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Electron-impact ionization cross sections for helium are calculated using time-dependent close-coupling
theory. The total wave function for the three electron system is expanded in nine dimensions, where three
dimensions are represented on a radial lattice and a coupled channels expansion is used to represent the other
six dimensions. Collision cross sections are obtained byt→` projection onto fully antisymmetric spatial and
spin functions, with care as to orthogonality of different representations. Cross sections are also obtained using
time-independent first- and second-order perturbative distorted-wave theory. Total cross sections are calculated
at incident energies above the double ionization threshold for electron-impact single ionization leaving He+ in
the 1s, 2s, and 2p states and for electron-impact double ionization. Both the single ionization cross section,
leaving He+ in the 1s ground state, and the double ionization cross section are in excellent agreement with
previous absolute experimental measurements.
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I. INTRODUCTION

A number of nonperturbative theoretical methods have re-
cently been developed that successfully treat two continuum
electrons moving in the field of a charged core, that is, Cou-
lomb three-body breakup. The converged close-coupling[1],
the hyperspherical close-coupling[2], the R-matrix pseu-
dostates[3], the time-dependent close-coupling[4], and the
exterior complex scaling[5] methods have all obtained total
cross sections for the electron-impact ionization of hydrogen
that are in excellent agreement with the crossed-beams ex-
periment of Shahet al. [6]. To date these nonperturbative
methods[7–9] have also successfully calculated the wide
range of energy and angle differential cross sections found in
the electron induced breakup of the hydrogen atom.

In this paper we develop a nonperturbative theoretical
method to treat three continuum electrons moving in the field
of a charged core, that is, Coulomb four-body breakup. We
apply the method to obtain total cross sections for the
electron-impact ionization of helium. For single ionization,
leaving He+ in the 1s ground state, we can compare to pre-
vious nonperturbative methods, which freeze one of theK
shell electrons[10–12], and to absolute experimental mea-
surements[13–15]. For single ionization, leaving He+ in the
2l excited states, we can compare to hybrid calculations
[16,17], in which the scattered electron is treated by pertur-
bative distorted-wave methods and the inner electrons are
treated by a nonperturbativeR-matrix method. In the case of
single ionization, leaving He+ in the 2p excited state, we can
also compare to absolute experimental measurements
[18,19]. For double ionization, we can compare to hybrid
calculations[20], in which the scattered electron is treated in
the plane-wave Born approximation and the inner electrons
are treated using perturbation theory to connect correlated

initial and final states, and to absolute experimental measure-
ments[15]. To date the hybrid methods[21–23] have also
been successfully extended to calculate a wide range of en-
ergy and angle differential cross sections in the electron ion-
ization with excitation and double ionization of helium.

In this paper a nonperturbative close-coupling method is
used to solve for the electron ionization of helium at low
total angular momentum. A nine-dimensional wave function
is propagated in time according to the Schrodinger equation,
with the three radial dimensions represented on a numerical
lattice and the six angular dimensions represented by a
coupled channels expansion. Collision cross sections are ob-
tained byt→` projection onto fully antisymmetric spatial
and spin functions, with care as to orthogonality of different
representations. A perturbative distorted-wave method is then
used for the electron ionization of helium at all total angular
momentum. Total cross sections are obtained by scaling the
approximate perturbative results to match the nonperturba-
tive results at low total angular momentum, and then ex-
trapolating the nonperturbative results using the high total
angular momentum scaled perturbative results as a guide.
Comparisons are then made with other theoretical methods
and absolute experimental measurements. The time-
dependent close-coupling and time-independent distorted-
wave methods are presented in Sec. II, total single and
double ionization cross sections for helium are presented in
Sec. III, and a brief summary is found in Sec. IV. Unless
otherwise stated, we will use atomic units.

II. THEORY

A. Time-dependent nonperturbative close-coupling method

For electron ionization of a two-electron target atom, the
angular reduction of the time-dependent Schrödinger equa-
tion for a three electron wave function yields a set of time-
dependent close-coupled partial differential equations for
eachL symmetry:
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The initial condition for the solution of the time-dependent
close-coupling equations of Eq.(1) is given by

Pl1l2Ll3

L sr1,r2,r3,t = 0d = o
l

P̄ll
Ssr1,r2dGk0Lsr3ddl1,ldl2,ldl3,LdL,0,

s6d

where the radial wave functions,P̄ll
Ssr1,r2d, are obtained by

relaxation of the Schrodinger equation in imaginary time for
a two-electron target atom[24], and the Gaussian radial
wave packet,Gk0Lsr3d, has a propagation energy ofk0

2/2. The
three-electron close-coupling equations of Eq.(1) are a gen-
eralization of the two-electron close-coupling equations used
before for electron ionization of one active electron target
atoms[25–27].

The time-dependent close-coupled equations of Eq.(1)
are solved using standard numerical methods to obtain a dis-
crete representation of the radial wave functions and all op-
erators on a three-dimensional lattice. Our specific imple-
mentation on massively parallel computers is to partition
both the r2 and r3 coordinates over the many processors,
so-called domain decomposition. At each time step of the
solution only those parts of the radial wave functions needed
to calculate the second derivatives found in Eq.(2) are
passed between the processors.

Probabilities for all the many collision processes possible
are obtained byt→` projection onto fully antisymmetric
spatial and spin wave functions. As an example, for electron
double ionization of the1S ground state of helium, the colli-
sion probability is given by
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A comparable collision probability expression for electron
ionization of the2S ground state of hydrogen is much sim-
pler, only the sum or difference of the two-electron radial
integralsRs12,td and Rs21,td is needed. In fact, since for
two electron systems the spatial and spin wave functions
separate, collision probabilities can be easily obtained by
projection onto simple products of one-electron radial func-
tions, provided the two electron time-propagated radial wave
function is symmetrized for singlet scattering or antisymme-
trized for triplet scattering[4].

The radial wave functions,Pklsrd, are obtained by matrix
diagonalization of the radial one electron Hamiltonian:

hsrd = −
1

2

]2

] r2 +
lsl + 1d
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whereVsrd=−Z/ r. Care must be taken in the sums over the
electron momentak1,k2,k3 found in the collision probability
of Eq. (7). When the associated angular momenta are equal,
for example l1= l2, the sums must be restricted to avoid
double counting of distinct continuum states. More subtle is
the unwanted contribution to the collision probability from
the continuum correlation part of the two-electron wave
functions. For example, the collision probability of Eq.(7) is
nonzero for even the initial radial wave function,
Pl1l2Ll3

L sr1,r2,r3,t=0d, of Eq. (6). This point has been dis-
cussed in detail by McCurdyet al. [28] in a study of the
electron double ionization of ans-wave model He atom. In-
stead of projecting out two-electron bound states from the
three electron time-propagated radial wave function and then
projecting onto all electron momenta in Eq.(7), we found
that a simple restriction of the sums over the electron mo-
menta, so that the conservation of energy,
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was approximately conserved, greatly reduced contamination
from the continuum piece of the two-electron bound-state
wave functions. For example, the electron momentaki in the
sum found in Eq.(7) are chosen if half their squared sum is
greater thans1−edsEatom+k0

2/2d and less thans1+edsEatom

+k0
2/2d. Tests show that the cross sections are stable for a

range ofe around 0.30. In addition, this method of restricted
momenta sums should become more accurate as the lattice
size increases. We note that the collision probability for elec-
tron single ionization of the1S ground state of helium leav-
ing the He+ ion in annl bound state is almost identical to Eq.
(7). Simply eliminate one of the sums over electron mo-
menta, change one of thePklsrd radial wave functions to
Pnlsrd, calculate the remaining two continuum radial wave
functions in aVsrd potential that screens the Coulomb field,
and apply the relevant equation for the conservation of en-
ergy.

Finally, the electron-impact single or double ionization
cross section is given by
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Care must also be taken in the sums over the quantum num-
bers associated with the fully antisymmetric spatial and spin
wave functions found in Eq.(11) to avoid double counting.

B. Time-independent perturbative distorted-wave
method

From perturbation theory the electron-impact single ion-
ization cross section for helium, leaving He+ in the 1s ground
state, is given by
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where
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The first-order scattering potential for the transition
1s2k0l0
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where theRlsn1l1,n2l2,n3l3,n4l4d are standard radial Slater
integrals. The 1s bound orbital is calculated in the Hartree-
Fock approximation[29], while thek0l0, k1l1, andk2l2 con-
tinuum orbitals are calculated in a mixture ofVN and VN−1

scattering potentials[30].
From perturbation theory the electron-impact single ion-

ization cross section for helium, leaving He+ in the 2l excited
state, is given by
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The second-order scattering potential for the important tran-
sition 1s2k0l0
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The 1s, 2l, andnln bound orbitals are hydrogenic, while the
k0l0, k1l1, k2l2, andknln continuum orbitals are calculated in a
VN−1 scattering potential.

From perturbation theory the electron-impact double ion-
ization cross section for helium is given by

TABLE I. Electron-impact single ionization cross sections(in
kb), leaving He+ in the 1s ground state, as calculated by the 3D
time-dependent close-coupling method, at various incident electron
energiess1.0 kb=1.0310−21 cm2d.

L 100.0 eV 150.0 eV 200.0 eV

0 1750 1140 805

1 3080 2130 1560

2 5570 3570 2490

3 6220 4480 3260

4 5120 4200 3240

5 3850 3660 3040

TABLE II. Electron-impact single ionization cross sections(in
kb), leaving He+ in the 2s ground state, as calculated by the 3D
time-dependent close-coupling method, at various incident electron
energiess1.0 kb=1.0310−21 cm2d.

L 100.0 eV 150.0 eV 200.0 eV

0 7.60 14.9 15.9

1 19.3 28.7 30.0

2 37.6 57.1 54.7

3 26.2 52.8 57.0

4 1.80 14.2 26.9

5 0.59 4.62 14.5

TABLE III. Electron-impact single ionization cross sections(in
kb), leaving He+ in the 2p ground state, as calculated by the 3D
time-dependent close-coupling method, at various incident electron
energiess1.0 kb=10310−21 cm2d.

L 100.0 eV 150.0 eV 200.0 eV

0 7.28 15.5 16.5

1 21.8 32.3 31.8

2 33.8 41.1 37.7

3 32.2 56.1 54.6

4 50.1 81.1 77.8

5 22.4 63.5 75.4

TABLE IV. Electron-impact double ionization cross sections(in
kb), as calculated by the 3D time-dependent close-coupling method,
at various incident electron energiess1.0 kb=10310−21 cm2d.

L 100.0 eV 150.0 eV 200.0 eV

0 0.14 2.44 4.74

1 1.63 7.51 10.4

2 2.88 14.2 18.0

3 2.38 17.2 24.3

4 3.09 19.4 26.1

5 0.79 10.4 18.2
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The 1s andnln bound orbitals are hydrogenic, while thek0l0,
k1l1, k2l2, k3l3, andknln continuum orbitals are calculated in a
VN−2 scattering potential. We note that in both Eqs.(17) and
(20) the symbolokn

is shorthand for a sum over alln bound

TABLE V. Electron-impact single ionization cross sections(in
kb), leaving He+ in the 1s ground state, as calculated by the frozen-
core 2D time-dependent close-coupling method[12], at various in-
cident electron energiess1.0 kb=10310−21 cm2d.

L 100.0 eV 150.0 eV 200.0 eV

0 1860 1270 920

1 3230 2340 1760

2 5550 3760 2720

3 6180 4630 3470

4 5560 4720 3740

5 4360 4250 3600

FIG. 1. Total cross sections per partial wave
L with an incident electron energy of 100 eV.(a)
Single ionization, leaving He+ in the 1s ground
state,(b) single ionization, leaving He+ in the 2s
excited state,(c) single ionization, leaving He+ in
the 2p excited state, and(d) double ionization.
Filled squares: time-dependent close-coupling
calculations; open squares: extrapolated values;
solid curves: time-independent distorted-wave
calculations, scaled by factors of 1.00, 0.45, 0.37,
and 0.11, respectivelys1 kb=10−21 cm2d.
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orbitals and an integral over allkn continuum orbitals. The
singularity in the denominator in both Eqs.(17) and (20) is
handled by standard evaluation of a principal value integra-
tion and an imaginary term.

The important transition chosen for single ionization with
excitation in Eq.(17) and double ionization in Eq.(20) rep-
resents the process of single ionization of helium followed
by excitation or ionization of He+ by the outgoing ejected
electron. Certainly, more second- and higher-order processes
need to be considered in the scattering potentialVfi for a
complete perturbative description. For our purposes, as will
be seen in the following section, we plan to scale the pertur-
bation theory cross sections to match the nonperturbative
theory cross sections at lowL, and then extrapolate the non-
perturbative results using the highL scaled distorted-wave
results as a guide.

III. CROSS-SECTION RESULTS

The electron-impact single and double ionization cross
sections for the1S ground state of helium were calculated at
incident electron energies above the double ionization
threshold. As192d3 lattice was employed with each radial
direction from 0.0→38.4 spanned by a uniform mesh with

spacingDr =0.20. Initially the wave packet of Eq.(6) was
centered atr3=20.0 with a coordinate space spread of 6.0.
After relaxation to obtain a fully correlated ground state of
helium on the lattice, the time-dependent close-coupled
equations of Eq.(1) were propagated for up to 6200 time
steps to obtain total cross sections from Eq.(11).

Single ionization cross sections are presented in Tables
I–III, while double ionization cross sections are presented in
Table IV. ForL=0, 3 target channels[ss, pp, anddd] were
used to obtain the two-electron wave function for the ground
state of helium, 11 coupled channels[sssdSs, sspdPp, spsdPp,
sppdSs, ssddDd, sdsdDd, sdddSs, sppdDd, spddPp, sdpdPp,
andsdddDd] were used to propagate the three-electron wave-
function by Eq.(1), and 10 determinantal projection func-
tions [sssd1Ss, sssd3Ss, sspd1Pp, sspd3Pp, ssdd1Dd, ssdd3Dd,
sppd1Dd, sppd3Dd, sddd1Dd, andsddd3Dd] were used to de-
termine the cross sections by Eq.(11). For example, the de-
terminantal projection functionssspd1,3Pp will have nonzero
overlap with thesspdPp, spsdPp, and sppdSscoupled chan-
nels. Increasing the target channels by one to[ss, pp, dd, and
f f], the coupled channels to 23, and the determinantal pro-
jection functions to 16 had, at most, a 2% effect on theL
=0 single and double ionization cross sections at the three
incident energies. Tables I–IV were completed using 3 target
channels and 21 coupled channels forL=1, 23 coupled
channels forL=2, 49 coupled channels forL=3, 63 coupled

FIG. 2. Total cross sections per partial wave
L with an incident electron energy of 150 eV.(a)
Single ionization, leaving He+ in the 1s ground
state,(b) single ionization, leaving He+ in the 2s
excited state,(c) single ionization, leaving He+ in
the 2p excited state, and(d) double ionization.
Filled squares: time-dependent close-coupling
calculations; open squares: extrapolated values;
solid curves: time-independent distorted-wave
calculations, scaled by factors of 1.00, 0.45, 0.37,
and 0.11, respectivelys1 kb=10−21 cm2d.
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channels forL=4, and 87 coupled channels forL=5. After
increasing the target channels to 4, additional calculations
were made at 200-eV incident energy involving 51 coupled
channels forL=1, 65 coupled channels forL=2, and 65
coupled channels forL=3. Again, only a small change in the
L=1,2,3 single and double ionization cross sections was
found. Currently, we find ourselves resource limited on
checking channel coupling convergence forL=4 andL=5.
However, as a further check on the single ionization cross
sections, leaving He+ in the 1s ground state, previous frozen-
core two-dimensional(2D) time-dependent close-coupling
results [12] are presented in Table V. Comparing the 3D
results from Table I with the frozen-core 2D results from
Table V, we find that the 3D results are usually lower than
the frozen-core 2D results. For example, at 200-eV incident
energy, the 3D results are lower than the frozen-core 2D
results by 13% forL=0, 11% forL=1, 8% forL=2, 6% for
L=3, 13% forL=4, and 16% forL=5. At low L the differ-
ences are probably due to the superiority of the full two-
electron target wave function for helium found in the 3D
results, while the increasing differences at highL are prob-
ably due to the need for more coupled channels. With some
uncertainty in the overall accuracy of theL=4 and L=5
results, we have limited our ionization calculations to the
relatively low incident energies presented in the Tables(i.e.,
less than or equal to 200 eV). Thus, since for low energies

the higher partial waves contribute less, the total ionization
cross-section accuracy should still be quite good.

To obtain total cross sections, we must extrapolate our
time-dependent close-coupling results to large angular mo-
mentumL. We show in Figs. 1–3 the total cross sections per
partial wave for single and double ionization at 100-, 150-,
and 200-eV incident energies, respectively. The filled
squares are the present time-dependent close-coupling results
from Tables I–IV and the open squares are obtained by our
extrapolation method. In Figs. 1–3 the solid curves are time-
independent distorted-wave calculations. For single ioniza-
tion, leaving He+ in the 1s ground state, the distorted-wave
results are obtained from Eqs.(12)–(14) with unit scaling
and are identical to previous results[12]. For single ioniza-
tion, leaving He+ in the 2s excited state, the distorted-wave
results are obtained from Eqs.(15)–(17) scaled by a factor of
0.45. For single ionization, leaving He+ in the 2p excited
state, the distorted-wave results are obtained from Eqs.
(15)–(17) scaled by a factor of 0.37. For double ionization,
the distorted-wave results are obtained from Eqs.(18)–(20)
scaled by a factor of 0.11. The distorted-wave scaling factors
are simply chosen to help guide extrapolation of the much
more accurate time-dependent close-coupling results to high
angular momentum. In extrapolating our time-dependent re-
sults to largerL, we choose a fitting function of the form

FIG. 3. Total cross sections per partial wave
L with an incident electron energy of 200 eV.(a)
single ionization, leaving He+ in the 1s ground
state,(b) single ionization, leaving He+ in the 2s
excited state,(c) single ionization, leaving He+ in
the 2p excited state, and(d) double ionization.
Filled squares: time-dependent close-coupling
calculations; open squares: extrapolated values;
solid curves: time-independent distorted-wave
calculations, scaled by factors of 1.00, 0.45, 0.37,
and 0.11, respectivelys1 kb=10−21 cm2d.
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fsLd = AsL − L0dne−bL, s21d

whereA, L0, n, andb are varied to provide the best agree-
ment, according to least squares criterion, between the time-
dependent close-coupling results defining the peak of the
cross section and the scaled distorted-wave results at higher
L. We employ this extrapolation method to obtain total ion-
ization cross sections for all processes at incident energies of
100, 150, and 200 eV.

Total single ionization cross sections, leaving He+ in the
1s ground state, are shown in Fig. 4. The present 3D time-
dependent calculations are represented as filled squares,
frozen-core 2D time-dependent calculations[12] are shown
as open squares, and absolute experimental measurements
[13] are filled circles with error bars. The 3D results are
slightly lower than the frozen-core 2D results, but both cal-
culations are within the error bars of the absolute experimen-
tal measurements. Total single ionization cross sections,
leaving He+ in the 2s excited state, are shown in Fig. 5. The
time-dependent close-coupling results are shown as filled
squares, while the hybrid distorted-wave/R-matrix calcula-
tions [17] are shown as the solid curve. The time-dependent
results are found to rise faster as a function of incident en-
ergy than the hybrid results, reaching a maximum difference
of about 50% at 200 eV. Total single ionization cross sec-
tions, leaving He+ in the 2p excited state, are shown in Fig.
6. The time-dependent close-coupling results are shown as
filled squares, and lie between the absolute experimental
measurements[18,19] and the hybrid distorted-wave/
R-matrix calculations[17]. Finally, total double ionization

FIG. 4. Single ionization of helium, leaving He+ in the 1s
ground state. Filled squares: 3D time-dependent close-coupling cal-
culations; open squares: frozen-core 2D time-dependent close-
coupling calculations[12]; filled circles with error bars: absolute
experimental measurements[13] s1 Mb=10−18 cm2d.

FIG. 5. Single ionization of helium, leaving He+ in the 2s ex-
cited state. Filled squares: 3D time-dependent close-coupling calcu-
lations; solid curve: hybrid distorted-wave/R-matrix calculations
[17] s1 kb=10−21 cm2d.

FIG. 6. Single ionization of helium, leaving He+ in the 2p ex-
cited state. Filled squares: 3D time-dependent close-coupling calcu-
lations; solid curve: hybrid distorted-wave/R-matrix calculations
[17]; filled circles with error bars: absolute experimental measure-
ments[18]; and open circles with error bars: absolute experimental
measurements[19] s1 kb=10−21 cm2d.
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cross sections are shown in Fig. 7. The time-dependent
close-coupling results are shown as filled squares, hybrid
plane-wave/distorted-wave calculations[20] are shown as
the dashed and solid curves, and absolute experimental mea-
surements[15] are filled circles with error bars. The time-
dependent close-coupling results are found to lie within the
error bars of the absolute experimental measurements. We
note that the hybrid results shown in Fig. 7 that do not in-

clude final state correlation effects(dashed curve) are much
higher than those calculations(solid curve) that do include
final-state correlation effects[20].

IV. SUMMARY

In conclusion, we find that a nonperturbative lattice solu-
tion of the time-dependent Schrödinger equation appears ca-
pable of yielding accurate cross sections for Coulomb four-
body breakup. The double ionization cross sections for
helium are found to be in excellent agreement with absolute
experimental measurements, extending up to incident elec-
tron energies of 2.5 times threshold. For higher energies,
some uncertainty in the overall accuracy of the presentL
=4 andL=5 partial wave cross sections becomes a limiting
factor. Much work remains to be done in extending the
present time-dependent close-coupling calculations to those
higher energies at which the hybrid distorted-wave/R-matrix
methods should become reasonably accurate. Convergence
studies as a function of the number of coupled channels and
the number of determinantal projection states need to be
made for the higher partial waves, in which the lattice size is
also varied. In addition, methods developed to calculate en-
ergy and angle differential cross sections for three-body Cou-
lomb breakup[8] need to be generalized to four-body Cou-
lomb breakup. The new and rich world ofse,3ed four-body
Coulomb phenomena awaits exploration by a full nonpertur-
bative quantal theory.
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