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Electron-impact ionization cross sections for diatomic molecules are calculated in a configuration-average
distorted-wave method. Core bound orbitals for the molecular ion are calculated using a single-configuration
self-consistent-field method based on a linear combination of Slater-type orbitals. The core bound orbitals are
then transformed onto a two-dimensional �r ,�� numerical lattice from which a Hartree potential with local
exchange is constructed. The single-particle Schrödinger equation is then solved for the valence bound orbital
and continuum distorted-wave orbitals with S-matrix boundary conditions. Total cross section results for H2

and N2 are compared with those from semiempirical calculations and experimental measurements.
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I. INTRODUCTION

Electron-impact ionization of diatomic molecules is an
important collision process in many different areas of phys-
ics and chemistry. For example, electron ionization of H2 and
other first-row-element diatomic molecules is important in
understanding divertor plasma dynamics in controlled fusion
experiments �1�. In addition, the electron ionization of di-
atomic molecules is an example of the quantal three-body
Coulomb breakup problem involving a nonspherical nuclear
field. As such, it serves as a testing ground for the develop-
ment of new theoretical methods to explain the increasingly
detailed observations of the low-energy three-body breakup
process �2�.

Perturbative distorted-wave calculations of energy and
angle differential cross sections for the electron ionization
of diatomic molecules rely on accurate single-particle mo-
lecular continuum wave functions �3�. Nonperturbative
R-matrix-with-pseudostates and time-dependent close-
coupling calculations of total cross sections have been re-
cently completed for the electron ionization of H2

+ �4� and
H2 �5,6�. Extensions of the nonperturbative time-dependent
close-coupling method to calculate energy and angle differ-
ential cross sections for the electron ionization of diatomic
molecules will also rely on accurate molecular continuum
wave functions as projection states.

As widely used for atomic targets, single-particle con-
tinuum wave functions may be obtained by expansion in
spherical harmonics and numerical solution of the resulting
one-dimensional �1D� radial Schrödinger equation. Although
certainly viable for simple targets like H2, such single-center
spherical expansions for heavier molecules may become dif-
ficult to converge. Beginning with the pioneering work of
Tully and Berry �7�, single-particle continuum wave func-
tions may also be obtained by expansion in rotational

functions and numerical solution of the resulting 2D radial
and angular Schrödinger equation �8,9�.

Recently, we extended a configuration-average distorted-
wave �CADW� method for atoms �10� to handle the calcula-
tion of electron-impact excitation and ionization cross sec-
tions for diatomic molecules �11�. The molecular CADW
method relies on single-particle continuum wave functions
obtained by solution of a 2D radial and angular Schrödinger

equation. The CADW ionization cross sections for H2
+ �11�

were found to be in excellent agreement with previous
distorted-wave calculations using single-particle continuum
wave functions calculated in separable prolate spheroidal co-
ordinates �12�. However, recent CADW ionization cross sec-
tions for H2 �6� were found to be somewhat larger than
expected, based on comparisons of CADW ionization
cross sections with nonperturbative theory and experiment
for He �13�.

In this paper, we repeat our CADW calculations for the
single ionization of H2 using a modified version of the algo-
rithm used to obtain single-particle continuum wave func-
tions by solution of a 2D radial and angular Schrödinger
equation. The key modification is the inclusion of the full
S matrix in the numerical solution of the 2D radial and an-
gular Schrödinger equation. This appears to completely
eliminate all l mixing for neutral molecule scattering, no
matter what the choice of box size. In addition, we make

further CADW calculations for the single ionization of
N2�1�g

+�→N2
+�2�g

+�. In Sec. II we review the CADW cross
section expressions and then present the new theory for the
single-particle continuum wave functions. In Sec. III we
present ionization cross sections for H2 and N2 and compare
them with binary encounter Bethe calculations and experi-
ment. In Sec. IV we give a brief summary. Unless otherwise
stated, all quantities are given in atomic units.
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II. THEORY

A. Distorted-wave ionization cross section

For atoms and diatomic molecules, the direct ionization
cross section may be calculated using a configuration-
average distorted-wave method �10,11�. The most general
transition between configurations of a diatomic molecule is
of the form

�nl��w�ili�i → �nl��w−1�ele�e� flf� f , �1�

where w is the occupation number, and nl�, �ili�i, �ele�e, and
� flf� f are the quantum numbers of the bound valence elec-
tron and the incident, ejected, and final continuum electrons
��= �m� is the absolute value of the magnetic quantum num-
ber�. The configuration-average ionization cross section is
given by
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where the total energy E=�nl�+�i=�e+� f, �=k2 /2, S���
=2�2−��,0� is the statistical weight of the nl� orbital, and the
continuum normalization is chosen as one times a sine
function.

The direct scattering term is given by
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where q= �me−m � �k and q�= �me−m � �k�. The exchange
scattering term is given by
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where q= �mi−me � �k and q�= �mi−me � �k�. The cross scat-
tering term is given by
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where q= �me−m � �k and q�= �mi−me � �k�.
In all three scattering terms � f = �mi+m−me � � lf and the

�r ,�� polar coordinate integral is given by

Rkq�� flf� f,�ele�e;�ili�i,nl�� = �
0

	

dr1�
0

	

dr2
r


k

r�
k+1�

0

�

d�1�
0

�

d�2Pq
k�cos �1�Pq�

k��cos �2�

� u�flf�f

* �r1,�1�u�ele�e

* �r2,�2�u�ili�i
�r1,�1�unl��r2,�2� , �6�

where Pq
k�cos ��= �−1�q�4��k+q� ! / �2k+1��k−q�!Ykq�� ,
�

=0 are associated Legendre functions, unl��r ,�� are bound
reduced orbitals, and u�l��r ,�� are continuum reduced orbit-
als. The bound and continuum reduced orbitals are defined
by

��r,�,
� =
u�r,��
r�sin �

eim


�2�
, �7�

where ��r ,� ,
� is the spatial part of the single-particle wave
function and the bound normalization is 	0

	dr	0
�d��u�r ,���2

=1.

B. Molecular ion potential

The bound orbitals for the molecular ion are calculated
using a single-configuration self-consistent-field method
based on a linear combination of Slater-type orbitals �14�.
The molecular bound orbitals are then transformed �15� onto
a two-dimensional �r ,�� numerical lattice to yield bound re-

duced orbitals unl��r ,��. Using the molecular bound orbitals
we construct a Hartree potential with local exchange given
by

VHX�r,�� = Vdirect�r,�� + �Vexchange�r,�� , �8�

where � is an adjustable parameter used to achieve the ex-
perimental ionization potential for the valence bound orbital
of the molecule. The direct potential is given by

Vdirect�r,�� = �
k
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The local exchange potential is given by
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Vexchange�r,�� = −
1

2
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, �11�

where

��r,�� = �
nl�

wnl�
�unl��r,���2

2�r2sin �
. �12�

The sums in Eqs. �10� and �12� are over all bound orbitals for
the molecular ion, weighted by their occupation numbers
wnl�.

C. Molecular wave functions

The bound and continuum orbitals needed to calculate the
configuration-average ionization cross section of Eq. �2� are
found by solution of the single-particle Schrödinger equation
given by


−
1

2
�2 + Vnuclear�r,�� + VHX�r,�� − ����r,�,
� = 0.

�13�

The nuclear potential is given by

Vnuclear�r,�� = −
Z

�r2 +
1

4
R2 − rR cos �

−
Z

�r2 +
1

4
R2 + rR cos �

, �14�

where Z is the charge on each nucleus of a homonuclear
diatomic molecule and R is the internuclear separation dis-
tance. The variational principle applied to Eq. �13� for a re-
duced orbital on a two-dimensional �r ,�� numerical lattice
yields

Ku�ri,� j� + �Vcentrifugal�ri,� j� + Vnuclear�ri,� j�

+ VHX�ri,� j� − ��u�ri,� j� = 0. �15�

For low-order finite differences with uniform lattice spacings
�r and ��, the effect of the kinetic energy operator is given
by

Ku�ri,� j� = −
1

2

 ciu�ri+1,� j� + ci−1u�ri−1,� j� − c̄iu�ri,� j�

�r2 �
−

1

2ri
2
dju�ri,� j+1� + dj−1u�ri,� j−1� − d̄ju�ri,� j�

��2 � ,

�16�

where ci=ri+1/2
2 /riri+1, c̄i= �ri+1/2

2 +ri−1/2
2 � /ri

2, dj =sin � j+1/2 /

�sin � j sin � j+1, and d̄j = �sin � j+1/2+sin � j−1/2� / sin � j. The
centrifugal potential is given by

Vcentrifugal�r,�� =
�2

2r2 sin2�
. �17�

The valence bound orbital needed to calculate the
configuration-average ionization cross section of Eq. �2� is
found by matrix diagonalization of the one-electron Hamil-
tonian found in Eq. �15�. For Nr=3 and N�=2 the Hamil-
tonian matrix has the block tridiagonal form

H =�
T11 D11 C1 0 0 0

D11 T12 0 C1 0 0

C1 0 T21 D21 C2 0

0 C1 D21 T22 0 C2

0 0 C2 0 T31 D31

0 0 0 C2 D31 T32


 ,

�18�

where Tij = c̄i /2�r2+ d̄j /2ri
2��2+V�ri ,� j�, Dij =−dj /2ri

2��2,
and Ci=−ci /2�r2. The parameter � is adjusted in the Hartree
potential with local exchange until the matrix diagonalization
yields an eigenenergy that agrees with the experimental ion-
ization potential for the valence bound orbital.

The many continuum orbitals needed to calculate the
configuration-average ionization cross section of Eq. �2� are
found by recasting the one-electron Schrödinger equation of
Eq. �15� and the large-r boundary conditions for the con-
tinuum orbital as a system of linear equations Au=b. Fol-
lowing standard WKB theory, we choose S-matrix boundary
conditions with long-range unit normalization such that

ukl��r,�� = Fkl��r,�� + �
l�

Sll�Gkl���r,�� , �19�

where

Fkl��r,�� =� k

4zl�r�
ei
̄l�r�P̄l���� , �20�

Gkl��r,�� =� k

4zl�r�
e−i
̄l�r�P̄l���� , �21�

P̄l����=�2� sin �Yl��� ,
=0� is a normalized associated

Legendre function, zl�r�=d
̄l�r� /dr, 
̄l�r�=kr+ �q /k�ln 2kr
− l� /2+�l, k=�2� is the linear momentum, l is the angular
momentum, q is the asymptotic charge, and �l is the Cou-
lomb phase shift. For Nr=3 and N�=2 the continuum linear
equations have the block tridiagonal form
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�
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 , �22�

where uij =u�ri ,� j�, Fij
l =Fkl��ri ,� j�, and Gij

l =Gkl��ri ,� j�. The
elements of the X and Y matrices are given by X31

l = �T31

−��G31
l +C3G41

l +D31G32
l , X32

l = �T32−��G32
l +C3G42

l +D31G31
l ,

Y31
l = �T31−��F31

l +C3F41
l +D31F32

l , and Y32
l = �T32−��F32

l

+C3F42
l +D31F31

l . We derive Eq. �22� from Eq. �15�, using
Eq. �19� for the radial lattice points i=Nr and Nr+1 in the
form

uij = Fij
l + Sll1

Gij
l1 + Sll2

Gij
l2. �23�

We solve for u by standard LU decomposition of the matrix
A. We note that u contains a discrete representation of the
complex continuum orbital unl��r ,��, and elements of the S
matrix. A key element in guarding against l mixing in the
continuum orbitals is to solve for the normalized associated

Legendre functions P̄l���� by matrix diagonalization of the
angular part of the one-electron Hamiltonian found in Eq.
�15�. For Nr=N�=2 the angular Hamiltonian matrix has the
tridiagonal form

Hangular =� d̄1

��2 +
�2

sin2�1

−
d1

��2

−
d1

��2
d̄2

��2 +
�2

sin2�2


 . �24�

III. RESULTS

The configuration-average distorted-wave method was
used to calculate the electron-impact ionization cross section
for H2 at an internuclear separation of R=1.4. We employ a
3000�32 point lattice in �r ,�� spherical polar coordinates
with a uniform mesh spacing of �r=0.1 and ��=0.03125�.
Using a single-configuration self-consistent-field 1s� mo-
lecular orbital for H2

+ at R=1.4 �14,15�, the exchange poten-
tial parameter � is adjusted in the diagonalization of Eq. �15�
to yield a 1s� valence orbital for H2 with an ionization po-
tential of 15.4 eV. Partial cross sections are calculated for
li=0–9 and �i=0–4 and extrapolated to higher li and �i
using appropriate fitting functions. Total cross sections are
calculated at incident energies from �i=20 to 100 eV and
then interpolated over intermediate energies using a B-spline
fitting function.

Electron-impact ionization cross section results for H2 at
R=1.4 are presented in Fig. 1. The CADW results, shown as
the solid line, are about 30% higher than results of an elec-

tron beam and gas cell experiment �16� near the peak of the
cross section. We note that similar CADW results for the He
atom are also about 30% higher than experiment near the
peak of the cross section. For comparison, we also present
the ionization cross section for H2 as calculated using a one-
parameter binary encounter Bethe �BEB� method, shown as
the dashed line. The BEB ionization cross section is given by
�17�

�ion = 4�w
 IH

Is
�2� 1

2
ln�u�
1 −

1

u2� + 1 −
1

u
−

ln�u�
u + 1

u + 2

 ,

�25�

where u=E / Is, E is the incident energy, IH=13.6 eV is the
ionization potential of atomic hydrogen, and Is=15.4 eV is
the ionization potential of molecular hydrogen. The semi-
empirical binary encounter method has been extensively
generalized to accurately predict total ionization cross sec-
tions for many atoms and molecules and their ions �18�.
We also note that recent ab initio nonperturbative
R-matrix-with-pseudostates �5� and time-dependent close-
coupling �6� calculations of total cross sections for the
electron-impact ionization of H2 are in excellent agreement
with experiment.
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FIG. 1. Electron-impact ionization of H2. Solid curve,
configuration-average distorted-wave method; dashed curve, binary
encounter Bethe method; solid circles, experiment �16� �1 Mb
=10−18 cm2�.
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The configuration-average distorted-wave method was
used to calculate the electron-impact ionization cross section
for N2�1�g

+�→N2
+�2�g

+� at an internuclear separation of

R=2.1. We employ a 15,000�32 point lattice in �r ,��
spherical polar coordinates with a uniform mesh spacing of
�r=0.02 and ��=0.03125�. Using single-configuration
self-consistent-field 1s�, 2s�, 2p�, 2p�, 3s�, and 3p� mo-
lecular orbitals for N2

+ at R=2.1 �14,15�, the exchange po-
tential parameter � is adjusted in the diagonalization of Eq.
�15� to yield a 3s� valence orbital for N2 with an ionization
potential of 15.7 eV. Partial cross sections are calculated for
li=0−10 and �i=0–6, and extrapolated to higher li and �i
using appropriate fitting functions. Total cross sections are
calculated at incident energies from �i=20 to 100 eV and
then interpolated over intermediate energies using a three-
parameter fitting function.

Electron-impact ionization cross section results for N2 at
R=2.1 are presented in Fig. 2. The CADW results, shown as
the solid line, are about 50% higher than an electron beam,
gas cell, and laser-induced fluorescence experiment �19� near
the peak of the cross section. We note that similar CADW
results for the Si atom are also about 50% higher than ex-
periment near the peak of the cross section. For comparison
we also present BEB results with Is=15.7 eV, shown as the
dashed line.

IV. SUMMARY

In conclusion, we have applied a configuration-average
distorted-wave method to calculate electron-impact ioniza-
tion cross sections for H2 and N2. A single-configuration self-
consistent-field method was used to generate the molecular
orbitals for H2

+ and N2
+ needed to construct a Hartree poten-

tial with local exchange. Valence bound orbitals for H2 and
N2 were obtained by matrix diagonalization of the single-
particle Schrödinger equation. Distorted-wave continuum or-
bitals were obtained using a new algorithm to solve the 2D
radial and angular Schrödinger equation. The key modifica-
tion is the inclusion of the full S matrix in the standard LU
decomposition numerical method. Total distorted-wave cross
section results for H2 and N2 are found to be between 30%
and 50% higher than recent experimental measurements, in
keeping with the usual range of accuracy found for distorted-
wave calculations of the electron ionization of ground-state
neutral atoms.

In the future, we plan to apply the molecular CADW
method to calculate electron-impact excitation and ionization
processes in a wide variety of diatomic molecules and their
ions. Although the number of radial grid points needed to
adequately describe the heavier diatomic molecules, like N2,
may be significantly reduced by employing a variable mesh
spacing, the overall accuracy of a first-order perturbative
method remains limited. On the other hand, the further de-
velopment and application of nonperturbative approaches,
like the R-matrix-with-pseudostates and time-dependent
close-coupling methods, will improve the accuracy of truly
ab initio predictions of electron ionization cross sections for
molecules. In addition, the new CADW method for solving
the 2D radial and angular Schrödinger equation for con-
tinuum distorted-waves is being used with great success to
produce projection states to extract energy and angle differ-
ential cross sections in nonperturbative time-dependent
close-coupling calculations for the double photoionization of
H2 �20� and the electron single ionization of H2 and other
diatomic molecules.
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