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We report results from collinear time-dependent close-coupling �TDCC�, distorted-wave �DW�, and R matrix
with pseudostates calculations for the electron-impact ionization of H-like ions up to Z=6 within an s-wave
model. We compare the results of these calculations with those from a collinear classical trajectory Monte
Carlo calculation to investigate the correspondence between the quantal and classical ionization probabilities as
the principal quantum number of the initial state increases. In these model calculations, the electron-electron
interaction is represented by the collinear s-wave potential given by 1/ �r1+r2�. We study the ionization
probability from the ground state and highly excited states up to n=25 as a function of incident energy and the
charge of the ion. We show that the fully quantal ionization probability converges to the classical results
rapidly for hydrogen. The higher ion stages exhibit much slower convergence with respect to n. We observed
good agreement between the DW and TDCC for the n range we have considered for B4+. For hydrogen, we
found fairly good agreement between the DW and TDCC for the ground state, but the worsening disagreement
with increasing n. There is reasonable agreement between the results from the R-matrix calculations and the
results from the TDCC calculations confirming the convergence of the TDCC results.
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I. INTRODUCTION

According to the Bohr correspondence principle, the
quantum mechanical description of a physical system should
yield classical dynamics in the appropriate limit. Although
there is no common agreement on how this limit should be
defined, the most widely accepted definition is in terms of
large quantum numbers. The classical-quantum correspon-
dence in this context has been subject of many theoretical
studies �1–3� as well as to experiments with Rydberg atoms
�4�. There are systems which were found to violate the cor-
respondence principle �2� as well as ones that fulfilled it
exactly without taking any limits �3�. In a recent experiment
by Nagesha and MacAdam �5�, highly excited Na Rydberg
atoms with principal quantum numbers of n=35−51 re-
vealed quite large electron-impact ionization cross sections
compared to a formula designed to estimate the ionization
cross sections out of excited states within an n-manifold, and
a theory �6� based on low-n data. The discrepancy between
the experiment and the theoretical models suggests that elec-
tron impact ionization from Rydberg states may exhibit pe-
culiar dynamics.

Ionization by electron impact out of highly excited states
would be expected to yield cross sections that are consistent
with classical models at sufficiently high quantum numbers.
However, the convergence to classical dynamics may very
well depend on the properties of the atom, such as its ionic
charge or the strength that the electron interacts with an ex-
ternal system or source. The question as to how well the
atomic electron can be described classically as the principal
quantum number increases is the focus of the present study.
We investigate electron-impact ionization of H-like ions up
to Z=6 for various electron-impact energies. We performed
calculations up to n=25 in initial principal quantum number
using a time-dependent close-coupling �TDCC� method in a
collinear s-wave model. We contrast results of these calcula-

tions with those from collinear s-wave classical trajectory
Monte Carlo �CTMC�, distorted-wave �DW�, and R-matrix
calculations.

Although electron-impact ionization has been covered ex-
tensively in the literature �e.g., see Refs. �7–9�, and refer-
ences therein�, there has only been a few non-perturbative
calculations for the electron-impact ionization from low ex-
cited states �10–12�. A recent paper by Griffin et al. �13�
presents results from a series of nonperturbative quantal cal-
culations for electron-impact ionization from H, Li2+, and
B4+ up to n=4 in comparison to fully three dimensional
CTMC and perturbative distorted-wave calculations. Their
nonperturbative calculations employed primarily the
R-matrix with pseudostates �RMPS� method whose results
compared very well with those from their TDCC calculations
for ionization from selected excited states. Using the nonper-
turbative results as benchmarks, their study indicated that the
CTMC results were reasonably accurate for hydrogen, but
for the ions the CTMC results were too large and did not
improve with the principal quantum number.

Electron-impact scattering from hydrogenlike ions is also
an important atomic process for modeling of tokamak plas-
mas and performing plasma diagnostics. Therefore it is im-
portant to have ionization data accurate enough to satisfac-
torily model and diagnose laboratory plasmas. Usually, the
cross sections for electron-impact ionization are obtained
from fully quantal calculations for ionization from the lowest
states and from classical calculations for ionization from
highly excited states �14�. It has been shown �15� that for
denser plasmas the effective ionization rate changes substan-
tially when contributions through higher n levels are in-
cluded in addition to the ground and metastable states. The
sensitivity of the plasma models to the atomic data illustrates
the need for the investigation of the extent to which the
classical cross sections are accurate.

Since both the number of n, l terms and the size of the
target increase rapidly with principal quantum number, the
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computational resources required to study ionization out of
highly excited states become prohibitively large for a full
three-dimensional model. Therefore, in this study, we restrict
ourselves to the collinear s-wave model where both electrons
move on a straight line. It has been shown that this model
includes the essential physics of the ionization process close
to the threshold �16–18� and yields the correct Wannier
threshold law for single ionization, i.e., ��E1.128. The inter-
action potential between the electrons is 1 / �r1+r2� which we
refer to as the collinear s-wave potential.

In the next section, we discuss the theoretical methods
employed. In Sec. III, we present our results and in Sec. IV,
we discuss their signficance. We use atomic units throughout
this paper.

II. THEORY

We first describe the collinear s-wave TDCC model and
discuss the various convergence checks performed. Next we
discuss the collinear s-wave CTMC, DW, and RMPS meth-
ods that we employed. Since the accuracy of the results is
important, we make special effort to discuss the methods we
used to insure convergence.

A. The time-dependent wave packet method using the
collinear s-wave model

In the collinear s-wave model where both electrons move
on a straight line, the Hamiltonian reads �19�

H = �
�=1

2 � p�
2

2
−

Z

r�
� +

1

r1 + r2
. �1�

If the H-like ion is initially in the ns state, the symmetrized
initial wave function at t=0 is

��r1,r2,t = 0� =
1
	2

��ns�r1�Gks�r2� + �ns�r2�Gks�r1�� �2�

where �ns is an eigenstate of the H-like ion and Gks is the
Gaussian representing the incoming electron of energy E
=k2 /2 and momentum k. It is given by

Gks�r� = e−i��r�e−��/�rf − r0��2�r − �1/2��rf + r0��2
, �3�

where r0=2n2 and the constant � is chosen such that
e−�� / 2�2

�1 and Gks�r� can be considered to be zero at r=r0

and r=rf. In our calculations, we have taken � to be 12. To
reduce the energy spread of the packet due to the phase ac-
cumulations, the WKB phase ��r� is evaluated as

��r� = 

0

r

	2�E + �Z − 1�/r��dr�. �4�

The wave packet is discretized on a two-dimensional square
root mesh where rj = j2	r with 	r=rf /N2. The maximum grid
spacing on this mesh can be evaluated by 	rmax= �2N−1�	r
and is two times larger than that for a linear mesh.

Time propagation of the Schrödinger equation is carried
out by means of lowest order split operator technique

��t + 	t� = exp�− i
	t

2�r1 + r2��exp�− iH2	t�


 exp�− iH1	t�exp�− i
	t

2�r1 + r2����t� , �5�

where H�= p�
2 /2−Z /r� and ��=1, 2�. Using the lowest order

Padè approximation for the exponential one particle opera-
tors exp�−iH�	t /2�, the time propagation scheme given by
Eq. �5� becomes

��t + 	t� = exp�− i
	t

2�r1 + r2���1 − iH2	t/2

1 + iH2	t/2
�


 �1 − iH1	t/2

1 + iH1	t/2
�exp�− i

	t

2�r1 + r2����t� . �6�

The numerical error for this lowest order Padè approxima-
tion scales as 	t3 and the approximated operator is exactly
unitary. The probability of finding both electrons in the con-
tinuum at time t is calculated by making use of the bound
states �ns,

P2e−�t� = 1 − 2�
n

 

 ��r1,r2,t��ns�r1�dr1
2

dr2

+ �
n

�
m


 
 ��r1,r2,t��ns�r1��ms�r2�dr1dr2
2

,

�7�

provided that the wave function is normalized to unity �20�.
The ionization cross section �2e− is calculated from the ion-
ization probability using �2e− = �� /k2�P2e−.

To increase the accuracy of the computed projections, we
have calculated the eigenstates in a box two times larger than
the box in which � j,k is discretized. This gives a finer spacing
of states in energy and decreases the effect of a finite box. In
discretization of the Hamiltonian on the square root mesh,
we have used a three point differencing scheme for the sec-
ond derivatives. The action of p2 /2 on the eigenstate � j is
calculated as �21�

1

2
p2� j = −

� j−1

	�rj − rj−1��rj−1 − rj−2��rj − rj−1�

+
� j

�rj+1 − rj��rj − rj−1�

−
� j+1

	�rj+1 − rj��rj − rj−1��rj+1 − rj�
, �8�

where � j =Rj /		rj and Rj is the actual radial orbital. The
advantage of using a square root mesh is that it enables us to
employ much larger boxes than the uniform mesh does. To
check the effect of using a square root mesh on our results,
we have also performed a few trial calculations on a uniform
mesh and compared the results with those from the square
root mesh calculations. We did not see any significant differ-
ences in the projected probabilities.

We use scaled units to describe the electron-impact energy
E in our calculations. Energies of the incoming electron are
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chosen in multiples of the binding energy of the initial state.
The energy of the incoming electron is therefore defined by
E= �Z2 / �2n2��Esc, where we call Esc the scaled electron-
impact energy.

We have checked convergence of the TDCC results with
respect to box size rf, number of points N, and time step 	t
for the time propagation. For example, for an atom in an
initial state with n=12 and an incoming electron with scaled
energy Esc=9.5, the projected ionization probability for all Z
in a 2250 �a.u.� box with 2500 points remains well within a
percent if one increases the number points to 5000 while
keeping rf fixed. When the number of points is kept fixed at
2500 and the box size is doubled, the probability changes by
�2% for Z=1. In cases of Z=3 and Z=5, the differences are
within �1%. When both rf and N are doubled to 4500 and
5000, respectively, the results were within �3% of the
�rf ,N�= �2250,5000� results for Z=1. For Z=5 the difference
was �1%. We have found that for sufficiently high n, am-
plitudes for superelastic scattering down to low-n states are
very small, enabling us to employ large 	rmax and rf. We
carried out similar analyses for all the initial states and sev-
eral ion stages in our calculations and the results we present
are converged within a few percent.

To be able to use the same converged box parameters and
time steps for all Z, we scale the length and time according to
rj =
 j /Z and t=� /Z2. The full time-dependent Shrödinger
equation that needs to be solved is

i
�

�t
� = ��

�=1

2 �1

2

�2

�r�
2 −

Z

r�
� +

1

r1 + r2
���r1,r2� . �9�

After scaling and dividing through by Z, Eq. �9� becomes

i
�

��
� = ��

�=1

2 �1

2

�2

�
�
2 −

1


�
� +

1

Z�
1 + 
2����
1,
2� �10�

which is equivalent to the hydrogen problem in scaled coor-
dinates and time, except the scaled electron-electron interac-
tion potential is now 1/ �Z�
1+
2��. In the same manner, scal-
ing the time independent Schrödinger equation for the
evaluation of the eigenenergies and the eigenstates, we solve
the equation

−
1

2

�2��
�
�
2 −

��
�



= �̃��
� �11�

with the Z-scaled energy �̃=� /Z2. Note that with the use of
the Z-scaled potential, the electron-impact energy becomes
E= �1/ �2n2��Esc.

For B4+, for an initial state with n=4 and with a scaled
impact energy of Esc=9.5, the difference in the ionization
probability between the calculations using the collinear
s-wave potential and the Z-scaled collinear s-wave potential
is found to be within a percent.

B. Classical trajectory Monte Carlo method

In the CTMC method, we solved the classical equations
of motion to compute the classical probability for ionization.
The classical equations of motion scale. This means the ion-

ization probability in the collinear s-wave model only de-
pends on Z and on the ratio of the kinetic energy of the
incident electron to the binding energy of the bound electron;
we define this to be the scaled incident energy Esc. In addi-
tion to Z and Esc, the TDCC results depend on the binding
energy of the target state.

The length and time scalings are

r = �
Z

Eb
, t = �

Z

Eb
3/2 , �12�

where Eb is the binding energy of the attached electron. For
this choice of scaling, the scaled energy of the bound elec-
tron is −1 and the incident energy is Esc. A bound energy of
−1 corresponds to n=1/	2 and a classical period of 2�n3

=� /	2.
With this scaling the fully three dimensional equations of

motion become

d��1

d�
= −

��1

�1
3 +

1

Z

��12

�12
3 ,

d��1

d�
= ��1, �13�

d��2

d�
= −

��2

�2
3 −

1

Z

��12

�12
3 ,

d��2

d�
= ��2, �14�

where ��12=��1−��2. For the collinear s-wave model, the
scaled equations of motion are

d�1

d�
= −

1

�1
2 +

1

Z

1

��1 + �2�2 ,
d�1

d�
= �1, �15�

d�2

d�
= −

1

�2
2 +

1

Z

1

��1 + �2�2 ,
d�2

d�
= �2, �16�

with the additional condition of an infinitely hard wall at a
small, positive value of �, after which the electron cannot
move any closer to �=0. The infinitely hard wall reverses the
sign of the velocity and keeps both electrons at positive �.
The position of the wall affects the ionization probability, but
the effect decreases as the wall moves closer to �=0. We
chose a position 5
10−5, where the ionization probability
was changed by much less than a percent. Note that the
nuclear charge Z manifests itself in the scaled equations of
motion by multiplying the electron-electron interaction by
1/Z. From this it is clear that the ionization �which depends
on the electron-electron interaction� decreases with increas-
ing Z.

If there were no scattering, the bound electron would be
limited to a region 0���1. The initial conditions of the
bound electron were chosen to give a microcanonical en-
semble. For the collinear case, this means the starting posi-
tion and velocity can be specified by a single random param-
eter � in the range 0���1; if � is chosen correctly the
distribution is flat in �. The microcanonical ensemble is
given where the parameter � is the fraction of a period of the
bound motion and the position and velocity at �=0 is taken
to be the outer turning point, �=1,�=0. The initial conditions
for the fully three dimensional case are somewhat more com-
plicated but are well known �e.g., see Ref. �22��.
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The incident electron is started at a distance �2=100.
In the collinear s-wave calculation, the initial velocity is
�2=−	2�Esc−V0�, where V0=−1/�2�0�+ �1/Z��1/ ��1�0�
+�2�0��� is the initial potential energy for electron 2. With
this definition, the total energy is exactly E=−1+Esc. We run
the trajectories until at least one electron reaches the distance
�=120, at which point the energies of the electrons are com-
puted. The � range for which the energies of both of the
electrons are positive gives the ionization probability P2e−,
which is converted to cross section via �2e− = �� /k2�P2e−.
The initial conditions for the three dimensional calculation is
similar but includes the impact parameter of the incident
electron.

For the collinear s-wave model, the initial conditions only
depend on one parameter �. Therefore, it makes physical
sense to examine the energies of the electrons versus �. In
Fig. 1, we show the energies of the two electrons �solid and
dashed curves� versus � for Z=1 and Esc=9.5. It is clear that
relatively little energy is transferred to the bound electron
�solid curve� except in a region near �=0.25 which is shown
as an inset. The region where both energies are positive cor-
responds to ionization. Because the microcanonical distribu-
tion is flat in � and the range of � is one, the fraction ionized
simply corresponds to the range of � where both energies are
positive. The energies versus � have similar types of shape
for all Z. There is a small region where substantial energy
exchange can occur; the width of the region decreases with
increasing Z. The large energy transfer occurs when the in-
coming electron and the bound electron are moving in the
same direction near the nucleus; for this type of motion, the
incoming electron can do substantial work on the bound
electron, giving it enough energy to ionize.

C. Collinear distorted-wave method

In the collinear s-wave distorted-wave theory, the 1S cross
section for single ionization of a hydrogenic ion is given by

� =
32

ki
3


0

E/2 d�ke
2/2�

kekf
�R�kes,kfs;ns,kis� + R�kfs,kes;ns,kis��2,

�17�

where the linear momenta �ki ,ke ,kf� correspond to the in-
coming, ejected, and outgoing electron, respectively. The di-
rect radial matrix element is

R�kes,kfs;ns,kis� = 

0

�

dr1

0

�

dr2



Pkes�r1�Pkfs

�r2�Pns�r1�Pkis
�r2�

r1 + r2

�18�

with a similar expression for the exchange term. The radial
distorted waves needed to evaluate the radial matrix ele-
ments are all Coulomb waves �23�.

D. Collinear R-matrix method

In the collinear s-wave R-matrix method �24�, symme-
trized product states of single-particle orbitals generated by
the diagonalization of the one electron Hamiltonian

h�r� =
p2

2
−

Z

r
, �19�

are used to span the basis for the diagonalization of the two
electron Hamiltonian

HR = H�r1,r2� +
1

2
	�r1 − R�

�

�r1
+

1

2
	�r2 − R�

�

�r2
, �20�

where R is the box size and the Bloch operators �1/2�	�r�

−R��� /�r�� ensure the Hermiticity of HR. The ionization
cross sections are calculated as a sum over all the excitation
cross sections to positive energy states of the basis in which
HR is diagonalized to obtain the R matrix. The R matrix is
related to the K and J matrices, which are then used to de-
termine the S matrix. In this study, the excitation cross sec-
tion from state i to state f is given by

�i→j�E� =
�

ki
2 �Sij − 	ij�2. �21�

For electron-impact scattering from hydrogen, we used a
2400-point lattice with a uniform mesh spacing of 	r
=0.025 and a box size of R=60.0 �a.u.�.

III. RESULTS

A. Effect of using a model potential: 1
r1+r2

versus 1
r�

In addition to the fully three-dimensional treatments, the
problem of electron-impact scattering from hydrogen has
been studied within simple s-wave models primarily to re-
duce the computational burden posed by solving the time-
dependent Schrödinger equation in three dimensions. In one
of these models, which was developed by Temkin �25� and
Poet �26�, the interaction potential between the electrons is
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FIG. 1. �Color online� Scaled final energy of the classical bound
�solid curve� and incoming �dashed curve� electrons versus the ini-
tial phase, �, of the bound electron. The initial position and velocity
of the electron � and � are found by solving the classical equations
of motion for a time given by � times the Rydberg period with
��0�=1 and ��0�=0. This graph shows the result for Z=1 and Esc

=9.5. Note that the width of the region where � is positive for both
electrons �shown in the inset� is the ionization probability.
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described by the s-wave term of the partial wave expansion
of the true electron-electron interaction potential, i.e., 1 / �r�1
−r�2�, and is 1 /r�. The Temkin-Poet model has been used
extensively in the literature for studying electron-impact
scattering from hydrogen atoms �see, e.g., Refs. �24,27–30�,
and references therein�. Our choice of the collinear s-wave
model for studying electron-impact ionization stems from the
fact that although the Temkin-Poet potential is exact for s
waves, it was shown not to yield the correct threshold law in
one dimension �19� due to its cusp along the r1=r2 ridge.
This cusp weakly pushes the probability density away from
the r1=r2 ridge resulting in distortion of the depicted thresh-
old law. On the other hand, the collinear s-wave potential
yields the correct threshold law.

One of the differences between the Temkin-Poet and the
collinear models is that the collinear model potential is
weaker than the exact s-wave potential of the Temkin-Poet
model. As a consequence, the collinear DW method agrees
very well with both TDCC and RMPS methods as demon-
strated in the next two sections and Figs. 3 and 4. Due to the
perturbative nature of the DW method, a weaker potential
means better agreement with the nonperturbative methods.

To demonstrate this point, we have carried out DW and
RMPS calculations for ionization from ground state of hy-
drogen within Temkin-Poet model and compared to the cross
sections obtained using the collinear s-wave model. Results
from these two calculations are shown in Fig. 2. The pseu-
doresonances in our RMPS data were smoothed out using a
least squares fit to obtain the smooth RMPS curves in Fig. 2.
As expected, there is better agreement between the DW and
RMPS for the collinear s-wave model potential than in the
case of the Temkin-Poet model potential. Cross sections for
electron-impact ionization obtained using the Temkin-Poet
potential are roughly a factor of 3 larger than those obtained
using the model potential.

B. Electron-impact ionization of hydrogen

Figure 3 shows electron-impact ionization cross sections
from fully quantal collinear s-wave TDCC, DW, and CTMC
calculations for up to n=4 of the hydrogen atom for the
singlet symmetry of the initial wave packet. The CTMC re-
sult for Esc=1.5 starts out �44% off the TDCC result at n
=1, then converges to the TDCC result by n=4. Note that the
agreement between the CTMC and the TDCC methods gets
better with the increasing electron-impact energy.

The collinear s-wave DW results are in good agreement
with the collinear s-wave TDCC for the ground state ioniza-
tion. For ionization out of states with higher n, DW results
slowly diverge from both TDCC and CTMC cross sections.
This observation is consistent with what has been seen from
the fully three-dimensional calculations �13�.

We have further carried out collinear s-wave RMPS cal-
culations to serve as a benchmark for our TDCC results. We
have observed reasonable agreement between the collinear
s-wave RMPS and TDCC cross sections for all n we show in
Fig. 3. This agreement can be considered to be an indepen-
dent confirmation of the convergence of the TDCC results
since both results are obtained via completely different quan-
tal methods.

C. Electron-impact ionization of B4+

Electron-impact ionization cross sections as a function of
the scaled energy of the incoming electron from collinear
s-wave DW, TDCC, and CTMC calculations are plotted for
B4+ for initial states of n=1, 2, 4, and 8 in Fig. 4 for the 1S
symmetry. Cross sections from the CTMC calculations at
Esc=1.5 start out as �74% larger than the TDCC cross sec-
tions at n=1, then very slowly converge to the TDCC results.
For instance, at n=8 the CTMC result differs from the
TDCC result by �60% for scaled impact energy of 9.5. The
agreement between the collinear s-wave TDCC and DW
methods is excellent for all n plotted in Fig. 4. Despite being
perturbative, DW works very well even for the highly ex-
cited states studied here because the interaction potential is
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FIG. 2. �Color online� Ionization probability out of n=1 for H
versus the scaled energy of the incoming electron from collinear
s-wave DW �blue solid�, Temkin-Poet DW �blue dot-dash�, collin-
ear s-wave RMPS �violet dash�, and Temkin-Poet RMPS �violet
dot-dot-dash� calculations. Note that the agreement between the
DW and RMPS is better for the weaker collinear s-wave model
potential. The data are fitted using least squares method to obtain
the smooth curves.
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FIG. 3. �Color online� Ionization cross sections for e−−H�1S�
scattering from n up to 4 calculated in collinear DW, CTMC,
RMPS, and s-wave TDCC methods as a function of the scaled
energy Esc of the incoming electron.
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weak and the transition energy is large. The inelastic cross
section to nearby n’s are not as accurate due to the small
energy spacing between Rydberg levels. Contrary to the case
of hydrogen, both TDCC and DW results are below the clas-
sical cross sections.

It is expected that the results of the CTMC calculation
would not be as close to the wave packet results as the H
cross sections since higher nuclear charge manifests less
classical behavior. Therefore, to see how high in n one
should go for B4+ to reach agreement with the CTMC results,
we have performed TDCC calculations for n=1, 2, 4, 8, 12,
16, 20, and 25 for the 1S symmetry of the initial wave packet.
The ionization probabilities versus the scaled energy of the
incoming electron are plotted for all n in Fig. 5. The agree-
ment between the CTMC and TDCC results improves sub-
stantially slower than it does for hydrogen as the principal
quantum number n increases. For instance, for n=25, the
CTMC results differ from the TDCC results by �17% at
Esc=5.5 and by �38% at Esc=9.5.

We have performed the same set of TDCC calculations
for the 3S symmetry of the initial wave packet and the results
are seen in Fig. 6. Ionization probabilities for the 3S symme-
try are smaller than those for the 1S symmetry as expected
since the 3S wave packet has a node along the r1=r2 ridge.
The 3S result from the TDCC calculation for n=25 at Esc
=9.5 is about a factor of 2 smaller than that from the CTMC
calculation.

D. Effect of the ion stage

Since going from Z=1 to Z=5 drastically decreased the
speed of convergence to the CTMC results as a function of n,
we repeated the collinear s-wave TDCC calculation for an
incoming electron with scaled energy of Esc=9.5 for Z=1
through 6 for initial states with n=1, 2, 3, 4, 8, 12, 16, 20,
and 25 to see the effect of the ion stage Z on the convergence
speed of the quantal ionization probabilities to the classical
ones as a function of n. In Fig. 7, we have plotted the ratio
PQM�n ,Z� / PCM�Z� for the 1S symmetry of the initial wave
packet where PQM�n ,Z� is the ionization probability from the
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TDCC calculation and PCM�Z� is the CTMC result. As noted
before, for the case of Z=1 the TDCC method quickly con-
verges to the CTMC result by n=4 within �4% and by n
=8 within �1% for Esc=9.5. The oscillations about the
CTMC result for higher n are at the couple percent level and
they may be due to the overall numerical accuracy of the
TDCC method, although they may also be due to quantum
interference.

Figure 8 shows ln�PQM�n ,Z�� versus ln�Z� for n=1, 4, 16,
and 25 at the scaled electron-impact energy of Esc=9.5. On
top of the data points we have plotted lines of the form
2 ln�Z�+C where C is constant for each n line and evaluated
so that the last data point for each n is fixed on its respective
line. Note that for n=1 and 2 all the points lie on their lines
whereas for the highest two ns the low Z substantially devi-
ates from their respective lines. The fact that the slope of the
lines is 2 means that for low n the ionization probability
scales �1/Z2 and for high n it scales �1/Z2 only for the
high Z.

E. Node structure near the scattering center

Looking at the classical trajectories that give rise to ion-
ization, we can roughly estimate the size of the region where
the energy exchange between the electrons takes place at the
time of scattering from the core. To gain physical insight
about the discrepancy between the classical and quantal re-
sults even for such high n, we may draw analogy to
geometrical-wave optics correspondence. According to the
geometrical-wave optics correspondence, light exhibits clas-
sical behavior when the wavelength is much smaller than the
size of the region with which it interacts. In other words, we
recover geometrical optics as the wave number gets larger
within the interaction region. Applying the same idea to the
matter waves, we can expect the system to behave more
classically as the number of nodes increase in the region
where classical energy exchange between the electrons takes
place.

The classical size of the scattering region that give ion-
ization is �c�0.1 in scaled units �which is Lc=2n2�c� for Z
=5 when the scaled energy of the incoming electron is 9.5.
Using the Z-scaled potential, this characteristic size can be
shown to be Lc=51.2 �a.u.� for n=16. For the lowest energy
component in the wave function, the kinetic energy is ap-
proximately equal to the Z-scaled potential energy, i.e.,
k2 /2�1/r, from which k�r��	2/r. We can use half wave-
length in this energy regime to obtain a typical length scale
of the region where the scattering takes place from the core.
Half wavelength corresponding to k�r� is

� � 

0

Lq

k�r�dr = 	8Lq �22�

from which Lq��2 /8�1.2. Comparing this with the classi-
cal size of the scattering region yields an intriguing result
since the size of the classical scattering region is about a
factor of 43 larger than the quantal length scale; therefore
one would expect the quantal results to be in good agreement
with the classical result at n=16.

In Fig. 9 we have plotted the absolute value square of the
wave function for both Z=1 �top panel� and Z=5 �bottom
panel� at n=16 for scaled energy Esc=9.5. Various classical
trajectories that give ionization are also plotted on top of
each probability distribution. In these plots, we can define
regions by using the points of the trajectories at which the
coordinate of one electron vanishes, which we call bounce
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FIG. 9. �Color online� Contour plots for ��n=16�r1 ,r2��2 for H
�top panel� and B4+ �bottom panel� at the time of scattering from the
nucleus at Esc=9.5. The lines in each figure represent classical tra-
jectories that lead to ionization.
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points. Note that for Z=1, the number of nodes in the region
bound by the last two bounces of the outmost classical tra-
jectory is considerably larger than in the case of Z=5. For
Z=5, Eq. �22� with Lq→Lc yields the number of nodes in the
classical scattering region as �	8Lc /��6 which roughly
equals the number of nodes in the bottom panel of Fig. 9
bounded by the last two bounces of the outmost classical
trajectory.

IV. CONCLUSIONS

We have performed collinear s-wave time-dependent
close-coupling �TDCC�, classical trajectory Monte Carlo
�CTMC�, and distorted-wave �DW� calculations for electron-
impact ionization of H-like ions with Z=1–6 for various
principal quantum numbers up to n=25. We have observed
good agreement between the s-wave TDCC and the CTMC
methods for hydrogen as the principal quantum number
reached n=4. The good agreement between the collinear
s-wave TDCC and the classical results for hydrogen in the
high-n limit is in accord with the expectations raised by the
Bohr correspondence principle. Repeating the same set of
calculations for B4+, we have found that one has to go to
much higher n for the collinear s-wave TDCC and the
CTMC methods to agree. We showed that the TDCC results
converge to the classical results very slowly with increasing
n, which is in agreement with what Griffin et al. �13� have
observed in their full three dimensional calculations up to
n=4. At n=25 and for the 1S symmetry of the initial wave
packet, the TDCC method yields ionization probability
which is �35% less than the classical result at the highest
electron-impact energy we considered. For the same n and
electron-impact energy, the TDCC result is about a factor of
2 less than the CTMC result for the 3S case.

The collinear s-wave DW calculations for hydrogen re-
sulted in cross sections which are in good agreement with the
collinear s-wave TDCC calculations for the ground state, and
gradually got worse as n is increased. In the case of B4+, we
have shown that the agreement between the DW and TDCC

is excellent up to n=8. This suggests that, for the low lying
excited states, the DW is just as good as the exact TDCC
method, which makes it useful for the plasma modeling and
diagnosing purposes. One would expect a perturbative
method to work when only a small fraction of the initial state
ionizes, leaving most of the initial population in the initial
state. The fact that the collinear s-wave DW method works
so well even though it is perturbative may be due to the
small interaction potential compared to the ionization energy.
The energy difference between the adjacent states decreases
as �1/n3 for high n and the incoming electron can knock the
atom into a nearby n state instead of ionizing it. This is even
more probable for the model potential we used, which is
weaker than the actual 1 / �r�12� potential.

To illustrate the effect of the ion state Z on the ionization
probabilities, we have carried out collinear s-wave TDCC
calculations for Z up to 6 and for n up to 25 at the scaled
electron-impact energy Esc=9.5. We found that for low-n the
ionization probability scales as �1/Z2 and for high-n it be-
haves the same only for high Z.

In order to understand the physical size scales involved
and gain some insight on the dynamics behind this slowly
converging behavior, we drew analogy to geometrical-wave
optics correspondence and estimated the number of nodes in
the region near the core outlined by the classical trajectories
that give ionization. We have found that the size of the clas-
sical scattering region is about a factor of 50 larger than the
quantal length scale; therefore, one would expect the TDCC
and CTMC methods to agree, which is not in accord with
what we have observed. The peculiar dynamics behind this
slow convergence is intriguing and may be due to an inherent
characteristic of the line-land potential or a quantum interfer-
ence effect.
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