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T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model
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An eigenchanneR-matrix expansion of th& matrix is used to calculate total integrated and ejected energy
differential cross sections for the electron-impact ionization of hydrogen in the Temkin-Poet model. In previ-
ous close-coupling results, unphysical oscillations in the total ionization cross section could be averaged over
due to the smooth dependence of the cross section on the incident energy. For differential ionization cross
sections, a step-function behavior in the cross sections’ overall ejected energy dependence has made unphysical
oscillation removal much more problematic. By formulation design,Tdmeatrix method eliminates the step-
function problem found in most close-coupling calculations of the ejected energy differential cross section.
Total and differential ionization cross sections in a one-sRateatrix expansion are in excellent agreement
with Hartree-Fock distorted-wave results. Total and differential ionization cross sections in multiple state
R-matrix expansions converge toward the more accurate results given by a time-dependent wave-packet
method. Unphysical oscillations appear in the differential ionization cross sections for aHntiagrix results
involving more than three states in tRematrix expansion, but the oscillations are small, symmetric aBit
and easily averaged to give a smooth uniform result.

PACS numbes): 34.80.Kw

[. INTRODUCTION distorted-waves begin with a zeroth-order approximation for
the scattered wave function in the exdcmatrix [15]. In a

Over the last few years several nonperturbative methodsatural extension, am-matrix expansion of the scattered
have been developed to treat the quantal three-body problemave function may be used to include higher-order perturba-
found in the direct electron-impact ionization of atoms andtive effects in thel matrix. The same procedure has proved
ions. All of the methods were first tested on the Temkin-Poetjuite successful in calculating accurate dipole matrix ele-
[1,2] model for hydrogen, beginning with a direct numerical ments for the photoionization of atoms, beginning with the
integration of the time-independent ScHimger equation pioneering work of Burke and Tayldrl6]. A compelling
and a close-coupling calculation with pseudostates by Callareason for investigating th&-matrix method is that it for-
way and Ozd3]. In subsequent years the two-dimensionalmally eliminates the step-function probl€i®,11—-14 found
R-matrix [4], converged close-couplingp], hyperspherical in many close-coupling calculations of the ejected energy
close-coupling [6], eigenchannel R-matrix [7], time-  differential cross section. The wave-packet method has been
dependent wave-packg®], R-matrix with pseudostatg®],  used previously to examine the threshold law for total ion-
and exterior complex scalifd.0] methods have all produced ization cross sections in variogsvave modelg17]. Its ex-
total ionization cross sections in excellent agreement witiension to energy differential cross sectid8,19 is based
those of Callaway and OZ43]. on the asymptotic relationship between the two-electron co-

On the other hand, an accurate calculation of the ejectedrdinate and momentum spac¢20]. Since the time-
energy differential cross section for singlet scattering in thedependent wave-packet method is free of oscillations, it is
Temkin-Poet model has proved to be a more difficult theo-used here as a standard to compare againstTthetrix
retical challengg¢11-14. In the close-coupling methods un- method. The time-dependent wave-packet and time-
physical oscillations appear in both the total integrated andhdependenR-matrix methods are presented in Sec. Il, total
ejected energy differential cross sections. The oscillations arend energy differential cross sections for the electron-impact
due in part to a finite basis set description of the continuunionization of hydrogen in the Temkin-Poet model are pre-
and the imposition of two-body boundary conditions for asented in Sec. lll, and a brief summary is found in Sec. IV.
three-body problem. For the total ionization cross sectiong\tomic units are used throughout the paper, unless specifi-
the unphysical oscillations can be averaged over due to theally indicated.
underlying smooth dependence of the cross section on the
incident energy[5,7,9. For the differential ionization cross
sections, a step-function behavior in the cross section’s over-
all ejected energy dependence has made unphysical oscilla- A. Time-dependent wave-packet method

tion removal much more difficulf9,11-14. . . .
In this paper we calculate total and energy differential. The time-dependent wave-packet expression for the direct

cross sections for electron-impact ionization of hydrogen in|0n|zat|_on (.)f hydrogen in the Temkin-Poet model for singlet
cattering is given by17,19

the Temkin-Poet model using a method based on an eigehc'—
channelR-matrix expansion of th& matrix and compare Ed

those results with those from a time-dependent wave-packet o= lzj ﬁp(k_ Ke k) (1)
method. All first-order perturbation theory methods using 4k: Jo keky ST

II. THEORY
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where the linear momente;(,k, k) correspond to the in- = = c c

coming, ejected, and outgoing electron, respectively. The to- T(ki ke k)= JO drlJO droPy (r) P (rp)

tal energyE= ¢, + 1= €.+ €;, Wheree=k?/2 andl =3 is the

iqnization energy of hydrogen. The scattering probability is 1 b

given by Xm e(r1,ra), 8

P(K; Ko, Ky) and P(r) are Coulomb continuum orbitals with normaliza-
) tion chosen as 1 times a sine function.
:‘ fo drlJO draPy (r) Py (rp)P(ry,rp t=T)) . 1. Distorted-wave method

2 A zeroth-order approximation for the outgoing two-

dimensional wave functioR¢ (r4,r5) is given by

The two-dimensional wave functid®(r,,r,,t) is a solution

to the time-dependent Scltioger equation given by PL(ry,rp)= \/%[PB(H)PEF(QH PEF(r)P1(r0)].
9
.ap(rlerIt) ( )
: at =H(ry,rz)P(ry,ra,10), (3 The bound orbitalsP,(r) are hydrogenic, while the

distorted-wave orbital®|'" (r) are solutions of the Hartree-
Fock equation

where
k2
16 16 1 1 1 (h(r)+VD+Vx—§ PLR(r)=0, (10
Mr= "0 20k 1 M)
(4) where the direct potential operator is given by
- o . . » P2 (1
dependent Schdnger equaton e given by vor{" (= [ Tl arern,au

1_ o and the exchange potential operator by
P(ry,r2,t=0)= \/:[Pls(rl)Gk-(r2)+Gk-(rl)Pls(rz)]:
? | | “Py(r)PEF(r")
® VXPEFm:f o drPy(r)
0  maxr,r’)
whereG,(r) is a radial wave packet. The wave function at a

2\ ro
time_jtle following 'ghe collision is thaingd by propagating +| 15— ?) f P1s(r)PEF(r)dr' Pyg(r).
Schralinger’s equation on a two-dimensional spatial lattice. 0
The boundP,4(r) and continuumP,(r) orbitals needed in (12)
the above equations are obtained by diagonalization of the
single-particle Hamiltonian The continuum normalization for the Hartree-Fock distorted
waves is chosen agl/k times a sine function. We note that
5 the full nonlocal exchange term found in E42), including
1o 1 the exch | is needed k |
h(r)=—=—5—= (6) e exchange-overlap term, is needed to make accurate cal-
209r° culations for theT matrix and ionization cross sections.
on a one-dimensional spatial lattice. 2. R-matrix method
In principle, a more accurate approximation for the out-
B. Time-independentT-matrix method going two-dimensional wave functioRg (r,r5) is
The time-independeni-matrix expression for the direct
ionization of hydrogen in the Temkin-Poet model for singlet Pg(rl,rz):; at Pu(ri,r2), (13

scattering is given by15]

whereR-matrix theory is used to obtain the complex expan-

E
o= %J S—elfﬁ(ki ke ko], (7)  sion coefficientsa}, for the confined box stateB,(r,r>).
i J0 Relf The two-dimensional eigenstat&€(rq,r,) and eigenener-
gies Ey, are obtained by diagonalization of the two-particle
where the transition matrix is Hamiltonian
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1 J The K matrix is related to th& matrix in the standard man-
H(ry,rp)=H(ry,rp)+ Eé(rl_R)ﬁTl ner, while theJ matrix is defined by:
1 J I =(1—iK) "% 20
+=8(r,—R) —, (14 = Jon 20
2 0’”’2

A one-stateR-matrix calculation forPZ(rq,r5), involving
using a basis of symmetrized products of single-particle orthe ground state orbital, is equivalent to the zeroth-order
bitals, distorted-wave solution of Eq9). As one includes more

states in theR-matrix calculation forPg (r,,r,), the calcu-

_ _ — lation for the T matrix, and the direct ionization cross sec-
P(r1.12) =8> 2 Pa(r)P(ry), (15  tion, should become more accurate.
o We note that, since we have already determinedKhe

wheresS is a symmetrization operator and the single-particleMatrx in the above procedure, we may easily determine the

bound and i bit th | btained Smatrix and then all excitation cross sections between states
ound and continuum or ital3,(r) are themselves obtained i, o R matrix expansion that are energetically allowed
by diagonalization of theh(r) of Eqg. (6) on a one-

= (open channe)s A simple way of determining the total ion-
dimensional lattice with boundary conditions of eitfefr jzation cross section for close-coupling methods is to sum
=R)=0 or dP(r=R)/dgr=0. The Bloch operators of Eq. over all excitation cross sections to open positive energy
(14) ensure that the matrix representation %{r,,r,) is  states.

Hermitian. The wave-function expansion is characterized by

the number of statema for the “bound” electron and the IIl. RESULTS
number of states’ for the “continuum” electron found in ) .
Eq. (15). The number of states in aR-matrix expansion We carried out both time-dependent wave-packet and

refers ton, while n’ is assumed to be large enough to repre_time—independentT—matrix calculations for the electron-
sent the scattered electron. The lowest-energy states in tf@Pact ionization of hydrogen in the Temkin-Poet model at
R-matrix expansion are generally bound and spectroscopi@” incident energy of_20 eV. Both ejected energy differential
while the higher-energy states may be in the continuum andnd total_ cross sections are calcula_ted for geveral wave-
are generally labeled as “pseudostates.” The eigenchann®@cket widths and for several states in ®Renatrix expan-
R-matrix method 7], which we use here, makes use of manyS'OR rzelflgteggg dlffe{(lenttt_box stlrz]es. ’ ) .

. . . . v X point lattice with a uniform mesh spacing o
s;mgle particle orb|tal's with boundary C_c_md'—tldﬁ_(r R) Ar=0.20 and a box size d®=50.0 was first employed for
=0 and only one with boundary conditiodP(r=R)/or  he \ave-packet calculations. Probability —densities

=0. . " |P(rq,r,,1)|? of the symmetrized wave function are shown
For outgoing wave boundary conditions, the complex ex4, Fig. 1 for times before and after the collision. The initial

pansion coefficients are given pye] wave packet at=0.0 is centered at;=0.0 andr,=25.0, or

r;=25.0 andr,=0.0, with a Gaussian width ofv=6.25.

The final wave packet at=44.0 exhibits ridges of high

probability density along each, andr, axis, corresponding

to elastic and inelastic excitation processes, and a broad

where the surface amplitudes, (R) define the standar®  plane of lower probability density centered along the

IF1(R)
a

J

1
aEk=m§ Woi(R) (16)

matrix: =r, line, corresponding to the inelastic ionization process.
A 1600-point lattice with a uniform mesh spacing &f
1 Wi (R)Wp 1 (R) =0.025 and a box size &=40.0 was first employed for the
Ron' =35 Ek — E—E (170 T-matrix calculations. Probability densiti¢Bg (rq,r,)|? of

the R-matrix wave function are shown in Fig. 2 for both a
one-state and a ten-state expansion. In both cases 51 states
were used in the expansion for the continuum electron. For
clarity, Fig. 2 exhibits the probability density only out to
=20.0. The spacing of the nodes for both wave functions
5F (R open glong eaclry a:cng(gz ?/XiSTLS giveg li)qu_-r/k; 2.6_ fo:c an r:nCi-
ni . ent energy o eV. The probability density for the one-
T ‘/k_ng (Snmy €OSKnR— Ky SINKRR) Iy stateR-matrix wave function is found to be identical to the
(18  density calculated using the Hartree-Fock distorted wave
function of Eq.(9), while the ten-stat®&®-matrix wave func-

For scattering from the ground state’,=1, the boundary
derivatives of the outgoing wave asymptotic solutions

Ffm/(r) for all open channels are given by

while for all closed channels they are given by tion density shows an extended structure for smallie to
the inclusion of pseudostates in the representation of the
IF (R) open bound electron.
ni -5 E K. ,e «Rj .. (19 Excitation and total ionization cross sections for electron
ar n nn n”1 . . .
n’ scattering from hydrogen in the Temkin-Poet model at an
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FIG. 1. Time-dependent scattering solutions for an incident en- FIG. 2. Time-independent scattering solutions for an incident
ergy of 20 eV.(a) Probability densityP(r,r,,t=0.0)|? of sym-  energy of 20 eV.a) Probability density|Pg (ry,r,)|? for a one-
metrized wave packet before collision for a box sizé&ref50.0.(b) stateR-matrix calculation with a box size d8=40.0.(b) Probabil-
Probability density |P(r,,r,,t=44.0)\%, of symmetrized wave ity density|Pg (r1,r,)|? for a ten-stateR-matrix calculation with a
packet after collision for a box size 8=50.0. (, andr, are radial  box size ofR=40.0. (, andr, are radial distances in atomic
distances in atomic unifs. units)

incident energy of 20 eV are presented in Table | for the

various time-dependent and time-independent methods. 1/70.025, theT-matrix calculations forR=60.0, 80.0, and
the upper part of Table | all the time-dependent wave-packet00.0 employed successively larger lattices. For an incident
calculations are in excellent agreement with the earlier reenergy of 20 eV, theR=40.0 lattice of 1600 points sup-
sults of Callaway and Ozg8] obtained by direct numerical ported ten open channel§ve bound and five continuum
integration of the time-independent Sctilger equation. state$, while theR=100.0 lattice of 4000 points supported
Keeping a fixed mesh spacing &f =0.20, the wave-packet 24 open channel@ight bound and 16 continuum statesor
calculations forR=100.0 and 200.0 employed successivelythe R=100.0 lattice, 101 states were used in the expansion
larger lattices. The (10001000)-point lattice, for example, for the continuum electron.

centered an initial wave packet lgt=100.0 and ,=0.0, or As they should be, the distorted-wave and one-state
r,=0.0 andr,=100.0, with a Gaussian width @/=25.0. In  R-matrix results are in excellent agreement for the total ion-
the lower part of Table | the time-independ@nmatrix cal-  ization cross section. Thesl>2s excitation cross section

culations are shown to converge nicely to the time-dependerttrops by 45% from the two-stat®matrix calculation to the
wave-packet results as one increases the number of statesliniger (10—24-state R-matrix calculations, while the <
the R-matrix wave function. Keeping a fixed mesh af —3s excitation cross section drops by almost 50%. This
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TABLE I. Excitation and total ionization cross sectiofis Mb) at an incident energy of 20 eV. DW,
distorted-wave method; RMR=num), n-state R matrix with a box size ofR; TDSER=num), time-
dependent Schdinger equation method with a box sizeRif TISE, time-independent Schidimger equation
method[3]. (1.0 Mb = 1.0x 10" *® cn?.)

Method Excitation Excitation lonization

1s—2s 1s—3s
TDSE(R=50) 2.41 0.59 1.27
TDSE(R=100 2.49 0.64 1.29
TDSE(R=200 2.50 0.64 1.28
TISE 2.46 0.62 1.36
Method Excitation Excitation lonization lonization

1s—2s 1s—3s continuum sum T matrix
DW 3.08
RM1(R=40) 3.06
RM2(R=40) 4.63 2.98
RM3(R=40) 4.39 1.29 2.84
RM4(R=40) 4.16 1.30 2.73
RM5(R=40) 3.77 1.21 2.48
RM6(R=40) 3.13 1.02 0.96 2.45
RM8(R=40) 2.44 0.66 1.42 1.44
RM10(R=40) 2.54 0.68 1.21 1.29
RM15(R=60) 2.46 0.62 1.38 1.34
RM19(R=80) 2.52 0.66 1.36 1.32
RM24(R=100) 2.50 0.65 1.30 1.26

reduction is due to coupling to the higher-energy bound andhat shown for the ten state calculation.

continuum pseudostates. Only for the six-statmatrix cal- Further ejected energy differential ionization cross sec-
culation (five bound and one continuynis there any appre- tions are presented in Fig. 4 for an incident energy of 20 eV.
ciable difference between the total ionization cross sectiod he upper solid curve is againTamatrix calculation using a
calculated using th@-matrix method and the much Simp|er Hartree-Fock distorted wave. The lower solid curve in Flg 4
sum over open positive energy excitations. Although notS @ time-dependent wave-packet calculation for 200.0.
shown in Table I, we extended tHe=40.0 lattice calcula- N agreement with other recent wofi2-14, the larger-
tions for theR-matrix wave function to include 14 statéen lattice time-dependent wave-packet results begin to show a
open and four closgdwith very little change in the excita- ¥-Shape dependence centered E2. The upper dashed
tion and total ionization cross sections. We also carried out"" ~ " T 7" ' ’ atrix
R=40.0 lattice calculations at a fixed meshff=0.0125,
and thus 3200 points, with again very little change in the
inelastic cross sections.

Ejected energy differential ionization cross sections for
electron scattering from hydrogen in the Temkin-Poet model
at an incident energy of 20 eV are presented in Fig. 3. The
upper solid curve is d-matrix calculation using a Hartree-
Fock distorted wave. The lower solid curve in Fig. 3 is a
time-dependent wave-packet calculation f8#=50.0. The
dashed curves are variodsmatrix calculations with one
state, three states, five states, and ten states iR-thatrix
wave-function expansion for a box size Bf=40.0. Un- 0.0 . . ‘
physical oscillations appear in the differential cross sections 0.0 20 4.0 6.0
for all R-matrix results involving more than three states in Ejected Energy (eV)
the expansion. However, the oscillations produced in the dif- £iG_ 3. Ejected energy differential cross sections for an incident
ferential cross section by the ten st&enatrix wavefunction  energy of 20 eV. Solid curves: upper, distorted-wave method:
are small, symmetric abouE/2, and bracket the smooth |ower, time-dependent wave-packet method with a box siz® of
shape of the time-dependent wave-packet results. A 14-state50.0. Dashed curves from top to bottofrmatrix method with
R-matrix expansion withR=40.0, including ten open and one state, three states, five states, and ten states iR-thatrix
four closed channels, yields a cross section quite similar texpansion with a box size &&=40.0.
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symmetric ejected energy differential cross section about
E/2. The largesR-matrix expansions yield differential cross

0.5 sections that track well the results given by a time-dependent
wave-packet method.
0.4 Unphysical oscillations appear in the differential ioniza-
\ / tion cross sections for all-matrix results involving more
03 | / 1 than three states in tHe&-matrix expansion. For the largest

R-matrix expansions the oscillations are found to be small

and symmetric abouE/2, while tracking the smooth time-
dependent wave-packet results. At the relatively low incident
energy of 20 eV, both the time-dependent wave-packet and

the time-independent-matrix calculations for the differen-
0.0 , , , tial ionization cross section are found to be somewhat sensi-
0.0 20 4.0 6.0 tive to the overall box size. For larger box sizes, both meth-
Ejected Energy (eV) ods produce differential ionization cross sections that begin

FIG. 4. Ejected energy differential cross sections for an inciden§0 .Sh.OW a V-shaped depende_nce arqEniﬁ that is Charac-_
energy of 20 eV. Solid curves: upper, distorted-wave method,erIStIC of rgcent results obtained using the hypersph_erlcal
lower, time-dependent wave-packet method with a box siz® of close-coupling methq[:ilz] and th? ex_ter'or co_mplex chllng
=200.0. Dashed curves: uppéf;matrix method with one state; method[13], and _by direct nu_mencal integration of the time-
lower, T-matrix method with 24 states in tHematrix expansion ~dependent Schdinger equatiorj14].
with a box size ofR=100.0. In the future we hope to formulate and impliment a

Wigner-EisenbudR-matrix expansion of thel matrix. In-
wave-function expansion and the lower dashed curve is &tead of pseudostates in the bound electron expansion of the
T-matrix calculation with 24 states, both for a box size ofwave function that vanish only at the boundary, one could
R=100.0. The 24-stat®-matrix calculation begins to show Use pseudostates that exponentially decay at the boundary,
a V-shape dependence with quite small oscillations B¢2y  like Sturmian functiong9]. We again expect to find small
and again tracks the time_dependent Wave_packet resu]@Ci”ationS in the total and differential ionization cross sec-
quite well. We expect that the wave-packet ahdnatrix  tions that may be easily averaged to yield smooth and accu-
methods will yield a more pronounced V-shaped differentialrate predictions for a variety of atomic systems.
cross section foR=500.0 box sizes.

Cross Section (Mbarns/eV)
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