-
tor. Standard numerical methods that avoid the Fermi dou-
bling problem are used to formulate initial value conditions,
propagate the time-dependent equations, and extract scatter-
ing probabilities and cross sections. Test calculations using
the one-electron coupled equations are found to give a rea-
sonable j= 1

2 elastic Hartree potential scattering cross section
for Ne9+ at 2.00 keV incident energy. Further test calcula-
tions using the two-electron close-coupled equations are
found to give reasonable J=0,1 ionization cross sections for
Ne9+ at 4.15 keV incident energy.

In the future, the application of the fully relativistic time-
dependent close-coupling method to the electron-impact ion-
ization of highly charged atomic ions will be quite challeng-
ing. The small radial mesh spacings and time propagation
steps needed will necessitate a partition of the 2D radial lat-
tice over computing processors in both the r1 and r2 coordi-
nates. As has been shown in perturbative distorted-wave cal-
culations for highly charged ions �4,5�, additional magnetic

TABLE I. Fully relativistic coupled channels for J=0 and 1 and
even parity.

Channel l1 j1 �1 l2 j2 �2

1 0 1
2 −1 0 1

2 −1

2 1 1
2 +1 1 1

2 +1

3 1 3
2 −2 1 3

2 −2

4 2 3
2 +2 2 3

2 +2

5 2 5
2 −3 2 5

2 −3

6 3 5
2 +3 3 5

2 +3
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and retardation effects must be included in the electron-
electron interaction. Finally, the calculation of experimen-
tally observable nonperturbative effects in the electron ion-
ization of highly charged ions will probably require the
calculation of detailed energy and angle differential cross
sections.
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