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A time-dependent close-coupling method for three-electron atomic systems is formulated to calculate the
double autoionization of hollow-atom states. Initial excited states are obtained by relaxation of the Schrödinger
equation in imaginary time, while autoionization rates are obtained by propagation in real time. A 12-coupled-
channels nonperturbative calculation on a three-dimensional radial lattice yields a double-autoionization rate
for the Li�2s22p�→Li2+�1s�+2e− transition that that is somewhat smaller than earlier many-body perturbation
theory calculations and in reasonable agreement with rates extracted from resonance profiles found in more
recent �+Li experiments.
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I. INTRODUCTION

The double-autoionization process in atoms is a three-
electron process in which one electron becomes more tightly
bound and the other two electrons move off in the long-range
Coulomb field of the resulting ion. The lowest-order contri-
bution in perturbation theory to the double-autoionization
process is found in second-order correlation diagrams �1�. In
the electron-impact ionization of atoms, triply excited states
may be formed that only contribute to ionization by double
autoionization �2�, a so-called resonant-excitation auto-
double-ionization �READI� process. The READI process
was first observed in the electron-impact ionization of Li-like
ions �3,4�, where the resonant features are in reasonable
agreement with both perturbative �5� and nonperturbative
�6–10� calculations. To be specific, the calculated resonance-
energy positions and total-autoionization widths are in rea-
sonable agreement with experiment, while the absolute ion-
ization strengths, which are directly related to the double-
autoionization rates, are much more difficult to predict.

The double-autoionization process has also been observed
for triply excited states of atoms with no additional inner
electrons, so-called hollow-atom states. The READI process
was first observed for hollow-atom states in the electron-
impact ionization of Li+ �11� and subsequently compared
with perturbative �12� and nonperturbative �13,14� calcula-
tions. In the photon-impact ionization of atoms, triply ex-
cited states may be formed that only contribute to double
ionization by double autoionization. This READI process
was first observed in the photon-impact double ionization of
Li �15�, and then further experiments were compared with
nonperturbative calculations �16�. Again, good agreement is
found between experiment and theory for resonance-energy
positions and total-autoionization widths, while the absolute
double-ionization strengths, which are related to the double-
autoionization rate, differ by a factor of 2. Recently, the
READI process has been observed in the photon-impact
double ionization of He− �17�, another example of the double
autoionization of triply excited hollow-atom states.

In this paper a time-dependent close-coupling �TDCC�
method for three-electron atomic systems, which has been

successfully applied to calculate photon-impact triple photo-
ionization of Li �18� and electron-impact double ionization
of He �19�, is formulated to calculate the double autoioniza-
tion of hollow-atom states. The three electrons in the atom
are described by a nine-dimensional wave function, with the
three radial dimensions represented on a numerical lattice
and the six angular dimensions represented by a coupled-
channels expansion. In this way, correlation effects among
three electrons moving in the Coulomb field of the nucleus
are taken into account—i.e., a numerical solution of the four-
body Coulomb problem. Initial excited states are obtained by
relaxation of the Schrödinger equation in imaginary time
�20,21�, while autoionization rates are obtained by projection
onto final states during propagation in real time. Our first
case nonperturbative results for Li�2s22p�, which include
resonance energies, total-autoionization rates, and double-
autoionization rates, are compared with many-body perturba-
tion theory �MBPT� calculations �1�, nonperturbative calcu-
lations �13,14,16�, and photoionization experiments �16�.
Section II reviews the TDCC method for double autoioniza-
tion, Sec. III presents results for Li�2s22p�, and a brief sum-
mary is found in Sec. IV. Unless otherwise stated, we will
use atomic units.

II. THEORY

For a three-electron atom the nonrelativistic Hamiltonian
is given by

H = �
i=1

3 �−
1

2
�i

2 −
Z

ri
� + �

i�j=1

3
1

�r�i − r� j�
, �1�

where r�i are electron coordinates and Z is the atomic number.
The total electronic wave function for a given total angular
momentum L may be expanded in coupled spherical
harmonics:
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��r�1,r�2,r�3,t� = �
l1,l2,L,l3

Pl1l2Ll3

L �r1,r2,r3,t�

r1r2r3
W�„�l1,l2�L,l3…L� ,

�2�

where li are electron angular momenta. The angular reduc-
tion of the time-dependent Schrödinger equation for the
three-electron wave function of Eq. �2� yields a set of time-
dependent close-coupled partial differential equations for
each L symmetry:

i
�Pl1l2Ll3

L �r1,r2,r3,t�

�t

= Tl1l2l3
�r1,r2,r3�Pl1l2Ll3

L �r1,r2,r3,t�

+ �
l1�,l2�,L�,l3�

�
i�j

3

V
l1l2Ll3,l1�l2�L�l3�
L �ri,rj�

�P
l1�l2�L�l3�
L �r1,r2,r3,t� , �3�

where

Tl1l2l3
�r1,r2,r3� = �

i

3 �−
1

2

�2

�ri
2 +

li�li + 1�
2ri

2 −
Z

ri
� �4�

and the coupling operators are given in terms of standard 3j
and 6j symbols; see the electron-impact double ionization of

the He paper of Pindzola et al. �19� �Eqs. �3�–�5��.
The initial condition for the solution of the time-

dependent close-coupling equations of Eq. �3� in real time t
is given by

Pl1l2Ll3

L �r1,r2,r3,t = 0� = P̄l1l2Ll3

L �r1,r2,r3,� → �� , �5�

where the radial wave functions for the resonance excited

state, P̄l1l2Ll3

L �r1 ,r2 ,r3 ,�→��, are obtained by relaxation of
the close-coupled equations of Eq. �3� in imaginary time, �
= it �20,21�. As an example, the radial wave functions at �
=0 for Li�2s22p� are given by

P̄l1l2Ll3

L �r1,r2,r3,� = 0� = P2s�r1�P2s�r2�P2p�r3��l1,0�l2,0�L,0�l3,1

+ P2s�r1�P2p�r2�P2s�r3��l1,0�l2,1�L,1�l3,0

+ P2p�r1�P2s�r2�P2s�r3��l1,1�l2,0�L,1�l3,0,

�6�

where Pnl�r� are bound single-particle orbitals and L=1. To
guard against relaxation to any state involving 1s character,
the Schmidt orthogonalization

P̄l1l2Ll3

L �r1,r2,r3,�� = P̄l1l2Ll3

L �r1,r2,r3,�� − 	
0

�

P1s�r1��P̄l1l2Ll3

L �r1�,r2,r3,��dr1�P1s�r1��l1,0

− 	
0

�

P1s�r2��P̄l1l2Ll3

L �r1,r2�,r3,��dr2�P1s�r2��l2,0 − 	
0

�
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0
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0
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0
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0
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L �r1,r2�,r3�,��dr2�dr3�P1s�r2�P1s�r3��l2,0�l3,0 �7�

is carried out at each imaginary time step. For the
�ss�Sp channel, the first projection eliminates the 1sns2p
states, the second projection eliminates the ns1s2p states,
and the fourth projection restores the 1s1s2p state that
was double counted. The elimination of any 1s character
in the relaxation procedure is equivalent to a Feshbach
projection �20�, yielding a fully correlated nine-dimensional
Q� wave function representing the autoionizing excited
state.

The time-dependent close-coupled equations of Eq. �3�
are solved, in both real and imaginary time, using standard
numerical methods �18,19� to obtain a discrete representation
of the radial wave functions and all operators on a three-
dimensional lattice. Our specific implementation on mas-
sively parallel computers is to partition all the radial coordi-
nates over the many processors, so-called domain
decomposition. At each time step of the solution only those
parts of the radial wave functions needed to calculate the
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second derivatives found in Eq. �4� are passed between the
processors.

Specific double-autoionization rates are obtained by pro-
jection onto fully antisymmetric determinantal wave func-
tions during the propagation of Schrödinger’s equation in
real time. For example, the double-autoionization rate for the
Li�2s2p�→Li2+�1s�+2e− transition is obtained from periodic
calculation of the probability

P�t� = �
l1,l2,L,S,l3

Pl1l2LSl3
�t� , �8�

where the individual spins si are assumed to be 1
2 , S is the

intermediate total spin, and the number of distinct l1l2LSl3
determinantal wave functions is quite different from the
number of l1l2Ll3 coupled channels. The determinantal pro-
jection probability is given by

Pl1l2LSl3
�t� = �

k2

�
k3


�
L�

�L,L�QaR�123,t� − �
L�

�− 1�l2+l3+L+L���2L + 1��2L� + 1��l2 l1 L

l3 L L�

QbR�132,t�

− �
L�

�− 1�l1+l2−L��L,L�QcR�213,t� + �
L�

�− 1�l1+l2+L��2L + 1��2L� + 1��l2 l1 L

l3 L L�

QcR�312,t�

+ �
L�

�− 1�l2+l3+L���2L + 1��2L� + 1��l1 l2 L

l3 L L�

QbR�231,t� − �

L�

��2L + 1��2L� + 1��l1 l2 L

l3 L L�

QaR�321,t�
2

,

�9�

where

R�ijk,t� = 	
0

� 	
0

� 	
0

�

P1s�ri�Pk2l2
�rj�

�Pk3l3
�rk�Pl1l2L�l3

L �r1,r2,r3,t�dr1dr2dr3 �10�

and

Qa =�1

2
�S,0 −�1

6
�S,1,

Qb =�2

3
�S,1,

Qc = −�1

2
�S,0 −�1

6
�S,1. �11�

Care must be taken in the sums over the electron momenta k2
and k3 found in the collision probability of Eq. �9�. When the
associated angular momenta are equal—for example,
l2= l3—the sums must be restricted to avoid doubling count-
ing of distinct continuum states. To avoid contamination

from the continuum piece of the two-electron bound-state
wave functions, we restrict the sums over the electron mo-
menta k2 and k3 to those approximately satisfying the con-
servation of energy �18,19�:

Eatom = Eion +
k2

2

2
+

k3
2

2
. �12�

We note that the total-autoionization rate for Li�2s22p�
may be obtained from periodic calculation of the probability

P�t� = 1.0 − �
l1,l2,L,l3

Pl1l2Ll3
�t� , �13�

where the sum is now over l1l2Ll3 coupled channels. The
coupled-channels probability is given by either

Pl1l2Ll3
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�t� = 
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2
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0
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0
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0

�
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2
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− 	
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� 
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2

dr1dr3�l2,0 − 	
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0

�

P1s�r3�Pl1l2Ll3
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2

dr1dr2�l3,0.

�15�
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The double- and total-autoionization rates are obtained by
plotting the probabilities of Eqs. �8� and �13� versus time and
extracting the slopes.

III. RESULTS

Energy levels for selected states in the Li isonuclear se-
quence are shown in Fig. 1. A single-configuration Hartree-
Fock method �22� is used to calculate the approximate en-
ergy positions for the Li and Li+ states. The Li�2s22p� triply
excited hollow-atom state has a strong single-autoionization
rate to the Li+�1s2l� excited states and a much weaker cor-
related single-autoionization rate to the Li+�1s2� ground state
�23�. We note that double autoionization of Li�2s22p� may
only occur to the Li2+�1s� ground state.

The time-dependent close-coupling calculations for the
Li�2s22p� triply excited hollow-atom state employed a
�192�3 lattice with each radial direction from 0.0→19.2
spanned by a uniform mesh spacing 	ri=0.10. Relaxation of
the coupled equations in imaginary time used 18 000 time
steps of 	�=0.01 to achieve full convergence. Propagation
of the coupled equations in real time used 5000 time steps of
	t=0.002. A mask function was employed at the lattice
boundary to prevent reflection of the large fast-moving part
of the wave function due to autoionization.

Li�2s22p� hollow-atom state energies, total-autoionization
rates, and double-autoionization rates are presented in Table
I. The first TDCC calculation used three coupled channels
��ss�Sp, �sp�Ps, and �ps�Ps� and two determinantal projec-
tion functions ��ss�1Sp and �ss�3Sp�. The second TDCC cal-
culation used six coupled channels and eight determinantal
projection functions. To take into account initial-state angu-
lar correlation, the second TDCC calculation added three
coupled channels ��pp�Sp, �pp�Pp, and �pp�Dp� and six de-
terminantal projection functions ��pp�1Sp, �pp�3Sp, �pp�1Pp,
�pp�3Pp, �pp�1Dp, and �pp�3Dp�. The third TDCC calcula-
tion used 12 coupled channels and 10 determinantal projec-
tion functions. To take into account final-state angular corre-
lation, the third TDCC calculation added six coupled
channels ��sp�Pd, �ps�Pd, �sd�Dp, �ds�Dp, �pd�Ps, and
�dp�Ps� and two determinantal projection functions ��sp�1Pd
and �sp�3Pd�. The total TDCC autoionization rates obtained
using either Eq. �14� or �15� are in excellent agreement. The
largest 12-channel TDCC calculation has a hollow-atom state
energy that is 0.2% lower than MBPT calculations �1� and
0.2% higher than experiment �16�. The 12-channel TDCC
calculation has a total-autoionization rate that is in excellent
agreement with MBPT calculations �1�, 8% higher than
R-matrix pseudostates calculations �13,16�, 14% higher than
saddle-point complex rotation calculations �14�, and 7%
higher than experiment �16�. Finally, the 12-channel TDCC
calculation has a double-autoionization rate that is 45%
lower than MBPT calculations �1� and 20% higher than ex-
periment �16�. The TDCC ratio of double-autoionization rate
to the total-autoionization rate is found to be 3.7%, in com-
parison with the experimental value of 3.3% �16�.

IV. SUMMARY

In conclusion, we find that a time-dependent close-
coupling method for three-electron atomic systems may be
formulated and used to calculate accurate double-
autoionization rates of hollow-atom states. Our first case
nonperturbative results for Li�2s22p� are found to be in
reasonable agreement with energies and rates found in pre-
vious �+Li experiments �16�. The fact that our time-
dependent close-coupling method includes Coulomb four-
body breakup in a nonperturbative manner gives it a
powerful advantage over all many-body perturbation theory

FIG. 1. Energy levels for selected states in the Li isonuclear
sequence

TABLE I. Energies and autoionization rates for the Li�2s22p� hollow-atom state �1.0 a.u. of energy
=27.212 eV, 1.0 a.u. of frequency=4.13�1016 Hz�.

Method Energy Total-autoionization rate Double-autoionization rate

TDCC �3 channels� −2.1747 0.0033 0.00010

TDCC �6 channels� −2.2200 0.0044 0.00014

TDCC �12 channels� −2.2402 0.0049 0.00018

MBPT �1� −2.2354 0.0049 0.00033

Experiment �16� −2.2453 0.0046 0.00015
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methods. With steady growth in computational power, we
look forward to refining the accuracy of the present results
for Li and to the study of other hollow-atom states found in
three-electron atomic ions.
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