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Scattering with longitudinally coherent matter beams

F. Robicheaux
Department of Physics, Auburn University, Auburn, Alabama 36849

~Received 21 June 2000; published 6 November 2000!

I present a derivation of the many qualitative changes to basic scattering theory that result when a~partially!
coherent matter beam inelastically interacts with a quantum target. The weak beam limit, where onlyone
object in the beam interacts with the quantum target, is developed. Some of the basic changes to scattering
theory are as follows.~1! The transition probability can increase as the square of the number of particles in the
beam.~2! The transition probability is not proportional to the convolution of the total inelastic cross section
with the momentum distribution of the beam.~3! The transition probability to different final states of the target
does not depend on the population in the initial states but depends on theamplitudesfor the initial states.~4!
The total transition probability depends on the differential cross section integrated over all final anglesandon
the differential cross section only in the forward scattering direction.~5! The transition probability can be
nonzero even when the beam misses the target.~6! In the perturbative limit, the transition probability can be
related to classical, large scale properties of the beam~such as the average density!.

PACS number~s!: 34.60.1z, 03.65.Bz, 03.75.Fi, 39.10.1j
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I. INTRODUCTION

Scattering theory is well understood when the beam
incident particles is incoherent@1#. The basic trends that con
trol the scattering process have been known since the in
duction of quantum theory. Often, information from a sc
tering event is all that is available to aid our understanding
a quantum system. Therefore, it is important to underst
what properties of the beam of incident particles control tr
sition probabilities in a quantum target. When the beam
incoherent, there are a number of well known properties
the beam that control the transition probability~e.g., energy,
current density, overlap with the target, etc.!. Until recently
@2,3#, the coherence properties of the matter beam has
been thought to affect the transition probabilities. The p
pose of this paper is to extend the studies begun in R
@2,3# which showed that the coherence properties of
beam can dominate all other parameters that control the t
sition probability. For the purposes of this paper, a beam
considered to be incoherent if the off-diagonal density ma
elements in momentum space are zero and the beam
some coherence if off-diagonal density matrix elements
nonzero.

This paper is meant to address the lack of general the
for scattering by longitudinally coherent matter beams. R
cently, there has been the development of two types of
gitudinally coherent matter beams. In Refs.@4–7# the practi-
cal development of atom lasers was discussed; these m
beams have interesting coherence properties since the o
is from a Bose-Einsten condensate. In Refs.@8,9#, a pulsed
electron gun was predicted and demonstrated; a pulsed
tron gun can deliver a few keV electron beam in a puls
mode with a period between pulses in the range 10–100
It is highly likely that one or both of these sources will b
used in a scattering arrangement. To give an idea of the
of system addressed in this paper, Fig. 1 shows a schem
drawing of the interaction of three electron pulses interact
with an atom.

The purpose of this paper is to show that when a long
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dinally coherent beam interacts with a quantum target al
the generic properties of scattering theory can be viola
sometimes very strongly. Some aspects of scattering w
longitudinally coherent beams has been presented in two
vious publications@2,3#. In this paper, I will derive the pre-
vious results in more detail. I will also present new resu
for several situations involving coherent beams and targe
will also present calculations for several different situatio
to illustrate the possibilities for scattering with cohere
beams.

Before addressing the issues of scattering theory with l
gitudinally coherent beams, I enumerate some of the w
known and simple parameters that control transition pr
abilities when incoherent beams interact with a quantum
get. All of the observations are for the weak beam and w
target limit. A weak beam is one where all of the transiti
probabilities are small so that double scattering events o
single quantum target can be ignored; thus, the possibility
one incident particle causing a transition from statea to state
b then a second incident particle causing a transition fr
stateb to statec will be assumed to be negligibly small. A
weak target is one where the properties of the beam do
substantially change as the beam traverses the target;
the depletion of the beam by scattering or energy loss by
beam while traversing the target will be assumed to be n
ligibly small. Below is a list of well known properties o
scattering by an incoherent beam.

FIG. 1. A schematic drawing of a Rydberg atom interacting w
an electron beam bunched in the longitudinal direction.
©2000 The American Physical Society06-1
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F. ROBICHEAUX PHYSICAL REVIEW A 62 062706
~1! When all other parameters are kept fixed, the tran
tion probability increases linearly with the number of pa
ticles in the beam. If the number of particles in the beam
doubled, then the transition probability doubles.

~2! Transition probabilities are proportional to the tot
inelastic scattering cross section convolved with the mom
tum distribution of the beam. The transition probabili
changes with the expectation value of the momentum and
width of the momentum distribution.

~3! The population in a final state depends on the ini
distribution of population in the states of the quantum targ
If the target is initially in two states with different energie
the transition probability does not depend on whether
target is in a coherent superposition of states~such as a wave
packet! or whether the states are incoherently populat
Equivalently, the final population only depends on the dia
onal elements of the density matrix for the target.

~4! The total transition probability is proportional to th
integral of the differential cross section over all scatter
angles. The differential cross section can only be obtained
measuring the momentum vector of the scattered particle
ter the transition.

~5! The transition probability is proportional to the tim
integral of the current density of the beam at the quant
target. Thus, an experimental determination of the cross
tion involves the estimation of the overlap of the beam w
the quantum target. If the beam misses the target, then
transition probability is zero.

~6! The transition probability arises from the interactio
of the quantum target with an individual particle in the bea
The large-scale, average structure of the beam plays no
in the scattering except the property of point~5!.

In the following sections, I will show that all of thes
properties can be strongly violated when using longitudina
coherent beams. There are two restriction that will be
posed for this paper, in addition to the weak beam and w
target assumptions discussed above. The first is that the
get is assumed to be at a low enough temperature so tha
Doppler width of lines is a small fraction of the line spacin
The second is that the incident particles cannot be exc
during the scattering. The method described below can
simply extended to remove these restrictions, but these
tensions are beyond the scope of this paper. Finally, the m
of the projectile will be assumed to be much less than
target mass to avoid the complications of the formulas du
large target recoil; again, the inclusion of large target rec
is straightforward but does not appear to add anything
interest. Atomic units are used throughout this paper un
explicitly stated otherwise.

II. ULTRAWEAK BEAMS

First, I will treat the case of ultra-weak beams. In th
case, there is effectively only one particle in the beam. T
limit to the beam strength is discussed in Ref.@2# and in Sec.
III. Both of the possible situations, a target in one initial sta
and a target in a coherent superposition of states, will
treated.
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A. One initial state

The simplest scattering case is when one incident part
interacts with one quantum target. We can use either a t
dependent or time independent treatment of the scatterin
obtain the relevant scattering parameters. It is perhaps cle
to start from the time independent picture and derive a ti
dependent scattering wave function from this.

The target wave functions will be written asFa with en-
ergiesEa . The wave function when the projectile is at larg
distances from the target can be written as

Ck,a5
1

~2p!3/2Feik•rFa1(
b

Fb

eikbar

r
f b←a~kbar̂←k!G ,

~1!

where k is the incident particle’s momentum andkba

5A2M (Ea2Eb)1k2 is the magnitude of the momentum
after the transitionb←a. All of the scattering information is
contained in the scattering amplitudesf b←a . The transition
with a←a gives elastic scattering. The differential cross se
tion can be directly obtained from this scattering wave fun
tion as

dsb←a

dV
~ r̂ ,k!5

kba

k
u f b←a~kbar̂←kẑ!u2, ~2!

where I have taken the incident momentum to be in thz

direction, i.e.,k5kẑ. It is very important to note how the
scattering amplitudes change if the position of the targe
moved. The relationship between the scattering amplit
when the scatterer is centered at the pointr0 and the ampli-
tude when the scatterer is centered at 0 is

f b←a~k8←k!ur0
5 f b←a

(0) ~k8←k!ei (k2k8)•r0. ~3!

This phase factor plays no role in observables~like cross
section! for one particle scattering from a target that is in
energy eigenstate.

We can use the time independent wave function to ans
questions about how coherence properties of a ‘‘one p
ticle’’ beam affect transition probabilities. The coheren
properties of the beam can be expressed through the de
matrix for the particles of the beam. To develop a treatm
of the scattering including total or partial coherence, I w
start from a wave packet picture and use a completely co
ent wave function obtained by superposing the time indep
dent wave function of Eq.~1!:

Ca~ t !5E Ck,ae2 i (Ea1k2/2M )tA~k!d3k, ~4!

where the amplitudes must satisfy* uA(k)u2d3k51 to obtain
unit normalization. In general, the amplitudeA is complex.
For example, if theA0(k) makes a wave packet, then th
amplitude A(k)5A0(k)@11exp(2ik•R)#/A2 gives a
double wave packet state with the second packet shifte
space by an amountR. The strategy for obtaining transitio
probabilities will be to first develop the transition probabili
6-2
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SCATTERING WITH LONGITUDINALLY COHERENT . . . PHYSICAL REVIEW A 62 062706
using the fully coherent wave function; then at a later sta
average the final results over the different realizations of
beam.

The wave packet that results from Eq.~4! can be written
in the form of an unscattered part and a scattered part.
time dependent wave function may be symbolized as

Ca~ t !5Fae2 iEatc inc~r ,t !1(
b

Fbe2 iEbtcb←a
sca ~r ,t !, ~5!

where the incident wave packet may be obtained fr
c inc(r ,t)5(2p)23/2*A(k)exp@i(k•r2k2t/2M )#d3k. When
the target is atr0, the scattered wave has the form

cb←a
sca ~r ,t !5

1

~2p!3/2E eikbar

r
f b←a

(0) ~kbar̂←k!A~k!

3expF2 i
kba

2

2M
t1 i ~k2kbar̂ !•r0Gd3k ~6!

in the limit t→`.
The transition probability can be obtained from the tim

dependent wave function. The probability for the transition
simply Pb←a5^cb←a

sca ucb←a
sca & as t→`. The expression for

the scattered wave function from Eq.~6! can be used to
obtain a closed form expression for the transition probabil
The result is a triple integral:

Pb←a5
1

~2p!3E d3rd3kd3k8A* ~k8!A~k!

3 f b←a
(0)* ~kba8 r̂←k8! f b←a

(0)* ~kbar̂←k!
1

r 2

3ei [(kba2kba8 )r 1(k2k81kba8 r̂2kbar̂ )•r01(kba
2

2kba8 2)t/2].

~7!

Performing the integration overr gives a factor of
2pd(kba2kba8 ) and averaging thex,y components ofr0

over a rangeLx ,Ly gives a factor of (2p)2d(kx2kx8)d(ky

2ky8)/LxLy . The product of these two terms is (2p)3d(k
2k8)/(LxLy@dkba /dkz#) where I have used the usual rel
tion d@ f (x)#5d(x)/u f 8(x)u if f (x) has its only zero atx
50. The relation for the derivativedkba /dkz5kz /kba can be
accurately approximated byk/kba since by definition the
beam is traveling in thez direction; any transverse velocitie
are much smaller than the average velocity in thez direction
and the corrections tok/kba are proportional to (kx

21ky
2)/k2.

The scattering probability can be simplified to

Pb←a5
1

LxLy
E d2r̂d3k

kba

k
u f b←a

(0) ~kbar̂←k!A~k!u2

5
1

LxLy
E d3ksb←a~k!uA~k!u2, ~8!

wheresb←a is the inelastic cross section which only depen
on the magnitude ofk. This formula has a simple physica
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interpretation: the scattering probability is the average va
of the inelastic cross section̂sb←a&, times the time inte-
grated current density~which is 1 particle over an are
LxLy). Note that the transition probability only depends
uA(k)u2 which is the probability density for the incident pa
ticle to have wave numberk. The density matrix for the
incident particle in wave number space is defined to
r(k,k8)5^A(k)A* (k8)& where ^•••& means to average
over the different realizations of this one particle beam sc
tering off one quantum target; using this definition, the tra
sition probability only depends on diagonal elements of
density matrix. Thus, the transition probability does not d
pend on any momentum coherence properties of the be
coherence properties of the beam are manifest in
diagonal elements of the density matrix. Another way of s
ing this idea is that the coherence of a wave packet is
bodied in a well specified phase relationship of the differ
wave numbersk of the incident particle; if the final resul
only depends onuA(k)u2 then this phase relationship is irre
evant.

This derivation immediately shows the points~2!, ~4!, and
~6! discussed in the Introduction. If there areN particles in
the beam, then it is usually assumed that the transitions f
each of the particles add incoherently so that the total tr
sition probability isN times the result of 1 particle; this is th
origin of the point ~1! of the Introduction. If the target is
initially in two nondegenerate statesa anda8 then the prob-
ability to excite the atom to stateb is the probability to be in
statea timesPb←a plus the probability to be in statea8 times
Pb←a8 ; it does not matter that the target could be in a c
herent superposition of the statesa anda8 because the tran
sition can happen at any time and the relative phase fa
between the two states, exp@i(Ea2Ea8)t#, will average to zero.
This gives point~3! of the Introduction.

Point ~5! of the Introduction is intuitively obvious bu
somewhat subtle to show analytically. To motivate this
sult, I assume that the transverse modulation of the bea
small on a distance scale of 1/k. Instead of performing the
average overr0 fix it at the transverse position (x0 ,y0,0) of
the target. The integral overr can be performed in Eq.~7! to
give a factor of 2pd(kba2kba8 ) which can again be approxi
mated by 2pd(kz2kz8)kba /k since the transverse momen
are much smaller than the longitudinal momenta. T
integration overkx ,ky , and kx8ky8 can be performed if we
use a wave function defined partly in position space a
partly in momentum space:c(x,y,kz)[*A(k)exp@i(kxx
1kyy)#dkxdky/2p. This function can be interpreted as the am
plitude to find the particle at the transverse positionx,y with
a momentumkz . In terms of this function, the transition
probability is

Pb←a5E dkzsb←a~kz!uc~x0 ,y0 ,kz!u2 ~9!

which agrees with point~5! of the Introduction.
This section has shown the origin for all of the usu

general features of scattering theory. In the following s
tions, I will show how to extend treatment of scattering
6-3
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F. ROBICHEAUX PHYSICAL REVIEW A 62 062706
encompass beams with momentum coherence. The re
will violate all of the general features of conventional sc
tering theory.

B. Several initial states, coherent beam

The case where the target is prepared in several in
states and the beam exhibits some longitudinal cohere
provides an interesting change from point~3! in the Intro-
duction. As one physical example, have a radial Rydb
wave packet on the target atom interact with a short pu
electron beam; the transition probability will depend
whether the Rydberg wave packet is at larger or at smallr
when the electron pulse passes the atom. To derive
change from point~3!, I will again use a wave packet der
vation and at a later point I will average over the differe
realizations for the target to account for any incoherenc
We will use the complex coefficients of the initial states
represent a general state of the targetF(0)5(aFaAa . This
gives a full wave function of the form

C~ t !5(
a

Ca~ t !Aa , ~10!

where the wave function from Eq.~5! has been used. Sinc
the incident wave only depends on theA(k) and does not
depend on the initial state, the scattered wave for the cas
several initial states is simplycb

sca5(acb←a
sca Aa .

Just as in the case where there is only one target sta
can use the norm of the scattered wave to give the proba
ity for exciting stateb: Pb5^cb

scaucb
sca&. Again, this probabil-

ity may be expressed as a triple integral, but with the diff
ence that there will be sums over the initial states as well.
t→`, the closed form expression for the probability is

Pb5
1

~2p!3 (
aa8

AaAa8
* E d3rd3kd3k8A* ~k8!A~k!

3 f b←a8
(0)* ~kba8

8 r̂←k8! f b←a
(0)* ~kbar̂←k!

1

r 2

3ei [(kba2k
ba8
8 )r 1(k2k81k

ba8
8 r̂2kbar̂ )•r01(kba

2
2k

ba8
8 2)t/2],

~11!

whereA(k) does not have a subscripta to indicate that the
incident wave is independent of the initial states. As in
previous section several of the integrations can be perfor
exactly. The integral overr gives a factor of 2pd(kba

2kba8
8 ) and averaging over thex,y components ofr0 over a

range LxLy gives a factor of (2p)2d(kx2kx8)d(ky

2ky8)/LxLy . The product of these two terms is (2p)3d(k
1 ẑDkaa82k8)/(LxLykz8/kba) where manipulations simila
to those from the previous section have been perform
Note that thez component of the momenta have been shif
by an amountDkaa85A2M (Ea2Ea8)1kz

22kz that arises
from energy conservation; after the collision leaving the t
get in stateb, the size of the momentumkba must equal that
06270
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from kba8 . Substituting the delta functions and performin
the integration overd3k8 gives the transition probability

Pb5
1

LxLy
(
aa8

AaAa8
* E d2r̂ d3kA* ~k1Dkaa8ẑ!A~k!

3
kba

ka8a

f b←a8
(0)* ~kbar̂←k1Dkaa8ẑ! f b←a

(0)* ~kbar̂←k!,

~12!

where I have again used the relationk2@kx
21ky

2 to approxi-
mate A2M (Ea2Ea8)1kz

25kaa8 . Equation ~12! is essen-
tially exact and is the main result of this section.

The result for a ‘‘one particle’’ beam scattering from
target in a superposition of states is fairly complicated so t
it is worthwhile exploring different aspects to gain familia
ity with the physics that it embodies. First, examine the c
where the target is only in a statistical superposition so t
the density matrix for the targetraa85^AaAa8

* &, is diagonal.
If raa85daa8raa ~whereraa is the probability to be in state
a), then the probability to excite stateb is simply the
weighted average of the individual excitation probabiliti
from Eq. ~8!: Pb5(aPb←araa . This result says that no co
herence effects arise in the ultra weak beam limit unless
target itself is in a coherent superposition of states. T
agrees with the analysis of Ref.@10#; here they found that
longitudinal coherence properties of a beam have no ef
unless the target has some sort of time dependence. A c
pletely incoherent target does not change with time. Ho
ever, if the density matrix is not diagonal, then the targe
in a wave packet state and the properties of the targe
evolve with time; thus the conditions are satisfied and th
is possible interesting effects from longitudinal coheren
properties of the beam.

For the rest of this section, the density matrix of the tar
is assumed to be nondiagonal. Next, examine the case w
the width of the amplitude in momentumA(k) is much
smaller than Dkaa8 . In this case the productA* (k
1Dkaa8ẑ)A(k) is always effectively zero unlessa5a8
(Dkaa50). Since all of the cross terms go to zero, again
result is a weighted average of the individual excitation pro
abilities from Eq.~8!: Pb5(aPb←araa . The physical reason
for this is that the resolution of the beam is high enough
energy analyze the scattered wave and unambiguously i
tify each piece that corresponds to the different initial stat

Next, examine the case where the coherence propertie
the beam are such that the off-diagonal elements of
beam’s density matrix do not extend to momentum diff
ences of Dkaa8 ; i.e., r(k,k1Dkaa8ẑ)50 unless a5a8.
Since all of the cross terms go to zero, again the result
weighted average of the individual excitation probabiliti
from Eq. ~8!: Pb5(aPb←araa . The physical reason for this
result is different from that of the previous paragraph b
cause it is not necessary for the beam to have high-en
resolution. The reason for a reduction to a statistical resu
that the incoherence in the beam implies that the incid
particle cause transitions at random times that are long c
6-4
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SCATTERING WITH LONGITUDINALLY COHERENT . . . PHYSICAL REVIEW A 62 062706
pared to the beat periodh/uEa2Ea8u. Thus there is a random
phase that causes the cross terms to average to zero.
agrees with the point~3! of the Introduction.

Now, let us turn to the case where the density matrix
the target and for the beam will allow nonstatistical transit
probabilities. There is one last requirement for the interes
coherence effects to be manifest in the total transition pr
ability. Namely, the product of scattering amplitudes~the
f (0)* f (0) product! must be comparable to the differenti
cross section of the individual transitions. This is not gu
anteed. For example, if the 46s and 46p Rydberg states o
Rubidium are used as the initial states, then the differen
cross section for transition to the 46d is quite different; the
differential cross section from the 46p state is strongly
peaked in the forward direction while from the 46s state
there is a minimum in the forward direction. Thus, the effe
from coherent initial states will probably be most easily o
served when initial states of very similar character are us

Perhaps the most interesting situation is where there
longitudinal coherence in the beam due to a simple ti
dependent modulation~for example, a series of pulses!. For
the rest of the discussion, I will assume that the transve
structure is uninteresting and that the momentum distribu
in the transverse direction is very strongly peaked aroun
In this case, the transition probability can be compactly w
ten as

Pb5
1

LxLy
(
aa8

raa8E dkzjaa8~kz!rz~kz ,kz1Dkaa8!,

~13!

where

jaa8~kz!5E d2r̂
kba

kaa8

f b←a
(0) ~kbar̂←kzẑ!

3 f b←a8
(0)* ~kbar̂←@kz1Dkaa8# ẑ! ~14!

reduces to the total cross section fora5a8 and rz is the
integral of the density matrix over thekx ,ky components.
Equation~13! shows that the probability for transition int
stateb depends on off-diagonal elements of the density m
trix of the beam if the target is prepared in a coherent sup
position of states.

Although Eq.~13! is exact and can be readily evaluated
specific circumstances, the visualizable physical proce
that contribute to the transition probability are not obviou
To make clear the physical content, I will address a comm
situation in an approximate manner. For many cases, thj
functions hardly have any dependence onkz over the width
of the momentum distribution. When thej functions hardly
change withkz , they can be pulled outside of the integral
Eq. ~13! by settingjaa8(kz)5jaa8( k̄z) with k̄z being the av-
erage momentum. The density matrix in momentum sp
can be related to the density matrix in space through a do
Fourier transform

rz~kz ,kz8!5
1

2pE dzdz8rz~z,z8!ei (kz8z82kzz). ~15!
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This fact can be used to obtain an expression for the tra
tion probability in terms of the the Fourier transform of th
density of the beam in thez direction:

Pb5
1

LxLy
(
aa8

raa8jaa8~ k̄z!E rz~z,z!eiDkaa8zdz, ~16!

whererz(z,z) is the density of the beam in thez direction at
t50. The transition arising from theaa8 term is proportional
to the Fourier transform of the density with a wave numb
Dkaa8 . The case wherea5a8 gives the integral of the den
sity which is 1. The cross terms withaÞa8 are only nonzero
to the extent that the beam has a modulation in space wi
wavelength 2p/Dkaa8 .

The result in Eq.~16! directly leads to an interpretation o
the origin of the coherent transition when the target is p
pared in a superposition of states. The target has many
ferent frequencies,Ea2Ea8 , of motion that result from the
superposition of initial states. The spatial modulation of t
beam with a wavelengthl translates through the velocityv
of the beam into a time modulation at the target given
l/v5Ml/kz . Thus the beam needs a spatial modulationl
52pkz /(M uEa2Ea8u). Using the approximationDkaa8
.M (Ea2Ea8)/kz when kz@Dkaa8 , the same condition as
in Eq. ~16! is obtained.

As an example, consider the case where the beam is
cifically modulated so that the Fourier transform of the de
sity is strongly peaked atl50,62pv/v. The transition
probability will equal that for incoherent initial states ifv
does not match any of the frequencies,Ea2Ea8 of the target.
Thus, the expectation is that the transition probability can
made to vary sharply with the wave length modulation of t
beam. This should be testable by experiment.

Finally, there is another interpretation of the result.
order to have modulation of the beam density, the beam m
have energy components that are modulated such that t
are several peaks in energy with a spacingDE. If the DE
spacing of the beam matches an energy difference in
target, then part of the wave with energyE can scatter from
statea and finish with energyE1Ea2Eb while the part of
the wave with energyE1DE can scatter from statea8 and
finish with energyE1DE1Ea82Eb . If DE5Ea2Ea8 the
two process are indistinguishable and can interfere. Thus
cross terms in Eq.~13! can be thought of as arising from th
interference of indistinquishible paths.

In Sec. IV, I will investigate several interesting possibi
ties for observing the coherence terms. I will also ment
some of the basic physical ideas that can be observed ex
mentally.

III. WEAK BEAMS

Now I will address the case of weak beams where it
necessary to account for many particles in the beam altho
I am still only considering the case of one particle caus
the transition. The division between ultraweak and we
beams will be clearly specified below.

It is not obvious that the analysis of the scattering pro
ability qualitatively changes if there areN particles in the
6-5
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F. ROBICHEAUX PHYSICAL REVIEW A 62 062706
beam of transverse areaLxLy . The transition probability
from statea to b is usually assumed to beN^sb←a&/LxLy
[z^sb←a&; i.e., the transition probability equals the inelas
cross section averaged over the momentum distribution
the incident beam times the time integral of the particle c
rent density. This result arises from the assumption that e
incident particle contributes incoherently to the transitio
But is this assumption correct? It is relatively easy to exte
the derivation toN particles in the beam and test this a
sumption.

A. One initial state

To check the assumption that scattering probability is
incoherent sum of the probabilities from each particle in
beam, we write out a wave function for anN particle beam
@2# where the only assumption is that there is only one s
tering event; this wave function is

Ca
(N)~ t !5Fae2 iEat)

j 51

N

ca
inc,j~r j ,t !1(

b
Fbe2 iEbt

3(
j 8

H cb←a
sca,j 8~r j 8 ,t ! )

j Þ j 8
ca

inc,j~r j ,t !J . ~17!

The j superscript on the incident and scattered wave fu
tions is meant to indicate that the wave packet for each i
dent particle is not necessarily related to any of the ot
packets. In Eq.~17!, we made the assumption that the initi
state of the incident beam is such that the wave function
the incident particles is a product of one particle functio
This situation can occur when the incident wave is the out
from an atom laser since the atoms are bosons. This situa
also holds when all lengths of a packet are smaller than
average distance between adjacent projectiles because th
cident particles are distinguishable.

The transition probability can be obtained from the no
of the many particle scattered wave. Coherent and incohe
probabilities for exciting the target to stateb are given by

Pb←a
(N) 5(

j
^cb←a

sca,j ucb←a
sca,j &1 (

j Þ j 8
^ca

inc,j ucb←a
sca,j &

3^cb←a
sca,j 8uca

inc,j 8&, ~18!

where unit normalization of the incident packets has b
used. The first term of Eq.~18! is the incoherent sum o
probabilities from each individual projectile and the seco
term arises from the coherent effect of the projectiles on
target. It is important to remember that the coherent term
zero unless the incident wave packet has an energy w
that is larger than the energy change in the target; if
energy width of the packet is too small there is no over
between the incident and scattered waves because the
not contain the same energy components. Because the c
ent term is an overlap of the initial and scattered wave, it w
be easier to observe the effect for transitions where the
elastic cross section is peaked in the forward direction.
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discussed below, the second term of Eq.~18! is proportional
to off-diagonal elements of the density matrix.

Properties of the scattered packet prevent a strong ove
with the incident packet because the incident packet ha
momentum distribution strongly peaked in thez direction
whereas the scattered wave has a larger angular distribu
of momentum. This means that ^cb←a

sca,j ucb←a
sca,j &

@u^ca
inc,j ucb←a

sca,j &u2. It is illustrative to use this fact to ap
proximate Eq.~18! in the form

Pb←a
(N) .(

j 51

N

^cb←a
sca,j ucb←a

sca,j &1U(
j 51

N

^ca
inc,j ucb←a

sca,j &U2

~19!

which can serve as the basis for discussing the physical
cesses important for scattering with a pulsed incident be

How can the coherent transition probability, which d
pends on the small overlap of the initial and scattered wa
be comparable or larger than the incoherent transition pr
ability? The answer is that although an individual contrib
tion to the incoherent term is larger than one for the coher
term, there areN times more contributions to the cohere
term. Therefore, the coherent contribution to the probabi
can be dominant for large numbers of projectilesN. We in-
terpret the second term in Eq.~19! as arising from the coher
ent field from all of the projectiles acting on the target. Th
interpretation arises from the form of this term in which t
amplitudes from each individual particle are superposed
the probability is the absolute value squared. Another rea
for this interpretation is that in the first order Born approx
mation the second term in Eq.~19! exactlyequals the transi-
tion from statea to b calculated using first order time depe
dent perturbation theory and the time dependent coup
potential generated by the incident wave packetsuca

inc,j u2.
We can also think of the coherent term as arising beca
part of the scattered wave of each particle overlaps the i
dent wave; in this case, it is impossible to know which p
ticle caused the transition and therefore the amplitudes m
be added coherently.

Now, I want to obtain a complete expression for the tra
sition probability to the final stateb in terms of scattering
amplitudes and physical parameters of the beam. The
term in Eq. ~19! is simply the incoherent sum of the ind
vidual transitions from each particle of the beam. This giv
the usual expression for the transition probability. The s
ond term has to be approached somewhat more cautiousl
the limit that t→`, each of the individual overlaps can b
expressed as a triple integral in the form

^c inc,j ucb←a
sca,j &5

1

~2p!3E d3rd3kd3k8Aj* ~k8!Aj~k!

3 f b←a
(0) ~kbar̂←k!

1

r

3ei (kbar 2k8•r1[k2kbar̂ ] •r0). ~20!

As in the previous sections, many of the integrations can
performed analytically. The plane wave exp(2ik8•r ) can be
expanded into partial waves. This allows the integration o
6-6
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d3r to be performed which gives a factor ofi (2p)2d(k8

2kba)/k8 with the replacement ofr̂ by k̂8. Next, averaging
the x,y position of the target over a large areLxLy gives a
factor of (2p)2d(kx2kx8)d(ky2ky8)/(LxLy). This reduces
the overlap to a single integral of the form

^c inc,j ucb←a
sca,j &5

2ip

LxLy
E d3kAj* ~k1Dkabẑ!Aj~k!

3 f b←a
(0) ~k1Dkabẑ←k!/~kz1Dkab!.

~21!

The sum overj of all of the overlaps replaces the products
the A amplitudes withN times the one particle density ma
trix. Thus, the amplitude that arises in Eq.~19! is

(
j 51

N

^c inc,j ucb←a
sca,j &5

2ipN

LxLy
E d3kr~k,k1Dkabẑ!

3 f b←a
(0) ~k1Dkabẑ←k!/~kz1Dkab!.

~22!

This expression clearly shows that the coherent re
from the multiple electron scattering depends on the o
diagonal density matrix elements of the momentum com
nents of the beam. If the beam is completely incoherent, t
the density matrix in Eq.~22! is zero and the only contribu
tion to the transition probability is from the incoherent sc
tering from individual particles of the beam. There are
number of interesting features about the combination of E
~19! and~22! that should be noted. First, the coherent amp
tude is proportional toN which means the probability is pro
portional to N2. Compare to point~1! of the Introduction.
Second, the amplitude in Eq.~22! depends on off diagona
density matrix elements which means the transition proba
ity is not simply a convolution over the momentum distrib
tion of the beam. Compare to point~2! of the Introduction.
Third, the amplitude in Eq.~22! is proportional to the scat
tering amplitude only in the forward direction. Compare
point ~4! of the Introduction. Some of the other points of th
Introduction will be discussed in the following two section

While the expression in Eq.~22! is perfectly accurate and
can be used to calculate the transition probabilities, it is
very easy to get a physical feeling for the mechanisms
control this amplitude. To this end, an approximate expr
sion will be derived for a common type of scattering. If th
change in momentum,Dkab , is much less than the inciden
momentum and the initial spread in momentum is mu
smaller than the momentum, then very often the scatte
amplitude does not vary rapidly with the initial momentum
If this is true then the scattering amplitude and the inve
momentum factor in Eq.~22! can be pulled out of the inte
gral and an average value of the momentum substitu
Now, as in Sec. II B, the only term left inside the momentu
integral is the density matrix which can be related to
Fourier transform of the one-particle, beam density in thz
direction. This gives a final expression
06270
f

lt
-
-
n

-

s.
-

il-

.

t
at
-

h
g

.
e

d.

e

(
j 51

N

^c inc,j ucb←a
sca,j &5

2ipN

LxLyk̄z

f b←a
(0) ~ k̄baẑ← k̄zẑ!

3E dzrz~z,z!eiDkabz ~23!

with k̄z being the average momentum andk̄ba being the final
momentum.

The transition probabilities from both the incoherent a
the coherent scattering terms can be combined to give

Pb←a
(N) 5zsb←a12pz2U E rz~z,z!eiDkabzdzU2S dsb←a

qdq D U
q5q0

,

~24!

where z5N/LxLy is the time integral of the beam-curren
density andq05uDkabu is the minimum size of the momen
tum transfer. The minimum size of the momentum trans
occurs when the scattered particle travels in the same d
tion as the incident particle,u50; q0.M uEa2Ebu/k when
the incident energy is large compared to the energy give
the target. The differential cross sectionds/qdq
5*df(ds/dV)/kkba with the k,kba the initial and final
wave numbers. The transitions where the inelastic, differ
tial cross section is strongly peaked in the forward direct
will show the effects of beam modulation most strongly. F
the interaction of a fast charged particle with a neutral ato
it is the dipole allowed transitions that are peaked in
forward direction; the other multipole transitions~monopole,
quadrupole, etc.! have a minimum in the forward scatterin
direction.

The result in Eq.~24! can be interpreted to give a physic
picture of the scattering. The first term is simply the expec
result from incoherent scattering: the transition probability
the inelastic cross section times the time integrated cur
density. The second term is similar to the result from S
II B since the coherence comes from having a density mo
lation in the beam with a wavelength given by 2p/Dkab ;
however, the origin of this term is quite different. In Se
II B the coherent scattering fit within the recent ideas of sc
tering theory in the sense that the target had a time depen
modulation that could interact with time dependent modu
tions of the beam. In this section, the target is assumed t
in an energy eigenstate and thus it is expected that a m
lated beam will not have an effect on the transition. T
coherent scattering term in Eq.~24! arises because the sca
tered wave from each of thej electrons can overlap the un
scattered wave; thus it is not possible to identify which el
tron caused the transition. This implies the scatter
amplitudesfrom each of the electrons should be added.

The results in this section violate expectations from st
dard scattering theory in several places. First, it viola
property~1! from the Introduction: the transition probabilit
has a part proportional to the number of the incident partic
in the beamanda term proportional square of the number
incident particles. There is a violation of property~2! since
the transition probability depends on longitudinal coheren
properties of the beam: the coherent transition amplitude
6-7
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F. ROBICHEAUX PHYSICAL REVIEW A 62 062706
pends on off-diagonal density matrix elements. There i
violation of property~4! since thetotal transition probability
depends on the inelastic cross sectionandon the differential
inelastic cross section in the forward scattering direction;
gives the opportunity for measuring the forward scatter
differential cross section without measuring moment
components of the scattered particle. Finally, these res
also violate property~6! since the transition probability de
pends on the large-scale~macroscopic! structure of the beam
in the longitudinal direction: the transition depends on a F
rier transform of the longitudinal density of the beam.

B. Perturbative limit

It is instructive to examine the perturbative limit@3# of the
coherent scattering in order to obtain an intuitive understa
ing of the reason for the coherent scattering. This limit
lows a direct connection between the quantum formulat
of coherent scattering and classical intuition of the inter
tion of a quantum target with an extended, macroscopic
ject.

The derivation will be based on the time dependent eq
tion for the scattered wave to lowest order in the interact
between thej th incident particle and the target. To lowe
order in the interaction potential, the scattered wave can
written as the solution of

S i
]

]t
2H0Dcb←a

sca,j ~r ,t !5Vba~r !ca
inc,j~r ,t !ei (Eb2Ea)t,

~25!

whereH05p2/2M is the kinetic energy operator and the p
sition dependent matrix elementVba(r )5^FbuVuFa&. For
the example of a transition between one-electron states o
atom, Vba(r )5*d3r 8Fb* (r 8)Fa(r 8)/ur2r 8u. This equation
has the solution

cb←a
sca,j ~r ,t !52 i E

2`

t

e2 iH 0(t2t8)Vba~r !

3ca
inc,j~r ,t8!ei (Eb2Ea)t8dt8. ~26!

We can now perform the projection of the incident wave
the scattered wave to obtain

^ca
inc,j ucb←a

sca,j &52 i E
2`

t E d3r@e2 iH 0(t82t)ca
inc,j~r ,t !#*

3Vba~r !ca
inc,j~r ,t8!ei (Eb2Ea)t8dt8

52 i E
2`

t

Ṽba
( j )~ t8!ei (Eb2Ea)t8dt8, ~27!

where Ṽba
( j )(t)5*Vba(r )r ( j )(r ,t)d3r is the time dependen

interaction between the statesa andb that arise from the time
dependent density from particlej. If we sum the contribution
from all of the particles in the beam, we obtain the coher
scattering amplitude
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^ca
inc,j ucb←a

sca,j &52 i E
2`

t

Ṽba~ t8!ei (Eb2Ea)t8dt8, ~28!

where Ṽba(t)5*Vba(r )r(r ,t)d3r is the time dependent in
teraction between the statesa andb that arise from the time
dependent density of all of the particles in the beam. Thi
exactly the term that should be expected from classical in
ition: the density of particles generates a time dependent
tential Ṽ(r ,t)5*d3r 8r(r 8,t)/ur2r 8u that couples statesa
and b and it is this time dependent coupling that genera
transitions. When the density of particles has a modulatio
space, the transition probability can be greatly enhance
the classical field oscillates with the same frequency as
transition frequency of the states. These results violate p
erty ~6! of the Introduction since the transition probabili
depends on the large scale structure of the beam in the
gitudinal direction.

From this analysis, we can identify dipole allowed tran
tions as those being most amenable to coherent excitatio
charged particles; furthermore, it is only transitions whi
preserve the magnetic quantum number,m, in the beam di-
rection that will be enhanced since this is the direction
which the ‘‘classical electric field’’ from the beam is osci
lating. This is the same trend we found from the express
Eq. ~24!; for electron-atom scattering, the coherent transit
most strongly affects the excitation into dipole allowe
states.

C. Transverse and longitudinal coherence

The perturbative expression for the coherent transit
amplitude can be used to show that a beam that misses
target can still cause transitions. In essence, a coherent b
has a time and position dependent density which generat
time dependent potential at the targetṼ(r ,t)
5*d3r 8r(r 8,t)/ur2r 8u. This time dependent potential ca
cause a transition between statesa andb if the potential has
Fourier componentsEa2Eb . This result contains the usua
scattering result; in the limit of an incoherent beam, the sh
time average of the beam density does not vary with tim
Thus, the potential,Ṽ, does not have Fourier componen
Ea2Eb and there are no transitions unless the beam over
the target.

These results violate property~5! of the Introduction: ‘‘no
transitions unless the beam and target overlap.’’ This eff
is similar to the theoretical method for treating ion ato
scattering@11# in the sense that one does not treat the el
trons and nucleus of the ion as independent objects.

IV. DISCUSSION

It is clear that scattering with a longitudinally cohere
beam has several interesting consequences. In this sect
will present calculations for several situations where the l
gitudinal coherence of a beam will have an observable eff
These will provide illustration for some of the ideas di
cussed in the previous section.
6-8
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SCATTERING WITH LONGITUDINALLY COHERENT . . . PHYSICAL REVIEW A 62 062706
A. Ultraweak beams, coherent target

In this case, the beam is so weak that the many part
effects of the next section are not present. This case ca
thought of as a quantum target that is in a wave packet s
interacting with a one particle beam that is also in a wa
packet. This situation raises interesting possibilities. For
ample, a wave packet constructed of Rydberg states on
atom gives a probability distribution for the Rydberg ele
tron that radially oscillates with a period that can be expe
mentally controlled through excitation to specific states
the time when a charged particle passes the atom ca
controlled, then the dependence of the transition on the ra
distance of the Rydberg electron can be experimentally
termined.

To take a specific example, I will consider the scatter
of a 1 keV electron from a Rb atom in a radial wave pac
consisting of the 53s ~state 1! and 54s ~state 2! states. This
gives a wave packet with a probability distribution that ra
ally oscillates with a period of roughly 19.4 ps. For simpli
ity, I take the two states to be equally populated and wit
phase relationship so that att50 the Rydberg electron ha
the smallest̂ r & @dotted line of Fig. 2~a!# and att59.7 ps the
largest^r & @solid line of Fig. 2~a!#. If the radial wave func-
tions are both chosen to be positive atr 50, then the density
matrix is raa851/2.

I chose to examine the transition to 2 different final stat
the 53p and the 62p states. The scattering amplitudes can
numerically evaluated using a first order Born approxim
tion. The amplitudes can be numerically integrated in E
~14! to obtain the following values for the transitionjaa8
matrix to the 53p state (j11556.3 Tb, j125j21* 5255.6
Tb, j22555.0 Tb! and to the 62p state (j1152.67 Gb, j12

FIG. 2. ~a! The dotted line is the Rb wave packet att50:
(53s154s)221/2. The solid line is the wave packet att5t/2:
(53s254s)221/2. ~b! The normalized scattering probabilityPb

5P(t)/max(P) for a one pulse electron beam causing the transit
to the 53p state~solid line! and to the 62p state~dotted line!; t/t is
the time of arrival of the electron pulse in units of the wave pac
period. Note the transition to the 53p state is 180° out of phase wit
the expectation that the transition is reduced when the electron
large r.
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5j21* 53.26 Gb, j2254.01 Gb!. There are a couple proper
ties of this matrix that should be noted. First, all elements
real at this level approximation for the case when both ini
states have the same angular momentum. For the transi
chosen, 2uj21u.j111j22 which means that beam coheren
will drastically change the transition probability.

In the first case, I suppose the incident electron is in
wave packet that is a single pulse and will be modeled b
Gaussianrz(z,z)5@DzAp#21exp@2(z2z0)

2/Dz2#, whereDz
is a spatial width of the beam andz0 is the position of the
incident pulse att50. The Fourier transform of the longitu
dinal density needed in Eq.~16! can be obtained analytically
as exp@iDkaa8z02Dz2Dkaa8

2 /4#. Before evaluating the expres
sion for the transition probability, note that the cross ter
which give the coherent scattering rapidly decrease ifDz
.1/Dk21; this condition can be recast as a condition on
time width of the incident electron:Dt5Dz/k wherek is the
momentum of the incident electron. Since the incident el
tron’s energy is much greater than the energy spacing of
states making the wave packet, the difference in wave n
berDk21.(E22E1)/k. Thus the condition for observing ef
fects from the coherent target is that the time width of t
incident electron pulse times the beat frequencyuE22E1u be
smaller than 1. This makes sense on physical grounds s
there should not be any coherence effects if there are sev
radial oscillations of the Rydberg wave packet while the
cident electron passes the atom.

I introduce one last parameter to get a final formula t
shows the relevant physics as clearly as possible. This is
time that the incident electron packet passes the atomt
5z0 /k. At the high incident energies and small energy d
ferences of the target states, the factorDkaa8z0.(Ea
2Ea8)t. When the time width of the beam is much short
than the period of the wave packet, the excitation cross s
tion to the 53p and 62p states can be written ass(t)
5ssum1sosccos@(Ea2Ea8)t# where ssum5111.3 Tb and
sosc52111.2 Tb for the 53p final state and 6.73 and 6.5
Gb, respectively, for the 62p final state. In Fig. 2~b!, I plot
s(t)/(ssum1usoscu) for the two cases. It is clear that th
combined coherence of the target and beam can produc
teresting effects if the incident electron pulse is short.

There is a simple lesson that can be learned from Fig. 2
should be experimentally possible to measure in which
gion of space the electron makes a transition. For many fi
states, a transition from a high Rydberg state occurs m
more strongly when the Rydberg electron is close to
nucleus than when the electron is at the outer turning p
(62p final state in Fig. 2!. This property has been surmise
from calculations on the radial dependence of the transi
matrix elements. However, the transition to the 53p state
~which is between the 53s and 54s states! is enhanced when
the electron is far from the nucleus which disagrees w
expectations. This simple case should be explored in orde
show that it is possible to experimentally observe the cha
ing properties of scattering amplitudes with position.

There are many possible schemes that could be use
observe the effect in Fig. 2. I will briefly discuss two poss
bilities. The most important point is that the time betwe
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F. ROBICHEAUX PHYSICAL REVIEW A 62 062706
the peaks in Fig. 2 correspond to a travel distance of;380
mm for a 1 keV electron beam. If an electron pulse trav
through a gas of Rydberg atoms all in the same wave pa
state, then the excitation cross section will oscillate in
beam direction with a wavelength of;380mm. The excited
atoms can be detected in a position dependent manne
ramping an electric field perpendicular to the beam direct
so that the electrons stripped from the Rydberg atoms
imaged onto a CCD camera. Resolution of roughly 100mm
can be obtained with this arrangement; this is over a facto
2 better than needed to detect the signal in Fig. 2. Ano
possible experimental arrangement is to only excite Rydb
atoms in a small region of space and detect all of the exc
atoms by ramping an electric field; the time of the collisi
relative to the wave packet can be controlled by delaying
time of the creation of the wave packet. With optical light
should be possible to focus the light to a spot smaller t
;100mm which is all that would be needed to see the eff
of the pulsed electron beam.

The case considered in this section is only meant to ill
trate a general possibility. There are more interesting si
tions that occur in molecular physics that might be wo
investigating. For example, the transition between two e
tronic states depends on the positions of the nuclei. A vib
tional wave packet on the molecule can interact with
pulsed electron beam; by varying the time of the interacti
the strength of the transition can be mapped as a functio
position of the nuclei since the nuclear positions move i
wave packet. Two simple, physical cases can be use
illustration. ~1! A vibrational wave packet on H2 ground
state potential curve. Measure the dissociation cross sec
as a function of the time of interaction with a pulsed electr
beam. This will give anexperimentaldetermination of the
dependence of the1Sg→1Su transition on the internuclea
separation.~2! A vibrational wave packet on the NO groun
state potential curve. Measure the dissociation cross sec
into specific atomic states as a function of the time of int
action with a pulsed electron beam. This will give anexperi-
mental determination of electronic state specific cross s
tions as a function of internuclear separation. In polyatom
molecules, there is also the possibility for measuring the t
dependence of the flow of vibrational energy by interact
with a pulsed electron beam.

B. Weak beam, single initial state

Now, I will consider examples where the beam is we
~sequential transitions such asa→b then b→c are ne-
glected! but strong enough so that the coherence of the be
can affect the total transition probabilities. This case can
thought of as the quantum target interacting with the fluct
tions~individual particles! in a beamandwith the large scale
‘‘macroscopic’’ properties of the beam.

1. Longitudinal coherence

In Ref. @2#, we considered how a sequence of pulses
change the apparent cross section for a particular state
this section, I will consider a similar case but show how t
coherence can change the relative cross section to diffe
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states. Thus it is possible to control the excitation probabi
to the specific final states by varying the time between e
tron pulses. To take a specific example, I will consider
scattering of a 1 keV electron beam with a Rb atom in th
53s state. The transition cross section to eight different sta
will be investigated: 49p through 56p. The electron beam a
t50 will consist of a cosine modulated exponential

rz~z,z!5
1

DzAp
expF2

z2

Dz2GF11cosS 2pz

l D G , ~29!

where Dz is a spatial width of the beam and the spat
modulation of the beaml!Dz.

The transition probability arises from two qualitative
different mechanisms. There is an incoherent term that ar
from the scattering of an electron so that it does not over
the initial beam direction; this gives a probability equal
the inelastic cross section times the time integral of the e
tron current density. This term is present in all scatter
experiments. There is a coherent scattering term that ar
from an electron in the beam causing a transition but
scattered electron still overlaps with the incident wave a
the transition. Since it is impossible to tell which electro
causes the transition, the amplitudes for each electron in
beam must be added. This term may be qualitatively rela
to a semiclassical approximation where the modulated e
tron density of the beam generates a modulated electric
at the atom; the time varying electric field causes transiti
on the atom. Since it is the amplitudes that are added,
transition probability from the coherent scattering is prop
tional to the square of the time integral of the current dens

The transition probability can be obtained from Eq.~24!.
There are four factors that contribute:z, the time integrated
current density,sb←a , the inelastic cross section,ds/qdq,
the differential cross section in the forward scattering dir
tion, and the Fourier transform of thet50 beam density. A
useful quantity is the effective cross section for a transit
which is the transition probability divided by the time inte
grated current density. The effective cross section can
written in the form

seff5s•~11zuFu2/zmin!, ~30!

wheres is the usual inelastic cross section,zmin is the min-
imun time integrated current for which the coherent tran
tion probability can equal the incoherent transition probab
ity and F is the Fourier transform of thet50 density in Eq.
~24!. In the limit, z!zmin this definition reduces to the usua
definition of cross section.

In Fig. 3, I show the transition probability divided by th
time integrated current density for the transition from the 5s
state of Rb to eight differentnp final states; the transition
probability divided byz is an effective cross section for th
transition. In Table I, I give the relevant parameters for t
eight transitions. The time width of the electron beam
chosen to be;35 ps and the wavelength modulation w
chosen to enhance the transition to the 55p state. Without the
modulation, the transitions to the 52p and 53p states com-
pletely dominate all other transitions. It would be relative
6-10
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SCATTERING WITH LONGITUDINALLY COHERENT . . . PHYSICAL REVIEW A 62 062706
simple to make a beam that emphasized the 53p transition
over the 52p transition~and vice versa!; for example, a time
integrated current density ofz5700 mm22 could give an
effective cross section into the 53p state over 10 times large
than into the 52p state if the modulation of the beam wa
chosen properly. Figure 3 shows a much more difficult
rangement. In this situation, I have shown that it is poss
to make the transition to the 55p state larger than any othe
although it is negligibly small without a coherent beam. Th
shows that it is possible to manipulate the probabilities
excitation into different final states by controlling the mod
lation of an electron beam.

There are two experimental arrangements that could
tect the coherent scattering. Perhaps the simplest arra
ment, is to measure the transition probability versus the c
rent density for a short pulse electron beam. For dip
allowed transitions, the probability will increase similar to

FIG. 3. The effective cross section for electron impact excitat
from the 53s state intonp states forn549256 for electrons with 1
keV incident energy. The solid line is the usual cross section wh
holds when the time integrated electron currentz→0. The dotted
and dashed lines are for an electron beam specifically chose
enhance transition to the 55p state. The dotted line has a time int
grated electron current ofz52 mm22 and the dashed line hasz
54 mm22. This shows that extremely weak transitions can be
hanced in electron scattering when the coherence properties o
beam are controlled.

TABLE I. Parameters for transition from the 53s state of Rb to
nearby np states caused by a 1 keV electron beam.t52p/(E53s

2Enp) is the transition period,s is the usual definition of the
inelastic cross section, andzmin is the minimum time integrated
current density that can give equal amounts of coherent and i
herent scattering.

n t ~ps! s ~Tb! zmin (mm22)

49p 24.815 0.0516 6220
50p 26.96 0.167 2900
51p 211.95 0.994 935
52p 236.7 50.6 88
53p 38.6 56.3 80
54p 13.2 1.09 800
55p 8.12 0.193 2250
56p 5.96 0.0636 4360
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quadratic function of the integrated current density if t
time width of the pulse is shorter than the transition perio
Another arrangement can have a small number of equ
spaced short pulses interacting with the atom. For dip
allowed transitions, the probability will depend on the tim
between the pulses if there is enough electrons and the pu
are shorter than the transition period.

2. Transverse and longitudinal coherence

Beams that contain transverse and longitudinal cohere
can qualitatively change expectations of scattering by ca
ing transitions even when the beam does not overlap
target. These nonstandard transitions can occur due to
coherent interaction of the incident particles with the targ
At the perturbative level, the coherent transitions can be
lated to the interaction of the quantum target with the ‘‘cla
sical fields’’ generated by the beam. For example, an e
tron pulse that has a small extent in the transverse
longitudinal directions generates a classical electric field p
portional to the charge of the pulse and inversely prop
tional to the squared distance from the pulse. If the elect
pulse moves past a quantum target with a kinetic energy
keV, then the time varying electric field can cause transitio
in the target.

I will take a very simplified case as an illustration. In th
case, a single pulse of electrons with a kinetic energy o
keV will interact with a Rb atom in the 53s state. The pulse
has a spherical charge distribution given byr
5N(DAp)23exp$2@(x2b)21y21(z2vt)2#/D2%, where N is
the number of electrons,b is the impact parameter for th
charge distribution, andv is the velocity. The integrated cur
rent density at the target~at x5y5z50) is z
5N(DAp)22 exp(2b2/D2). The electric field at the target i
F(t)5(b,0,vt)Q(t)/r 3(t), wherer 2(t)5b21v2t2 is the dis-
tance from the target to the center of the charge cloud a

Q~ t !54~D2Ap!21E
0

r (t)

r̃ 2e2 r̃ 2/D2
dr̃ ~31!

is the charge contained within a sphere of radiusr centered
on the charge cloud.

In Fig. 4, a specific case is chosen to show the transi
from Rb 53s state to 53p state with experimentally reason
able parameters. The radius of the charge cloud is chose
be D5100 mm with an energy of 1 keV. The number o
electrons was chosen to be 14 so the incoherent~solid line!
and coherent ~dashed line! transition probabilities are
roughly equal for zero impact parameter. The coherent tr
sition probability decreases proportional to exp(22buE1
2E2u/v) for large impact parameter,b, whereas the incoher
ent transition probability decreases as a Gaussian. Since
coherent transition probability is proportional to the squa
of the number of particles, it should be possible to measu
transtion when the beams do not overlap simply by incre
ing the number of electrons in the beam. For example, if
number of electrons is increased to 1400 the coherent t
sition probability at 400mm is 5.631025 whereas the inco-
herent transition probability is 2.8310211.
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F. ROBICHEAUX PHYSICAL REVIEW A 62 062706
The only difficulty in performing an experiment to sho
this effect arises from mutual repulsion of the electrons in
incident beam. Transverse spreading can be suppresse
using a moderately strong magnetic field in the beam dir
tion. The longitudinal spreading cannot be suppressed.
only cure is to shorten the time between the creation of
pulse and the time of interaction with the target. As an or
of magnitude estimate, the outward force on an electron
the edge of the cloud isN/D2; as a criterion, we can say tha
the cloud should expand by less than 10% which leads

FIG. 4. The transition probability from the Rb 53s state to the
53p state for a Gaussian spatial distribution of electrons in
beam; the beam density is proportional to exp$2@(x2b)21y21(z
2vt)2#/D2%. The solid line is for the incoherent transition probab
ity: the cross section times the overlap of the beam with the tar
The dashed line is the coherent transition from the collective fi
of the beam. For this case, the width of the beam isD5100mm, the
kinetic energy is 1 keV, and there are 14 electrons in the elec
pulse. The solid line is proportional to the number of electro
while the dashed line is proportional to the square of the numbe
electrons in the pulse.
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restriction on the time to beDt;AD3/10N. For 1000 par-
ticles in a 100mm pulse this translates to a time of 0.6 n
This is a travelling distance of 1.2 cm for a 1 keV electron
beam which seems to be experimentally reasonable.

V. CONCLUSIONS

I have described a theoretical formulation of a longitu
nally coherent beam interacting with a quantum targe
have found that it is possible to violate all of the well-know
qualitative properties of scattering theory if the beam h
longitudinal coherence. The properties~1!–~6! discussed in
the Introduction can be completely wrong in many situatio
I have also calculated transition probabilities in several s
ations to show that it is possible to observe these effect
seems likely that there are many other interesting phenom
that become possible when using a longitudinally coher
beam; these phenomena include obtaining a level of exp
mental control over scattering, measuring how scattering
pends on internal properties such as the spatial configura
of objects in the target, measuring differential cross secti
without measuring the scattered particle, . . . . Since th
are several prospective beam sources with longitudinal
herence, it is worthwhile to further investigate this type
system.
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