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We have studied the radiative decay of atomic hydrogen in strong magnetic fields of up to 4 T. We have
followed the radiative cascade from completely l ,m mixed distributions of highly excited states as well as from
distributions that involve highly excited states with �m��n. We have found that the time it takes to populate the
ground state is not affected by the magnetic field for the initial states with n�20. For higher n manifolds, the
electrons in the most negative m states are substantially slowed down by the magnetic field resulting in a much
longer lifetime. We show that less than 10% of the antihydrogen atoms with n�35 generated in antihydrogen
experiments at 4 K will decay to their ground states before they hit the wall of the vacuum container unless
they are trapped. We have also found that the decay time is mainly determined by the fraction of atoms that
were initially in highest negative m states due to the fact that only ��m�+ ����=1 transitions are allowed in the
magnetic field. We give a semiclassical method for calculating the decay rates for circular states and show that
when the initial states have high-�m�, semiclassical rates agree with the full quantum mechanical rates within a
couple of percent for states with effective n�20.

DOI: 10.1103/PhysRevA.73.043405 PACS number�s�: 32.80.Rm, 32.60.�i, 32.70.Cs

I. INTRODUCTION

Formation of highly excited antihydrogen atoms have
been reported by two experimental groups where cold anti-
protons are merged with a cold trapped positron plasma at
roughly �1� 16 K and �2,3� 4 K in magnetic fields of about 3
and 5.4 T, respectively. The goal is to perform Lorentz and
CPT violation checks in the hyperfine spectrum of the
2s→1s transition �4� for which the transition frequency is
accurately known to about 1 part in 1014 for atomic beam of
hydrogen �5� and to about 1 part in 1012 for trapped hydro-
gen �6�. The dominant process in the formation of the anti-
hydrogen atoms is believed to be three body recombination
�7� which yields a small fraction of antihydrogen atoms that
are suitable for being laser stimulated down to the low-n
states �8�. It has also been noted that the antihydrogen atoms
formed through three body recombination are likely to be in
highly excited m states �9�. Since Lorentz and CPT violation
experiments require ground state antihydrogen atoms, the
highly excited antihydrogen atoms need to decay down to the
ground state in order to serve this purpose. The knowledge of
the decay rates and the time it takes to cascade down to the
ground state from initial distributions of Rydberg states with
�m��n and from completely random l ,m distributions of Ry-
dberg states in strong magnetic fields are therefore necessary.
We have investigated the radiative cascade from the Rydberg
states with energies effectively corresponding to hydrogenic
n manifolds of up to n=35 in magnetic field strengths of up
to 4.0 T. We have also followed the radiative cascade from
these initial states in the presence of the black body radiation
since the positron and antiproton plasmas have a temperature
of 4 K in the case of the ATRAP experiment.

High-�m� Rydberg atoms in the presence of strong
magnetic fields were also investigated by Guest and Raithel
�10�. They found that in case of the high-�m� states in strong
magnetic fields the motions that are parallel and transverse
to the magnetic field are adiabatically separable. They stud-
ied the breakdown of the adiabaticity as they decreased

�m� from 200 to 40 and observed that the motion in states
with �m��200−80 are adiabatically separable to the extent
where no more than 50% of the energy levels are overtaken
by the nonadiabatic couplings. As they decreased �m� further
down to �m��40 the energy spectrum experienced a transi-
tion from adiabaticity to nonadiabaticity. They have also cal-
culated the natural and thermally enhanced decay rates for
the states in which the motion is adiabaticaly separable �11�.
In this paper, we perform calculations for the �m � �40 region
which has not yet been treated.

In this study we also exploit the fact that the size of the
positron and antiproton plasmas are small compared to the
size of the trap. As a result, once an antihydrogen atom is
formed, it quickly leaves the plasma and moves into the
vacuum of the trap. If the antiatom is trapped then it spends
its time in this vacuum radiatively decaying without
positron-antiatom collisions. Therefore this study only con-
siders radiative cascade in vacuum.

The radiative cascade from high Rydberg states exhibit
interesting details. Reference �12� studied the phase space
trajectory of an initial n , l state cascading to the ground state
in zero magnetic field. In principle, a similar treatment using
the quantum numbers in the magnetic field could be per-
formed but is beyond the scope of this study.

We also give a semiclassical treatment for the radiative
cascade from the highly excited circular Rydberg states for
the sake of physical transparency. We have shown that the
population time for the ground state strongly depends on the
fraction of circular high-�m� states in the initial distribution.
We considered the relative effect of the cyclotron motion
with respect to the magnetron motion in circular high-�m�
states on the decay rates and draw conclusions on the affinity
of these states to magnetic field gradients.

All our calculations are for regular hydrogen rather than
antihydrogen but the results apply equally well to antihydro-
gen. In this study, atomic units are used throughout unless
stated otherwise.
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II. THEORY

Our results are obtained using an approximate Hamil-
tonian of a hydrogen atom placed in a magnetic field,

H =
�p� − A� /c�2

2
−

1

r
, �1�

where A� is the vector potential. In the Appendix we
discuss the limitations of this Hamiltonian and show that it
serves our purposes. With the choice of symmetric gauge

A� =− 1
2r��B� and a uniform magnetic field of magnitude B0

along the z direction, i.e., B� =B0ẑ, the Hamiltonian in spheri-
cal coordinates becomes

H = Hatom +
�

2
Lz +

�2

8
r2 sin2 � , �2�

where Hatom is the atomic Hamiltonian in the absence of the
magnetic field

Hatom =
p2

2
−

1

r
�3�

and �=B0 / �2.35�105 T� is the magnetic field strength in
atomic units when B0 is in T. Note that the total Hamiltonian
H has rotational symmetry about the z axis similar to the
unperturbed atomic Hamiltonian.

In the next subsection, we describe the method used to
compute the eigenenergy spectrum of the hydrogen atom in
the magnetic field where we diagonalize the total Hamil-
tonian H in the basis spanned by the eigenstates of the
atomic Hamiltonian Hatom. In the second subsection, we
evaluate the dipole matrix elements in the magnetic field by
rotating the dipole matrix elements calculated in the �n , l ,m�
basis into the dipole matrix elements in the �m ,�� basis. The
radiative decay rates in the magnetic field is then evaluated
by using these rotated dipole matrix elements. In the last
subsection, we solve the time dependent rate equation for an
initial probability distribution of the eigenstates of H, which
tells us how the initial probability distribution evolves in
time.

A. Calculation of the energy spectrum in the magnetic field

To calculate the new energy spectrum in the magnetic
field, we diagonalized the matrix representation of the full
Hamiltonian H in the basis spanned by the eigenstates 	nlm
of the unperturbed atomic Hamiltonian. The matrix elements
of the Hamiltonian H=Hatom+Hmagnetic in this basis are

	nlm�H�n�l�m�
 = �
nl +
�

2
m��n,n��l,l��m,m�

+
�2

8
	nlm�r2 sin2 ��n�l�m�
 , �4�

where 
nl are the eigenvalues of Hatom, i.e., energies of the
hydrogen atom in the absence of the magnetic field. Noting
that sin2 �= �2/3��1−
4� /5Y2

0�� ,���, the angular part of the
last integral in Eq. �4� can be evaluated as

	lm�sin2 ��l�m�
 =
2

3
�l,l��m,m� −

2

3
�− 1�m � 
�2l + 1��2l� + 1�

�� l 2 l�

0 0 0
�� l 2 l�

− m 0 m�
� . �5�

Selection rules for these matrix elements can be deduced
from the fact that the 3-j symbols must satisfy the triangle
relations �Ref. �16�� simultaneously in order to survive.
For the 3-j symbols involved in Eq. �5�, this condition is
realized as �l− l��
2. Also the survival of the first 3-j symbol
in Eq. �5� requires that the sum of the elements on the
first row must be an even integer. This condition along with
�l− l��
2 implies that the magnetic field will only induce
transitions for which �l=0 or �l= ±2. Therefore with the
definition

Rn�,l�
n,l ��� =� Rn,l�r�r�Rn�,l��r�dr , �6�

where Rn,l�r� is the radial part of the eigenfunction 	nlm, the
matrix elements of the full Hamiltonian H in the �nlm� basis
become

	nlm�H�n�l�m�
 = �
nl +
�

2
m��n,n��l,l��m,m� +

�2

12

���m,m��l,l� − �− 1�m
�2l + 1��2l� + 1�

�� l 2 l�

0 0 0
�� l 2 l�

− m 0 m�
��Rn�,l�

n,l �2� .

�7�

Here Rn,l�r� is generated on a square root mesh by direct
integration of the Schrödinger equation in a box. All orbitals
satisfy the boundary condition such that Rn,l�rf�=0, where
the box size rf is chosen to be larger than the size of the
physical states in our simulations. By choosing this boundary
condition, we greatly increase the rate of convergence with n
because eigenenergies 
nl increase rapidly with n for large n
�13�. Thus our basis has substantial continuum character.

We have checked the convergence of our results with re-
spect to the box size rf, the number of radial grid points N
and the nmax and lmax describing the basis set used in the
diagonalization of H. For example, in a 4.0 T field, decay
times obtained for n=30 in a 2000 a.u. box with 8000 radial
points using a basis with �nmax, lmax�= �45,40� differ from the
decay times obtained in a 3000 a.u. box with 12 000 points
using a basis described by �nmax, lmax�= �50,45� at a few per-
cent level. The energy of the state �nmax,0� in the 2000 a.u.
box is 
45,0=4.1138�10−4 a.u. and the energy of the state
�30,0� is 
30,0=−5.5526�10−4 a.u. For the 3000 a.u. box the
state with �nmax,0� has the energy 
50,0=3.8628�10−5 a.u.
whereas energy of the state �30,0� is the exact value
−5.5556�10−4 a.u.

Diagonalization of the matrix with the matrix elements
given by Eq. �7� gives the new energy spectrum �
̃ j� of the
hydrogen atom in the magnetic field. Note that in the pres-
ence of the magnetic field the good quantum numbers are the
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magnetic quantum number m and the z parity � rather than
the principal quantum number n and the orbital quantum
number l.

As a check on our codes, we have compared our energies
for hydrogenic n=23 manifold in a 4.7 T field for states with
m=0,1 ,2 listed in Ref. �14� and found very good agreement
except at a few particular energy values. The difference
might be due to the fact that nonorthogonal basis set meth-
ods, similar to the one used in Ref. �14�, can be unstable,
e.g., their energies may not be converged for those particular
states.

B. Calculation of the dipole matrix elements

To calculate the dipole matrix elements in the magnetic
field, we first calculated the dipole matrix elements in
the �nlm� basis and rotated those matrix elements obtaining
the dipole matrix elements in the �m�� basis of the full
Hamiltonian H.

Dipole matrix elements for the linearly polarized states in
the �nlm� basis are

	nlm�z�n�l�m�
 = 	nl�r�n�l�
	lm�cos ��l�m�
 . �8�

Again noting that cos �=
4� /3Y1
0�� ,�� one can deduce

	nlm�z�n�l�m�
 = �− 1�m
�2l + 1��2l� + 1� � � l 1 l�

0 0 0
�

�� l 1 l�

− m 0 m�
�Rn�,l�

n,l �1� . �9�

In the same manner, for the left and right hand circularly
polarized states one obtains

�nlm� x ± iy

2

�n�l�m�� = � �− 1�m
�2l + 1��2l� + 1�

� � l 1 l�

0 0 0
�

�� l 1 l�

− m ±1 m�
�Rn�,l�

n,l �1� ,�10�

respectively. Selection rules for the magnetic field induced
transitions can be deduced from the properties of the
3-j symbols in Eqs. �9� and �10� as before. Since the second
row of the second 3-j symbols in both of the expressions
need to add up to zero for the survival of the term, we can
immediately conclude that there is no m change for the lin-
early polarized states while the circularly polarized states
change m by 1. Also the first 3-j symbols in the terms tell us
that �l− l��
1 and �l+ l�� must be an odd integer implying
that l must change by one for the term to survive. Since
lmin=m+� and l increases from lmin to n−1 in integer steps
for a given m, it can be concluded that ��m�+ ����=1 for an
allowed transition.

To obtain the dipole matrix elements in �m�� space, we
simply rotate the matrix elements in Eqs. �9� and �10� com-
puted in the �nlm� basis. Let us index the state �nlm� by j and
the state �m�� by �. Denoting the new rotated dipole matrix
element by d�,�� we have

d�,�� = �
j

�
j�

		 j�d�	 j�
Uj,�
* Uj�,��, �11�

where d is the dipole operator which is z for linearly polar-
ized states and �x± iy� /
2 for the left and right hand circu-
larly polarized states, respectively. The rotation matrix U is
the matrix whose columns are the eigenvectors of the full
Hamiltonian H in the �nlm� basis which is obtained by direct
diagonalization of H,

�
j

HkjUj� = Uk�
̃� �12�

where 
̃� is the �th eigenenergy of the Hamiltonian H with
the eigenstate U�.

Having obtained the dipole matrix elements we now can
calculate the partial decay rates of the states of the hydrogen
atom in the magnetic field. Partial decay rate from initial
state i to final state f in length gauge is given by

� fi =
4

3c3 �
̃i − 
̃ f�3�		̃ f�r��	̃i
�2, �13�

where 
̃� and 	̃� are the energy and the eigenfunction of
state � of the hydrogen atom in the magnetic field and
4/ �3c3�=5.181�10−7 in atomic units. Note that the usual
velocity gauge expression derived in the absence of a mag-
netic field becomes

� fi =
4

3c3 �
̃i − 
̃ f��		̃ f�p� − A� /c�	̃i
�2 �14�

with the inclusion of the magnetic field because the physical

momentum of the electron is now �p� −A� /c� as being different
from the canonical momentum p� of the electron.

C. Solution of the rate equation

Having obtained the partial decay rates ��,�� in the mag-
netic field, we solved the time dependent rate equation to
simulate the flow of initial probability distribution among the
states. The rate equation for the probability �� of finding the
atom in state � is

d��

dt
= − ���� + �

����

�������, �15�

where �� is the total decay rate of state �,

�� = �
����

����. �16�

Note that the condition ���� implies the constraint

̃���
̃�. The first term on the right hand side of the rate
equation represents the total flow of probability out of the
state � while the sum in the second term is due to the total
flow of probability into state � from all higher states ��.
The ��,�� span several orders of magnitude making Eq. �15�
difficult to solve. Assume the solution to be of the form
��=��

�0�+��
�1� where ��

�0� satisfies
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d��
�0�

dt
= − ����

�0�. �17�

The time propagation of this equation by one time step �t for
a given ��

�0� at a time t is

��
�0��t + �t� = e−���t���t� . �18�

Substituting ��=��
�0�+��

�1� into the rate equation and noting
that �����0�=����

�0��0�=1, one obtains

��
�1��t + �t� = �

����

B����1 − e−����t�����t� , �19�

where B�������� /��� is the branching ratio. Combining
Eqs. �18� and �19� �� becomes

���t + �t� = e−���t���t� + �
����

B����1 − e−����t�����t� .

�20�

For an initial distribution of probability among the states one
can propagate the probability distribution along time with the
knowledge of the decay rates. We have checked the conver-
gence of our results with respect to the maximum effective
cut off quantum numbers nc , lc of the basis states used to
describe the radiative decay from a given initial distribution.
The states that make up this initial distribution have effective
quantum numbers that are smaller than these cut off nc , lc
quantum numbers. Convergence with respect to the time step
�t was also checked.

III. RESULTS

We will start by making some rough estimates for the
effect of the magnetic field on the classical velocity of the
electron in a circular orbit to obtain an idea of the extent to
which the decay rates from these states change from their
field free estimates. The second subsection contains results
from calculations for the radiative cascade in 1.0, 2.0, 3.0,
and 4.0 T fields where the initial distribution of states with
energies corresponding to various principal quantum num-
bers up to n=35 are completely l ,m mixed. These results are
compared with some results obtained using an analytical rate
formula. In the following subsection we present results from
calculations for which the initial states are localized in the
highest �m� regions of an n manifold and again some results
obtained using an analytical formula for the decay rates. The
effect of the black body radiation will be taken into account
to see if the results of the previously presented radiative cas-
cade calculations are affected by a 4 K �2,3� radiation field.
Finally we present a semiclassical treatment for the calcula-
tion of the radiative decay rates of circular orbits and com-
pare them to those calculated quantum mechanically.

A. Rough estimates

For a classical electron in a closed circular orbit in a Cou-
lomb field, Newton’s laws give

me
v0

2

r
= k

e2

r2 , �21�

where we have employed the SI units. Solution of this
equation for the classical velocity immediately yields
v0= ±
ke2 /mer. In the presence of a uniform magnetic field
of strength B0 directed perpendicular to the plane of the cir-
cular orbit, Eq. �21� becomes

me
v2

r
= k

e2

r2 + evB0 �22�

whose direct solution for v now yields

v =
eB0r

2me
±
� eB0r

2me
�2

+ v0
2. �23�

Note that the � sign in front of the square root term in
Eq. �23� implies the fact that electron either speeds up
or slows down depending on the sign of Lz for a given di-
rection of the magnetic field. Expanding the square root to
the fourth order in binomial series for the case eB0r / �2me�
�v0, one approximates the classical velocity in magnetic
field v by

v �
eB0r

2me
± �v0 +

1

2v0
� eB0r

2me
�2

+
1

8v0
3� eB0r

2me
�4� . �24�

Noting that k=me=e=1 in atomic units and r�n2 for a cir-
cular classical orbit with energy 
�−1/ �2n2�, we can infer

vn
cl � ±

1

n
�1 �

�n3

2
+

1

8
��n3�2 +

1

128
��n3�4� , �25�

where we have recalled that �=B0 / �2.35�105 T� is the
magnetic field in atomic units when B0 is in T.

In the field free case, Eq. �25� predicts vn
cl�1/n for all n

which is exactly the quantum mechanical velocity vn=1/n.
For n=10, the zero field velocity differs from the B0=4.0 T
value by �1%. At n=20 the difference between the veloci-
ties for 2.0 T field and the zero field is �3% and �7% at
4.0 T. When we are up to n=30, vn

cl differs from zero field
value by �12% for B0=2.0 T, by �19% for B0=3.0 T, and
by �26% for B0=4.0 T. This suggests that magnetic field
strengths of interest in the anti-hydrogen experiments has
little effect on the circular orbits with n�10 while starting to
effect the velocities in the orbits with n�20 within �10%
and in the orbits with n�30 within �30%. Noting that the
radiative decay rate scales like a2�v4 /r2, we can infer that
the magnetic field affects the decay rates more strongly than
it affects the velocity of the electron in the orbit.

In the limit where eB0r /2me�v0 Eq. �23� can be ex-
panded to second order as

vn
cl �

eB0r

2me
±

eB0r

2me
�1 +

v0
2

2�eB0r/2me�2� �26�

yielding v+
cl�eB0r /me+v0

2 / �eB0r /me� for the orbit in which
the electron is sped up, and v−

cl�−v0
2 / �eB0r /me� for the orbit

in which the electron is slowed down by the magnetic field.
The case where the electron is slowed down corresponds to
the guiding center approximation since the Larmor period is
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much smaller than the orbital period of the electron. In 4.0 T
field, the absolute value of the ratio of the velocities in orbits
with same energy but of opposite helicities, i.e., �v+

cl /v−
cl�, is

�1 for orbits with n up to 25, �1.2 at n=30, and �2.2 at
n=40.

B. Energy spectrum in the magnetic field

From the diagonalization of the full Hamiltonian H, we
have found that the energies of the states with negative mag-
netic quantum numbers decrease whereas the energies of the
states with positive magnetic quantum numbers increase with
the increasing magnetic field strength. In the antihydrogen
experiments, magnetic field will be deliberately generated in
such a way that it is stronger near the walls of the cylindrical
container in which antiproton and positron plasmas are
mixed. Therefore the states with negative m’s are attracted
by the increasing magnetic field strength and states with
positive m’s are repelled by the increasing magnetic field.
Hence we can expect the states with negative m that are close
to the magnetic field gradient to plummet to the wall of the
container faster than those with positive m. Therefore atoms
that are formed with high field seeking character will need to
decay especially rapidly if they are not to be accelerated by
the magnetic field gradients. For extremely negative
m�−200 of Ref. �11�, the atoms could have low field seek-
ing character because the positive magnetic moment from
the electron’s cyclotron motion is larger in magnitude than
the negative magnetic moment from the guiding center char-
acter of the electron’s motion around the proton.

C. Radiative cascade starting from completely random „l ,m…

distribution

Since n is not a good quantum number when magnetic
field is present, the initial probability distribution was chosen
such that the probability of finding the atom in a state whose
energy is between energies of hydrogenic n and n−1 mani-
folds is equally partitioned between the states that lay in this
energy range. Initial distributions that correspond to n=10,
15, 20, 25, 30, and 35 in magnetic fields of strengths 1.0, 2.0,
3.0, and 4.0 T have been explored. Furthermore, instead of
monitoring the flow of probability of finding the atom within
a particular state, we have monitored the probability of find-
ing the atom in a state whose energy lies in a range which
embraces 5–10 n manifolds. Evolution of the probability
distribution with time when started out in states with effec-
tive n=35 in a 4.0 T field are plotted in Fig. 1. As time
progresses, states of lower energies become populated, even-
tually with all population ending up in the ground state. At
early times the fast decay is mostly coming from the low-�m�
states which cascade by large �n steps. The slow decay at
later times is due to the states with large-�m� which cascade
through �n�−1 transitions.

In the antihydrogen experiments, the formed antihydrogen
atoms move through a magnetic field that is spatially depen-
dent, e.g., stronger near the walls of the cylindrical container.
Since the magnetic force on the center of mass of the anti-
hydrogen atom depends on its internal energy, it is important
to know the time scale for the variation of the internal energy

of the antihydrogen atom to estimate the time it has before
colliding with the wall of the container and get annihilated. A
practical percentage of the antiatoms should decay to the
ground state before they get destroyed to be used in the CPT
and Lorentz violation experiments. Therefore we have calcu-
lated the time it would take to populate the ground state by
10, 20, 50, and 90% if everything starts from states that are
in the aforementioned n regimes. In Figs. 2�a� and 2�b� the
time it takes 10 and 50% of the hydrogen atoms to decay

FIG. 1. Flow of probability in the completely l ,m mixed distri-
bution for n=35 in a 4.0 T field as a function of time. Each curve
represents the total probability of finding the atom in a state whose
energy is in one of the particular energy ranges indicated on the
legend.

FIG. 2. Time required to populate the ground state of the hydro-
gen atom by �a� 10 and �b� 50% as a function of the effective
hydrogenic principal quantum number n for 1.0, 2.0, 3.0, and 4.0 T
fields. Initial distribution of states is completely l ,m mixed.
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down to the ground state as a function of the given initial
state n is plotted for four different magnetic field strengths. It
can be seen that for n�25 the magnetic field makes no im-
portant difference in terms of populating the ground state by
10% and when we are up to n=35 we see �0.4 ms separa-
tion between 1.0 and 4.0 T values. This implies that the in-
crease in the time it takes to populate the ground state by n is
mainly a zero field effect. When we look at the 50% popu-
lation plot it can be noted that for n�25 there is no change
coming from increasing the field strength but by n=30 there
is �0.8 ms and by n=35 there is �3.5 ms separation be-
tween the lowest and highest magnetic field strengths.

The thermal speed 
kBT /M of an antihydrogen atom at
4 K �2,3� is �260 m/s which is �26 cm/ms and higher by
a factor of 2 at 16 K �1�. Noting that the diameter of the
cylindrical container is approximately a couple of centime-
ters, we can conclude that in the field regime of the experi-
ments there is not enough time to populate the ground state
by even 50% before the antihydrogen atoms hit the walls and
get destroyed. According to Fig. 2�a�, for n=35 the time
needed to populate the ground state by 10% is about 0.2 ms
in which the thermal antihydrogen atoms can move �6 cm.
Hence we can conclude that at 4 K and in magnetic fields up
to �4 T the ground state population will not be able to ex-
ceed 10%. Since ATHENA experiment runs at a higher tem-
perature, this population percentage would be even lower in
their experiment. It seems clear that in order to trap substan-
tial amounts of antihydrogen, the antiatoms need to be
trapped while in Rydberg states.

Since the lifetime of the completely l ,m mixed case in-
creases �n5 for a highly excited hydrogenic state in the ab-
sence of a magnetic field, time scaled by n5 would stay
roughly constant as n increases. Therefore we scaled our
results for the decay times by n5 to see the n range for which
decay times are practically unaffected by the magnetic field.
These scaled plots can be seen in Fig. 3 where we have
plotted scaled time needed for the ground state to be popu-
lated by 10, 50, and 90% versus initial n. In all the plots,
scaled time stays approximately constant up until n�25
meaning that decay rates of these states are not affected by
the magnetic field compared to the field free case; this is due
to the fast direct decay to low n-states. Scaled time then
starts to spread out noticeably with growing n there on. The
states with higher-�m� decay more slowly and have rates that
are more strongly affected by the magnetic field. This is the
reason for the larger magnetic field effect in Figs. 3�b� and
3�c� than in Fig. 3�a�.

For comparison, we have also done the same calculations
for zero field case using decay rates calculated via an ana-
lytical formula which assumes complete l mixing of the
states populated in the initial distribution when there is no
magnetic field �16�. In the actual decay process, states with
low-�m� can make bigger �n jumps towards the ground state
than the ones with high-�m�, resulting in the pile up of popu-
lation in states with �m ��n over time. Since the analytical
formula assumes complete l mixing within individual n
manifolds, it does not simulate the actual behavior after the
piling up of population in high-m states. Therefore the appli-
cability of this analytical formula is limited to short time
periods from the beginning. In this picture, partial decay rate
from state ni to state nf is

�ni→nf
=

8�3

3
3�

1

ni
5nf

1

1 − �nf
2/ni

2�
, �27�

where � is the fine structure constant. The total decay rate is
again calculated as usual,

�ni
= �

nf=1

ni−1

�ni→nf
. �28�

For n=20, time needed for population of the ground state to
reach 10% is calculated using the rates from Eq. �27� is about
27% bigger than our quantal result while 90% population
result is off by about 60%. Going up to n=30 we found that
time for 10% population of the ground state is longer by
�14% and 90% population time is longer by �76% than our
quantum mechanical result.

D. Radiative cascade starting from high-�m� distribution

The dominant process in the antihydrogen formation is
believed to be three-body recombination. It is also known
that the atoms formed in this process are likely to be in a
high m state �9�. This is clearly a different situation than the
completely l ,m mixed case where every state within a pre-
scribed energy range is equally likely to be populated. To
simulate the case of the three-body recombination, we re-
stricted our initial states not just being in the �
n−1 ,
n� energy
range but also their m values to be extreme to qualify as one
of the initial states. We investigated both extreme cases in
which m�n and m�−n although it seems that the m�−n

FIG. 3. Scaled time required to populate the ground state of the
hydrogen atom by �a� 10, �b� 50, and �c� 90% as a function of the
effective hydrogenic principal quantum number n for 1.0, 2.0, 3.0,
and 4.0 T fields. Initial distribution of states is completely l ,m
mixed.
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case is more likely. High-�m� states are chosen such that there
are only a few states that make up the initial distribution.

For comparison, we also calculated the time it takes the
atom to reach its ground state in zero magnetic field by an
approximate formula for the decay of circular states

�n→�n−1� =
2

3�n −
1

2
�2

n3c3

. �29�

The decay rate estimates we made using Eq. �29� for zero
magnetic field are in agreement with the exact quantum re-
sults within about 5% for the states with n=2 and get better
with increasing n reaching agreement with the quantal result
within 0.5% by n=5 for B0=0.

The results of the quantum mechanical calculations for
10% population of the ground state are plotted in Fig. 4 for
magnetic field strengths of 1.0 and 4.0 T for highest and
lowest m states in their respective n manifolds with the zero
field results for comparison. Both 1.0 and 4.0 T curves for
high m lie just below the zero field results throughout the
whole n range from 10 to 30, while for the states with lowest
m’s 1.0 T field lifts the 10% population time just above the
zero field curve and 4.0 T field stretches the required time
for 10% population of the ground state from the zero field
value by a factor of �13 for n=30. Note that the largest
effect is for the states with m�−n, only becoming important
above n�25. The fact that the 4.0 T field has a more pro-
nounced effect for the �m��−n mixed distribution than for
the completely l ,m mixed distribution is because now the
states in the distribution are mostly circular and most of the
transitions are of �n=−1 type.

In Fig. 5, the times required for the population of the
ground state by 10, 50, and 90% are scaled by n6 since now
initial distribution involves only circular states. Scaled decay
times are plotted versus n for the high-�m� states again in
magnetic fields of strengths 1.0 and 4.0 T. In all three plots,

both of the m�n cases lie just below the zero field curve.
For the states with m�−n, 1.0 T field cannot alter the scaled
time of 10% population by more than �30% from the field
free case but for the 4.0 T field scaled population time is
larger than zero field case by a factor of �2.5 at n=25 and
by a factor of �11 by n=30. Again starting from the states
with m�−n, 50% population of the ground state in 1.0 T
field does not differ from the field free value by more than
�25% but for the 4.0 T field scaled population time is larger
than zero field case by a factor of �3 at n=25 and by a
factor of �11 by n=30. For the 90% population of the
ground state, 1.0 T field again does not do a good job in
lifting the scaled time by n�25 from the zero field value and
the 4.0 T field again gives higher scaled time than zero field
by a factor of �2.5 at n=25 and by a factor of �15 at
n=30. The fact that the decay time for the negative m-states
is much longer than the positive m-states can be understood
from classical arguments. The classical radiation is propor-
tional to the square of the acceleration of the electron which
goes �v2 /r. Since the electrons in states with m�−n are
slowed down by the magnetic field, they have lower accel-
eration than the electrons in states with m�n. Therefore the
electrons in states with m�−n radiate less intensely and
decay more slowly compared to the electrons in states with
m�n.

E. Effect of black body radiation

One concern was whether the experimentally reported
black body temperatures of 16 K �1� and 4 K �2,3� could
strongly affect the radiative decay rates. The effect would be

FIG. 4. Time required to populate the ground state of the hydro-
gen atom by 10% as a function of the effective hydrogenic principal
quantum number n for 1.0 and 4.0 T fields. Initial distribution of
states only involves states with high �m�.

FIG. 5. Scaled time required to populate the ground state of the
hydrogen atom by �a� 10, �b� 50, and �c� 90% as a function of
the effective hydrogenic principal quantum number n for 1.0 and
4.0 T fields. Initial distribution of states only involves states with
�m��n.
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stimulated emission and photoabsorption fueled by the black
body radiation. Expressing the decay rates in terms of Ein-
stein A and B coefficients, the rate of radiative decay from
state i to state f would be

Ai→f + Bi→fu��if� , �30�

where u��if� is the Planck distribution

u��if� =
��3

�2c3

1

eh�if/kBT − 1
. �31�

Einstein Bi→f coefficient is evaluated from the Ai→f coeffi-
cient in the following manner:

Bi→f =
�2c3

��3 Ai→f . �32�

In terms of evaluating the effect of the black body radiation,
an important quantity is the ratio of the stimulated emission
rate to the spontaneous emission rate �eh�if/kBT−1�−1. At 4 K,
the n→ �n−1� transitions up to about n=20, the ratio is of
the order of 10−6 and jumps up to about 5�10−2 at n=30 and
becomes �0.4 at n=40. Substantial contribution to this ratio
comes from the transitions between the lowest energy states
of different m manifolds. To see the effect of the black body
radiation on the decay times, we used the rate in Eq. �30� and
found that the time needed to populate the ground state
changed by less than 10% for n�40. We conclude that the
black body radiation will not qualitatively affect the radiative
cascade for n�40.

F. Semiclassical treatment

The time averaged classical power over one orbit emitted
from an electron in a circular orbit with radius r in SI units is
given by �17�

I =
2

3

e2

4�
0c3 �r�̈�2 =
2

3

e2

4�
0c3�v2

r
�2

, �33�

where v is given by Eq. �23� and r is given by the Bohr-
Sommerfeld quantization condition

m� = mevmrm −
eB0

2
rm

2 = ± rm
� eB0rm

2
�2

+
ke2me

rm
.

�34�

The canonical angular momentum is Lz=m� and ± indicates
the sign of m.

Energy of the orbit is obtained by

E =
1

2
mevm

2 −
e2

4�
0

1

rm
�35�

and the semiclassical decay rate is evaluated as
�m= Im /��vm

�±� /rm� where the � again indicates the sign of m.
Note that this semiclassical treatment is only for the circular
states, i.e., the high-�m� states of a given n manifold. There-
fore the only allowed transitions are n→ �n−1� transitions
and the ground state does not decay.

Comparing the rates calculated semiclassically with the
fully quantal rates in a 4.0 T field we saw that at n=10 the

quantal rate is larger by �11%, at n=20 by �4%, and at
n=30 by less than 1%. Similar errors were found for other
field strengths.

We can use this semiclassical method to estimate the rela-
tive size of the decay rate due to the cyclotron motion com-
pared to the decay rate due to the magnetron motion. For
example, the cyclotron decay rate in a 1.0 T field is �1 Hz
for the n=3 state which corresponds to 4 K. The decay rate
of the m=−85 state due to the magnetron motion is also of
the same size.

An important question is whether guiding center atoms
with m�−1 can be trapped using magnetic field gradients.
The change in the energy of the circular states as a function
of the magnetic field strength is an indication of the affinity
of the state to a magnetic field gradient. For the purposes of
trapping Rydberg atoms using magnetic field gradients, the
internal energies of the atoms must increase with increasing
magnetic field strength. To see if the atom is a high field or
low field seeker we have approximated the motion of the
electron in the orbit as a superposition of a cyclotron motion
and a magnetron motion. The force on the center of mass of

an atom is F� =−��� B��dE /dB� when it is slowly moving and
has internal energy E. For an electron in a central potential

dE /dB= �e /2�B̂ · �r��v��. We computed this quantity for the
circular states in this semiclassical approximation and com-
pared it to the dE /dB for pure cyclotron motion which is
E /B. In a 1.0 T field, dE /dB is −24 K/T for m=−85 and is
−20 K/T for m=−125. The comparable values in a 3.0 T
field are −14 K/T and −12 K/T. The magnetron motion
leads to high field seeking character.

To trap the antihydrogen atoms in a spatially dependent
magnetic field which is stronger near the wall of the con-
tainer, one needs the atoms to be low field seekers. The
dE /dB for the magnetron motion can be counteracted by the
cyclotron motion. The dE /dB for pure cyclotron motion at
4 K in a 1.0 T field is 4 K/T; this is a factor of 6 smaller in
magnitude than for the magnetron motion at m=−85 and of
opposite sign. Thus the contribution from the cyclotron mo-
tion into the low field seeking character of the atom is much
smaller than the contribution into the high field seeking char-
acter of the atom from the magnetron motion. Hence we can
conclude that either a lot of energy must be put into the
cyclotron motion if the atoms are in circular negative m
states or the atoms cannot be in nearly circular negative m
states to be able to be trapped by the spatially dependent
magnetic field.

IV. CONCLUSIONS

We have investigated the radiative cascade of highly ex-
cited hydrogen atoms in strong magnetic fields up to 4.0 T
where we have considered states up to effective n�30–35.
We have considered two different cases of initial distribu-
tions. In one case, the states were equally populated within a
small energy range and in the other case only the states with
�m��n are populated. We have found that in the completely
random l ,m case the time needed to populate the ground
state by 10% is longer than the time it would take the anti-
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hydrogen atoms in recent experiments to hit the walls of the
container due to their thermal speed. We have also shown
that the experimentally reported black body radiation at 4 K
did not affect the rates and the times needed to cascade down
to the ground state by more than a few percent which sug-
gests that the black body radiation will not be of much help
in getting the antihydrogen atoms to the ground state faster.
This also means that it cannot slow down the cascade pro-
cess by means of photoabsorption either.

Both in the completely random �l ,m� distribution and the
�m��n distribution we see that states up to about n�20 are
not affected much by the magnetic field as would be ex-
pected considering the atomic unit of the magnetic field be-
ing of the order of 105 T, compared to the external field of a
few T.

When the initial distribution only involves states with
�m��n, time needed to populate the ground state is found to
be longer than the completely random l ,m case. This results
from the initial states being high-m states, which are circular
or almost circular, and the fact that in completely random
l ,m case these states comprise a smaller fraction of the popu-
lation. The only allowed transitions for the circular states in
the presence of the magnetic field are either �m=0 or
��m�=1 transitions depending on the parity change in the
transition. Therefore the states with high-�m� need to cascade
down through smaller �n transitions than those with smaller
�m�. This greatly increases the decay time to the ground state
from the highly excited states in the case where the cascade
initiated from the negative large m states when the magnetic
field points in the z direction. When started from positive
large m states the magnetic field actually speeds up the cas-
cade process since in these states the electron is sped up by
the magnetic field, radiating more intensely and decaying
faster. In the case of the negative large m states, the same
argument can be drawn noting that this time the magnetic
field slows down the electron which radiatively loses its en-
ergy at a slower rate than in the field free case. We have
shown that when started from a distribution of extreme nega-
tive m states, it takes about 800 times longer for the ground
state to reach 10% population level than it does for the com-
pletely random l ,m distribution at n=30 in 4.0 T magnetic
field.

We have also found that when the radiative cascade starts
from a circular state, the semiclassical treatment we have
given here does a very good job in terms of yielding the
decay rates, especially for the states with effective n�20. In
cases where the large fraction of the atoms are in high-�m�
states, the old quantum theory can be used to evaluate the
decay rates instead of the full quantum theory. We used this
semiclassical method to estimate the decay rate due to the
cyclotron motion of the electron and compare it to the rate
originating from the magnetron motion of the electron in a
circular orbit. We evaluated the force on the center of mass
of the atom due to the magnetic field gradient and found that
for the atoms to be trapped with a spatially dependent mag-
netic field they should be either in highly eccentric orbits or
a large amount of energy must be imparted into the cyclotron
motion of the electron.
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APPENDIX

The exact Hamiltonian for a hydrogen atom in an external

magnetic field B� =Bẑ is

H =
�p� − qA� �r���2

2�
+

B2

2M
�x2 + y2� +

BK

M
x −

1

r2 +
K2

2M
,

�A1�

where M =me+mp, �=memp /M is the reduced mass, K is the
pseudomomentum assumed to be in the y direction, and
q=e�mp−me� /M �18�. The Hamiltonian �2� can be obtained
by making four approximations to the exact Hamiltonian. �1�
We use the mass of the electron me instead of the reduced
mass �. This gives a change at the �1/1000 level and thus is
not interesting for our purposes. �2� We do not include the
last term K2 /2M since this a constant and does not affect the
composition of the states or their relative energies. �3� We do
not include the term B2�x2+y2� /2M. This term is �500 times
smaller than the comparable diamagnetic term in our Eq. �2�
and thus does not have an important effect on our results. �4�
We do not include the term BKx /M. The effect of this term is
the motional Stark effect since the atom has a velocity per-

pendicular to the magnetic field B� . The pseudomomentum is

K� = P� +
e

2
B� � r� , �A2�

where P� =MV� is the linear momentum of the proton and r�
is the distance from the proton to the electron. In a 4 T

field and with a kinetic energy of 4 K the first term in P�

has magnitude �4.3�10−25 kg m/s while the second term

eB� �r� /2 has magnitude �1.5�10−26 kg m/s. Thus we can
take K�MV in our estimates. To see that the Stark shift
does not have an important effect on our results, we note
that the magnitude of the paramagnetic splitting of the
levels due to the magnetic field is �EP

�1�= �B /2���m� and is
�2.13�10−6 a.u. in a 1 T field for the adjacent levels. The
thermal speed of an antihydrogen atom at 4 K �2,3�
is �260 m/s. An antihydrogen atom moving with a velocity

V� in a magnetic field B� experiences an electric field of mag-

nitude E��V� �B� �. The correction to the energy levels in the
first approximation in an n-manifold due to the linear Stark
effect resulting from this field is ES

�1�= 3
2En�n1−n2� where n1

and n2 are the parabolic quantum numbers �15�. The separa-
tion of the adjacent Stark levels would be 3En which is
�4.5�10−8 a.u. in n=30 manifold for an atom moving at
260 m/s in a 1 T field. Note that the paramagnetic splitting
is larger than the Stark splitting by roughly two orders of
magnitude, therefore the linear Stark effect is negligible.

Actually, the eigenvalues and eigenvectors of VBx+BLz
can be found analytically within an n manifold. We com-
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puted the average spread in m for each state in an n manifold
which we defined to be �m2�	Lz

2
− 	Lz
2. We averaged �m2

over all of the states and found it to be 3V2n3�n+1� /4 which
is �9�10−3 for n=30. Again this shows that most states
hardly mix with other m’s and the main mixing is with m±1.
Since each state is mixing with states of similar radiative
properties, our results on radiative cascade should be accu-
rate to better than a few percent.

Clearly, the extent to which the Hamiltonian of Eq. �2� is
accurate depends on the application. For investigations of
large scale and/or averaged quantities, several different esti-
mates including comparison of the sizes of MV and eBr /2 in
the pesudomomentum, comparison of the proton cyclotron

frequency to the frequency of the electron in the guiding
center atom, and the size of the motional Stark field to the
magnetic field suggest that the Hamiltonian �2� is good
enough for accuracy better than �10% for n�60 for
B�4 T and kinetic energy less than 4 K.

In addition to the strong magnetic fields, antihydrogen
experiments also involve spatially dependent electric fields
of �10 V/cm which is roughly a factor of �1–4 times
larger than the motional Stark field. Since the configurations
of the traps are not known at this time, we will not speculate
on the effect of these electric fields. In light of the estimates
in this Appendix, it seems unlikely that these electric fields
will have a substantial effect on our results.
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