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Scattering with longitudinally coherent matter beams
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| present a derivation of the many qualitative changes to basic scattering theory that result(paetialdy)
coherent matter beam inelastically interacts with a quantum target. The weak beam limit, whem®enly
object in the beam interacts with the quantum target, is developed. Some of the basic changes to scattering
theory are as followg1) The transition probability can increase as the square of the number of particles in the
beam.(2) The transition probability is not proportional to the convolution of the total inelastic cross section
with the momentum distribution of the beafB) The transition probability to different final states of the target
does not depend on the population in the initial states but depends amihigudesfor the initial states(4)
Thetotal transition probability depends on the differential cross section integrated over all final angdles
the differential cross section only in the forward scattering direct{i&n.The transition probability can be
nonzero even when the beam misses the tatgetn the perturbative limit, the transition probability can be
related to classical, large scale properties of the bearch as the average dengity

PACS numbd(s): 34.60+2z, 03.65.Bz, 03.75.Fi, 39.10j

I. INTRODUCTION dinally coherent beam interacts with a quantum target all of
the generic properties of scattering theory can be violated,
Scattering theory is well understood when the beam oBometimes very strongly. Some aspects of scattering with
incident particles is incoherept]. The basic trends that con- longitudinally coherent beams has been presented in two pre-
trol the scattering process have been known since the intradous publicationg?2,3]. In this paper, | will derive the pre-
duction of quantum theory. Often, information from a scat-vious results in more detail. | will also present new results
tering event is all that is available to aid our understanding ofor several situations involving coherent beams and targets. |
a quantum system. Therefore, it is important to understandill also present calculations for several different situations
what properties of the beam of incident particles control tranto illustrate the possibilities for scattering with coherent
sition probabilities in a quantum target. When the beam igegms.
incoherent, there are a number of well known properties of Before addressing the issues of scattering theory with lon-
the beam that control the transition probabiligsg., energy,  gitudinally coherent beams, | enumerate some of the well
current density, overlap with the target, gtdJntil recently  nown and simple parameters that control transition prob-
[2,3], the coherence properties of the matter beam has nlyjjities when incoherent beams interact with a quantum tar-
been thought to affect the transition probabilities. The pur- et. All of the observations are for the weak beam and weak

FZO z]e v(\)/];]it:rlls S%%F\):é dlstr:(;tetxringo:]heeresr:gglesrobzgtlijgsmofRfr:cearget limit. A weak beam is one where all of the transition
' prop robabilities are small so that double scattering events on a

beam can dominate all other parameters that control the trar‘?—in le quantum taraet can be ianored: thus. the possibility of
sition probability. For the purposes of this paper, a beam i geq 9 ) ' ’ P y

considered to be incoherent if the off-diagonal density matri ne incident partple causing a'transmor? from smte. §tate
elements in momentum space are zero and the beam h Sthen a second incident particle causing a transition from

some coherence if off-diagonal density matrix elements ar§tateb to statec will be assumed to be negligibly small. A
Nonzero. weak target is one where the properties of the beam do not

This paper is meant to address the lack of general theo@ubstantially change as the beam traverses the target; thus,
for scattering by longitudinally coherent matter beams. Reihe depletion of the beam by scattering or energy loss by the
cently, there has been the development of two types of lonbeam while traversing the target will be assumed to be neg-
gitudinally coherent matter beams. In Rd#-7] the practi-  ligibly small. Below is a list of well known properties of
cal development of atom lasers was discussed; these mattggattering by an incoherent beam.
beams have interesting coherence properties since the output

is from a Bose-Einsten condensate. In R¢&9], a pulsed

electron gun was predicted and demonstrated; a pulsed elec-

tron gun can deliver a few keV electron beam in a pulsed /’“?
mode with a period between pulses in the range 10-100 ps. (

It is highly likely that one or both of these sources will be \/l
used in a scattering arrangement. To give an idea of the type -

of system addressed in this paper, Fig. 1 shows a schematic

drawing of the interaction of three electron pulses interacting

with an atom. FIG. 1. A schematic drawing of a Rydberg atom interacting with
The purpose of this paper is to show that when a longituan electron beam bunched in the longitudinal direction.
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(1) When all other parameters are kept fixed, the transi- A. One initial state

tion probability increases linearly with the number of par-  The simplest scattering case is when one incident particle

ticles in the beam. If the number of particles in the beam isnteracts with one guantum target. We can use either a time

doubled, then the transition probability doubles. dependent or time independent treatment of the scattering to
(2) Transition probabilities are proportional to the total obtain the relevant scattering parameters. It is perhaps clearer

inelastic scattering cross section convolved with the momento start from the time independent picture and derive a time

tum distribution of the beam. The transition probability dependent scattering wave function from this.

changes with the expectation value of the momentum and the The target wave functions will be written ds, with en-

width of the momentum distribution. ergiesk, . The wave function when the projectile is at large
(3) The population in a final state depends on the initialdistances from the target can be written as

distribution of population in the states of the quantum target. o

If the target is initially in two states with different energies, _ e 2 -

the transition probability does not depend on whether the ~*2 (5372 € ®a+% (Dbeb*a(kbaer) ’

target is in a coherent superposition of staggh as a wave )

packej or whether the states are incoherently populated.

Equivalently, the final population only depends on the diagwhere k is the incident particle’s momentum anki,,

onal elements of the density matrix for the target. =2M(E,—E,)+k? is the magnitude of the momentum
(4) The total transition probability is proportional to the after the transitiorb—a. All of the scattering information is

integral of the differential cross section over all scatteringcontained in the scattering amplitudgs ,. The transition

angles. The differential cross section can only be obtained byith a<— a gives elastic scattering. The differential cross sec-

measuring the momentum vector of the scattered particle ation can be directly obtained from this scattering wave func-

ter the transition. tion as
(5) The transition probability is proportional to the time
integral of the current density of the beam at the quantum dop_a - Kpa AT
target. Thus, an experimental determination of the cross sec- qq (F0= 7 foca(kear —k2)[%, )

tion involves the estimation of the overlap of the beam with
the quantum target. If the beam misses the target, then thghere | have taken the incident momentum to be in zhe

transition probability is zero. direction, i.e.,k=kz. It is very important to note how the

¢ (k?) The transition prqtr)]abili.ty dgr_izeslfrom_ tlhg inLeraE)ction scattering amplitudes change if the position of the target is
of the quantum target with an individual particle in the beam. .04 The relationship between the scattering amplitude

The large-scale, average structure of the beam plays no rolg, . the scatterer is centered at the poinand the ampli-

in the scattermg except_the prop_erty of poiBy. tude when the scatterer is centered at O is
In the following sections, | will show that all of these

properties can be strongly violated when using longitudinally
coherent beams. There are two restriction that will be im-
posed for this paper, in addition to the weak beam and weak . ) .

target assumptions discussed above. The first is that the taliS Phase factor plays no role in observablge cross

get is assumed to be at a low enough temperature so that tﬁgctlor) f(_)r one particle scattering from a target that is in an
Doppler width of lines is a small fraction of the line spacing. €N€'dy eigenstate. .

The second is that the incident particles cannot be excited We can use the time independent wave functlon‘t‘o answer
during the scattering. The method described below can bguestions about how coherence properties of a “one par-
simply extended to remove these restrictions, but these eficle” beam affect transition probabilities. The coherence
tensions are beyond the scope of this paper. Finally, the mag¥operties of the b_eam can be expressed through the density
of the projectile will be assumed to be much less than thdnatrix for the particles of the beam. To develop a treatment

target mass to avoid the complications of the formulas due t@f the scattering including_total or partial coherence, | will
large target recoil: again, the inclusion of large target recoiPtart from a wave packet picture and use a completely coher-

is straightforward but does not appear to add anything ofnt wave functio'n obtained by superposing the time indepen-
interest. Atomic units are used throughout this paper unlesdent wave function of Eq(l):
explicitly stated otherwise.

foalk’ k)| =Fi2 (k' kel K)o (3)

V(1) = f Wy a8 Eat KA () 43k, (4

Il ULTRAWEAK BEAMS where the amplitudes must satigfyA(k)|2d*k=1 to obtain

First, | will treat the case of ultra-weak beams. In this unit normalization. In general, the amplitudeis complex.
case, there is effectively only one particle in the beam. Théor example, if theA,(k) makes a wave packet, then the
limit to the beam strength is discussed in Réf.and in Sec. amplitude A(k)=Ay(k)[1+exp(—ik-R)]/y2 gives a
[11. Both of the possible situations, a target in one initial statedouble wave packet state with the second packet shifted in
and a target in a coherent superposition of states, will bspace by an amoum. The strategy for obtaining transition
treated. probabilities will be to first develop the transition probability
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using the fully coherent wave function; then at a later stagenterpretation: the scattering probability is the average value
average the final results over the different realizations of thef the inelastic cross sectiofury,. ,), times the time inte-
beam. grated current densitywhich is 1 particle over an area
The wave packet that results from Eg) can be written  L,L,). Note that the transition probability only depends on
in the form of an unscattered part and a scattered part. Th||s;\(k)|2 which is the probability density for the incident par-
time dependent wave function may be symbolized as ticle to have wave numbek. The density matrix for the
incident particle in wave number space is defined to be
_ —iEgt, inc —iEpt, sca p(k,k")y=(A(k)A* (k")) where (---) means to average
Valt) =8 "y (r,t)+% Poe a1, © over the cgifferent reali>zati0ns of<this>one particle beam scat-
tering off one quantum target; using this definition, the tran-
where the incident wave packet may be obtained fronsition probability only depends on diagonal elements of the
J(r 0= (2m) 2 Ak)exdi(k-r—k?t/2M)]d3k. When  density matrix. Thus, the transition probability does not de-

the target is at,, the scattered wave has the form pend on any momentum coherence properties of the beam;
coherence properties of the beam are manifest in off-
<ca e'koal ) - diagonal elements of the density matrix. Another way of see-
Pplalr,t)= 2—3,4 7 focalkpal —K)A(K) ing this idea is that the coherence of a wave packet is em-
(2m) bodied in a well specified phase relationship of the different
k2, R wave numbers of the incident particle; if the final result
Xexp{ —i WH'(k_ Kpal)-To|d®k (6)  only depends ohA(Kk)|? then this phase relationship is irrel-
evant.

This derivation immediately shows the poif®, (4), and
(6) discussed in the Introduction. If there dxeparticles in
the beam, then it is usually assumed that the transitions from
each of the particles add incoherently so that the total tran-
sition probability isN times the result of 1 particle; this is the
origin of the point(1) of the Introduction. If the target is
initially in two nondegenerate statasanda’ then the prob-
ability to excite the atom to stateis the probability to be in
1 statea timesP,_, plus the probability to be in sta&g times
Pb<_a=—3f d3rd3kd3k’ A* (k")A(K) Po_a; it does not matter that the target could be in a co-
(2) herent superposition of the sta@anda’ because the tran-
sition can happen at any time and the relative phase factor

in the limit t—oo,

The transition probability can be obtained from the time
dependent wave function. The probability for the transition is
simply Py o= (2, | 4,) ast—. The expression for
the scattered wave function from E(6) can be used to
obtain a closed form expression for the transition probability.

The result is a triple integral:

X £ 0% (ki r—k')FO% (kpar —k) = between the two states, diffE,—E,/)t], will average to zero.
This gives point(3) of the Introduction.
5 @i [(Kna—kp )1 + (K=K’ k) 2F—Kpa) - T+ (K= k) 2)t/2] Point (5) of the Introduction is intuitively obvious but

somewhat subtle to show analytically. To motivate this re-
(7 sult, | assume that the transverse modulation of the beam is
) ) ) ] small on a distance scale ofkl/Instead of performing the
Performing the integration over gives a factor of ayerage over, fix it at the transverse positiorx§,y,,0) of
2 6(Kpa—kp,) and averaging the,y components offg  the target. The integral overcan be performed in Eq7) to
over a range.,, L, gives a factor of (2T)25(kx_— k) o(ky  give a factor of 2r8(ky,— kj.) Which can again be approxi-
—k{)/L,Ly. The product of these two terms is 42°5(k  mated by 2ré(k,—k.)ksa/K Since the transverse momenta
—k')/(LyLy[dkpa/dk,]) where | have used the usual rela- agre much smaller than the longitudinal momenta. The
tion &[f(x)]=8(x)/[f"(x)| if f(x) has its only zero ak integration overk,,ky, andk;k; can be performed if we
=0. The relation for the derivativetk,,/dk,=k,/kp,canbe  yse a wave function defined partly in position space and
accurately approximated blg/k,, since by definition the partly in momentum space(x,y,K,) =S A(K)exdi(kx
beam is traveling in the direction; any transverse velocities +ky)]dkdk/2ar. This function can be interpreted as the am-
are much smaller than the average velocity inZlutrection  pjityde to find the particle at the transverse position with

and the corrections th/ky, are proportional ok +ky)/k*>. 3 momentumk,. In terms of this function, the transition
The scattering probability can be simplified to probability is

1 ~ kba
Poa=r—— | dZrd*k—=[f{> (kpar —k)A(K)|?
b-a LXLJ ATk o akoat ) S f dkon_ (k)Xo Yo k)2 (©)

8

- LiLy which agrees with point5) of the Introduction.
This section has shown the origin for all of the usual
whereao,_, is the inelastic cross section which only dependsgeneral features of scattering theory. In the following sec-

on the magnitude ok. This formula has a simple physical tions, | will show how to extend treatment of scattering to
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encompass beams with momentum coherence. The resufi®m k,, . Substituting the delta functions and performing
will violate all of the general features of conventional scat-the integration oved®k’ gives the transition probability
tering theory.

1 * 22 431, A% Z
B. Several initial states, coherent beam F)b_LxLy aEa, AaAa'f drd*kA™ (k+Akaar 2)A(K)
The case where the target is prepared in several initial
states and the beam exhibits some longitudinal coherence Xﬁfé?l’;r(kbaf\‘_k"'Akaa’i)fg?l,;(kbai;‘_k)a
provides an interesting change from poi} in the Intro- Kaa

duction. As one physical example, have a radial Rydberg
wave packet on the target atom interact with a short pulse
electron beam; the transition probability will depend on . . .
whether the Rydberg wave pacIE)et is at |ergﬂ!’ at sFr)naIIr where | have again useg the relaticfe- I_(§+k>2/ to approxi-
when the electron pulse passes the atom. To derive thi®ate V2M(Ea—Ea/)+k;=kso . Equation (12) is essen-
Change from poin'(3)’ | will again use a wave packet deri- t|a"y exact and is the main result of this section.

vation and at a later point | will average over the different The result for a “one particle” beam scattering from a
realizations for the target to account for any incoherencedarget in a superposition of states is fairly complicated so that
We will use the complex coefficients of the initial states tolt is worthwhile exploring different aspects to gain familiar-
represent a general state of the ta@¢0)==,P,A,. This ity with the physics that it embodies. First, examine the case

(12

gives a full wave function of the form where the target is only in a statistical superposition so that
the density matrix for the target,,, = (A,A},), is diagonal.
_ If paar= Saapaa (Wherep,, is the probability to be in state
Yo g Valt)Aa, (10 a), then the probability to excite state is simply the

weighted average of the individual excitation probabilities

where the wave function from E@5) has been used. Since from Eq.(8): Pp=2,Pp._apaa. This result says that no co-
the incident wave only depends on tA¢k) and does not herence effects arise in the ultra weak beam limit unless the

depend on the initial state, the scattered wave for the case §rget itself is in a coherent superposition of states. This
several initial states is SiMplySe=S =2 A . agrees with the analysis of Rdfl0]; here they found that
e e DA Igngitudinal coherence properties of a beam have no effect

Just as in the case where there is only one target state, | h h ftime d q
can use the norm of the scattered wave to give the probabilNess the target has some sort of time dependence. A com-
pletely incoherent target does not change with time. How-

; it . — /,1,5€8 1 SC ; ; i
ity for exciting stateh: Py =(y,"1¢/},"). Again, this probabi ever, if the density matrix is not diagonal, then the target is

ity may be expressed as a triple integral, but with the dlffer—.n a wave packet state and the properties of the target do

ence that there will be sums over the initial states as well. Aéévolve with time; thus the conditions are satisfied and there
t—oo, the closed form expression for the probability is ’

is possible interesting effects from longitudinal coherence
1 properties of the beam.
_ A A*’f d3rd3kd3k’ A* (k" A(K _ For the rest of this section, the density matrix of the target
b= (2m)3 g a’a (kDACK) is assumed to be nondiagonal. Next, examine the case where
1 the width of the amplitude in momentuA(k) is much
~ ~ 1 *
><fé@’;r(kéa/fHk')fE,?l’Z(kbaer)—2 smaIIerA than A_kaa,. In this c_ase the productA (If
r +AK,-2)A(K) is always effectively zero unlesa=a

(Ak,,=0). Since all of the cross terms go to zero, again the
result is a weighted average of the individual excitation prob-
(11) abiliti_es.from Eq.(8): Pp=22Pp._apaa- The physical reason
for this is that the resolution of the beam is high enough to
energy analyze the scattered wave and unambiguously iden-
incident wave is independent of the initial states. As in thetify each piecq that corresponds to the different initial sta_ltes.
previous section several of the integrations can be performe Next, examine the case where th_e coherence properties of
exactly. The integral over gives a factor of 2r8(k,, the beam are such that the off-diagonal elements of the

) ! & peam’s density matrix do not extend to momentum differ-
—ky.,) and averaging over they components of, over a ences of Ak, : ie. p(kk+Ak..3)=0 unlessa—a’
range L,L, gives a factor of (&)28(ke—k,)d8(k . A aa’ . -
VL y Th duct of th wo t . 35 |Z Since all of the cross terms go to zero, again the result is a

y)/LxLy. The product of these two terms is 43" 5( weighted average of the individual excitation probabilities

+2AKaa —K')/(LyLyk;/Kpa) where manipulations similar  from Eq.(8): P, =S .Pp. apaa. The physical reason for this

to those from the previous section have been performedesult is different from that of the previous paragraph be-

Note that thez component of the momenta have been shifteccause it is not necessary for the beam to have high-energy
by an amountAk,, = V2M(E,—E,/)+kZ—k, that arises resolution. The reason for a reduction to a statistical result is
from energy conservation; after the collision leaving the tarthat the incoherence in the beam implies that the incident
get in stateb, the size of the momentuiky,, must equal that particle cause transitions at random times that are long com-

. _ ! k! ! "_ . A 2 _ ! 2
¢ @l [(kpa—ky )T+ (k=K' k] T —kpal) T+ (kg —ki o 2)t/2]

whereA(k) does not have a subscrigtto indicate that the
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pared to the beat peridd |E,— E,/|. Thus there is a random This fact can be used to obtain an expression for the transi-
phase that causes the cross terms to average to zero. Thisn probability in terms of the the Fourier transform of the

agrees with the point3) of the Introduction. density of the beam in thedirection:

Now, let us turn to the case where the density matrix for
the target and for the beam will allow nonstatistical transition 1 — AKe iz
probabilities. There is one last requirement for the interesting b_|_x|_y g paa’gaa’(kz)f pA(z, 7)€ a"dz, (16)

coherence effects to be manifest in the total transition prob-
a%lllty-ONamely, the product of scattering amplitudebe  wherep,(z,2) is the density of the beam in tizdirection at
£(0)% £(0) produc) must be comparable to the differential {=0. The transition arising from thea’ term is proportional
cross section of the individual transitions. This is not guar+g the Fourier transform of the density with a wave number
anteed. For example, if the d@nd 4 Rydberg states of Ak, . The case whera=a’ gives the integral of the den-
Rubidium are used as the initial states, then the dlfferentlaéity which is 1. The cross terms wid¥ a’ are On|y nonzero
cross section for transition to the diéis quite different; the  to the extent that the beam has a modulation in space with a
differential cross section from the @6state is strongly wavelength 2r/Ak,,: .
peaked in the forward direction while from the sAgtate The result in Eq(16) directly leads to an interpretation of
there is a minimum in the forward direction. Thus, the_ effectthe origin of the coherent transition when the target is pre-
from coherent initial states will probably be most easily ob-pared in a superposition of states. The target has many dif-
served when initial states of very similar character are usederent frequenciess,— E,:, of motion that result from the
Perhaps the most interesting situation is where there is guperposition of initial states. The spatial modulation of the
longitudinal coherence in the beam due to a simple timeeam with a wavelength translates through the velocity
dependent modulatioffor example, a series of pulsesor  of the beam into a time modulation at the target given by
the rest of the discussion, | will assume that the transversg/y = M /k,. Thus the beam needs a spatial modulation
structure is uninteresting and that the momentum distribution= 27k, /(M|E;—E,/|). Using the approximationAk,,

in the transverse direction is very strongly peaked around O~ (E,— E,,)/k, whenk,>Ak,, , the same condition as
In this case, the transition probability can be compactly writ-iy Eq. (16) is obtained.

ten as As an example, consider the case where the beam is spe-
1 cifically modulated so that the Fourier transform of the den-
|:>b:W > Paa’f Ak, (Ky) po(Ky  Kyt+ AKgar), sity is .s_trongly peaked aI\=Q,i27ru/w..T.he transition
Xty aa’ probability will equal that for incoherent initial states df

(13 does not match any of the frequenciBs;- E,: of the target.
Thus, the expectation is that the transition probability can be
made to vary sharply with the wave length modulation of the

K beam. This should be testable by experiment.

= f2) o (Kpal < K,2) Finally, there is another interpretation of the result. In

Kaar order to have modulation of the beam density, the beam must

(O) . - have energy components that are modulated such that there

Xty e (Kpal —[kz+ Akaa ]2) (14 are several peaks in energy with a spacig. If the AE

spacing of the beam matches an energy difference in the

X ) X target, then part of the wave with enerBycan scatter from

integral of the density matrix over thie,k, COMpOnents.  giate4 and finish with energy + E,— E,, while the part of

Equation(13) shows tha_t the probability for transition into o \vave with energf + AE can scatter from stata’ and

stateb depends on off-diagonal elements of the density Masinish with energyE+ AE+E, —E,. If AE=E,—E, the

trix .O.f the beam if the target is prepared in a coherent SUPETHyo process are indistinguishable and can interfere. Thus the
position of states.

. . ._cross terms in Eq13) can be thought of as arising from the
Although Eq.(13) is exact and can be readily evaluated in e ference of indistinquishible paths.
specific circumstances, the visualizable physical processes |, gac. IV, | will investigate several interesting possibili-

that contribute to the transition probability are not obwous.,[ies for observing the coherence terms. | will also mention

T.O m:_;tke _clear the phy_S|caI content, I will address a COMMOR 4 me of the basic physical ideas that can be observed experi-
situation in an approximate manner. For many caseséthe mentally

functions hardly have any dependencelgrover the width
of the momentum distribution. When tlefunctions hardly
change withk,, they can be pulled outside of the integral in
Eq. (13) by settingé, . (k,) = &,/ (k) with k, being the av- Now | will address the case of weak beams where it is
erage momentum. The density matrix in momentum spaceaecessary to account for many particles in the beam although
can be related to the density matrix in space through a doubleam still only considering the case of one particle causing

where

aa (k)= | o

reduces to the total cross section ®ra’ and p, is the

I1l. WEAK BEAMS

Fourier transform the transition. The division between ultraweak and weak
1 beams will be clearly specified below.
N & 1 ai(kiz' —k,2) It is not obvious that the analysis of the scattering prob-
pelkzkz) wa dzdzp,(z,2")e - (19 ability qualitatively changes if there amd particles in the
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beam of transverse ardal,. The transition probability —discussed below, the second term of Ef) is proportional
from statea to b is usually assumed to be(oy,._,)/LiL,  to off-diagonal elements of the density matrix.

={{op._a); i.€., the transition probability equals the inelastic ~ Properties of the scattered packet prevent a strong overlap
cross section averaged over the momentum distribution imvith the incident packet because the incident packet has a
the incident beam times the time integral of the particle curimomentum distribution strongly peaked in tlzedirection

rent density. This result arises from the assumption that eaclvhereas the scattered wave has a larger angular distribution
incident particle contributes incoherently to the transition.of ~momentum. This means that (| ¥p-oh

But is this assumption correct? It is relatively easy to extenc}>|<¢'“°1|¢/s°a’)|2. It is illustrative to use this fact to ap-
the derivation toN particles in the beam and test this as-proximate Eq.(18) in the form

sumption.
2
Z (W22l (19

é“i;E (Rl ypeh) +

A. One initial state
To check the assumption that scattering probability is the
incoherent sum of the probabilities from each particle in thecggggscar?] Soertc\z;?]taf?)rthsigt?g:snfor dtlr?cussTg (;he pgySItcgl pro-
beam, we write out a wave function for &hparticle beam imp Ing with & pulSed Incident beam.

[2] where the only assumption is that there is only one scat- How can the coherent transition probability, which de-
tering event; this wave function is pends on the small overlap of the initial and scattered wave,

be comparable or larger than the incoherent transition prob-

N ability? The answer is that although an individual contribu-
\Ifg’\‘)(t):cbae*'EatH P (ry )+ > dpeEnt tion to the incoherent term is larger than one for the coherent
=1 b term, there areN times more contributions to the coherent

term. Therefore, the coherent contribution to the probability
X > llfﬁ‘f’a(r,, O wm«:](rj )V, (170 can be dominant for large numbers of projectid:sWe in-
i’ =i’ terpret the second term in EQL9) as arising from the coher-
ent field from all of the projectiles acting on the target. This
The j superscript on the incident and scattered wave funcinterpretation arises from the form of this term in which the
tions is meant to indicate that the wave packet for each inciamplitudes from each individual particle are superposed and
dent particle is not necessarily related to any of the othethe probability is the absolute value squared. Another reason
packets. In Eq(17), we made the assumption that the initial for this interpretation is that in the first order Born approxi-
state of the incident beam is such that the wave function fofmation the second term in EGL9) exactlyequals the transi-
the incident particles is a product of one particle functionstion from statea to b calculated using first order time depen-
This situation can occur when the incident wave is the outpuélent perturbation theory and the time dependent coupling
from an atom laser since the atoms are bosons. This situaticpptential generated by the incident wave pacKet§®/|2.
also holds when all lengths of a packet are smaller than th#Ve can also think of the coherent term as arising because
average distance between adjacent projectiles because the prart of the scattered wave of each particle overlaps the inci-
cident particles are distinguishable. dent wave; in this case, it is impossible to know which par-
The transition probability can be obtained from the normticle caused the transition and therefore the amplitudes must
of the many particle scattered wave. Coherent and incoherebe added coherently.
probabilities for exciting the target to stateare given by Now, | want to obtain a complete expression for the tran-
sition probability to the final staté in terms of scattering
amplitudes and physical parameters of the beam. The first

PN = 2 (P3| ysealy + > (g | yseal term in Eq.(19) is simply the incoherent sum of the indi-
i#j’ vidual transitions from each particle of the beam. This gives
stcaJ |¢m°’ , (19) the usual expression for the transition probability. The sec-

ond term has to be approached somewhat more cautiously. In

. o o the limit thatt—o, each of the individual overlaps can be
where unit normalization of the incident packets has beegxpressed as a triple integral in the form

used. The first term of Eq18) is the incoherent sum of

probabilities from each individual projectile and the second o ‘ 1

term arises from the coherent effect of the projectiles on the ~ (¥"/|#525) = Wf d3rd®kd®k’ Af (k') Aj(k)
target. It is important to remember that the coherent term is

zero unless the incident wave packet has an energy width

that is larger than the energy change in the target; if the bha(kbar‘_k)_
energy width of the packet is too small there is no overlap _ .
between the incident and scattered waves because they do X gl (kpar ~K" -1+ [k=kpar] 1) (20)

not contain the same energy components. Because the coher-

ent term is an overlap of the initial and scattered wave, it willAs in the previous sections, many of the integrations can be
be easier to observe the effect for transitions where the inperformed analytically. The plane wave expk’-r) can be
elastic cross section is peaked in the forward direction. A®xpanded into partial waves. This allows the integration over

062706-6



SCATTERING WITH LONGITUDINALLY COHERENT . . . PHYSICAL REVIEW A 62 062706

d®r to be performed which gives a factor of2)?8(k’ N
. ~ ~, i 2 |nc1|¢/sca; (k Z<—kZ)
—kpa)/K" with the replacement of by k’. Next, averaging “ LL k F§2 a(Koa
the x,y posmon of the target over a large arglL, gives a
factor of (2m)28(ky— Ky) 8(ky— y)/(L Ly). Th|s reduces Ak
the overlap to a single integral of the form XJ dzp,(z,z)e'* " (23
<¢'n°1|l//sca’ f dgkA* k+Akabz)A (K) m;rrlnlézn?jgg the average momentum akg being the final
The transition probabilities from both the incoherent and
(0) a(k+Ak bz<—k)/(k +AKgp). the coherent scattering terms can be combined to give
(21 2
. doy.
POV a={op. ot 27 f pA(2,2)e"tkardlz (L
The sum ovey of all of the overlaps replaces the products of qdq

the A amplitudes withN times the one particle density ma- (24)
trix. Thus, the amplitude that arises in H39) is
where {=N/L,L, is the time integral of the beam-current

N density andgy=|AKk,| is the minimum size of the momen-

> (| yitaly = —— | d®kp(k,k+ Akgp2) tum transfer. The minimum size of the momentum transfer

-t occurs when the scattered particle travels in the same direc-
E,(Qa(kvLAk 2 K) (K + Akyp). tion as the incident particled=0; qo=M|E,— E,|/k when

the incident energy is large compared to the energy given to
(22)  the target. The differential cross sectioma/qdq
=[d¢(do/dQ)/kk,, with the k,k,, the initial and final

This expression clearly shows that the coherent resulivave numbers. The transitions where the inelastic, differen-
from the multiple electron scattering depends on the off+ial cross section is strongly peaked in the forward direction
diagonal density matrix elements of the momentum compowill show the effects of beam modulation most strongly. For
nents of the beam. If the beam is completely incoherent, thethe interaction of a fast charged particle with a neutral atom,
the density matrix in Eq(22) is zero and the only contribu- it is the dipole allowed transitions that are peaked in the
tion to the transition probability is from the incoherent scat-forward direction; the other multipole transitiofreonopole,
tering from individual particles of the beam. There are aquadrupole, etg.have a minimum in the forward scattering
number of interesting features about the combination of Eqdirection.
(19) and(22) that should be noted. First, the coherent ampli- The result in Eq(24) can be interpreted to give a physical
tude is proportional t?N which means the probability is pro- picture of the scattering. The first term is simply the expected
portional to N2, Compare to poin{1) of the Introduction. result from incoherent scattering: the transition probability is
Second, the amplitude in EqR2) depends on off diagonal the inelastic cross section times the time integrated current
density matrix elements which means the transition probabildensity. The second term is similar to the result from Sec.
ity is not simply a convolution over the momentum distribu- Il B since the coherence comes from having a density modu-
tion of the beam. Compare to poi(®) of the Introduction. lation in the beam with a wavelength given byr2Ak,;;
Third, the amplitude in Eq(22) is proportional to the scat- however, the origin of this term is quite different. In Sec.
tering amplitude only in the forward direction. Compare toll B the coherent scattering fit within the recent ideas of scat-
point (4) of the Introduction. Some of the other points of the tering theory in the sense that the target had a time dependent
Introduction will be discussed in the following two sections. modulation that could interact with time dependent modula-

While the expression in Eq22) is perfectly accurate and tions of the beam. In this section, the target is assumed to be
can be used to calculate the transition probabilities, it is noin an energy eigenstate and thus it is expected that a modu-
very easy to get a physical feeling for the mechanisms thadated beam will not have an effect on the transition. The
control this amplitude. To this end, an approximate expreseoherent scattering term in E(R4) arises because the scat-
sion will be derived for a common type of scattering. If the tered wave from each of theelectrons can overlap the un-
change in momentumik,,, is much less than the incident scattered wave; thus it is not possible to identify which elec-
momentum and the initial spread in momentum is muchtron caused the transition. This implies the scattering
smaller than the momentum, then very often the scatteringmplitudesfrom each of the electrons should be added.
amplitude does not vary rapidly with the initial momentum.  The results in this section violate expectations from stan-
If this is true then the scattering amplitude and the inversalard scattering theory in several places. First, it violates
momentum factor in Eq(22) can be pulled out of the inte- property(1) from the Introduction: the transition probability
gral and an average value of the momentum substitutedhas a part proportional to the number of the incident particles
Now, as in Sec. Il B, the only term left inside the momentumin the beamand a term proportional square of the number of
integral is the density matrix which can be related to theincident particles. There is a violation of prope(B) since
Fourier transform of the one-particle, beam density inzhe the transition probability depends on longitudinal coherence
direction. This gives a final expression properties of the beam: the coherent transition amplitude de-
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pends on off-diagonal density matrix elements. There is a o A to_ , )
violation of property(4) since thetotal transition probability 2 (gl = —if Vpa(t)e'Bo~ Bt (28)
depends on the inelastic cross section on the differential ) o
inelastic cross section in the forward scattering direction; this
gives the opportunity for measuring the forward scatteringw
differential cross section without measuring momentum
components of the scattered particle. Finally, these resul
also violate property6) since the transition probability de-

hereV,(t) = [ Vpa(r) p(r,t)d%r is the time dependent in-
raction between the statasandb that arise from the time
ependent density of all of the particles in the beam. This is

pends on the large-scalmacroscopigstructure of the beam exactly the term that should be expected from classical intu-
in the longitudinal direction: the transition depends on a Fou/tion: the density of particles generates a time dependent po-

rier transform of the longitudinal density of the beam. tential V(r,t)=/d'p(r’,t)/[r—r’| that couples statea
andb and it is this time dependent coupling that generates
transitions. When the density of particles has a modulation in
space, the transition probability can be greatly enhanced if
It is instructive to examine the perturbative lifi] of the  the classical field oscillates with the same frequency as the
coherent scattering in order to obtain an intuitive understandtransition frequency of the states. These results violate prop-
ing of the reason for the coherent scattering. This limit al-erty (6) of the Introduction since the transition probability
lows a direct connection between the quantum formulatiordepends on the large scale structure of the beam in the lon-
of coherent scattering and classical intuition of the interacgitudinal direction.
tion of a quantum target with an extended, macroscopic ob- From this analysis, we can identify dipole allowed transi-
ject. tions as those being most amenable to coherent excitation by
The derivation will be based on the time dependent equaeharged particles; furthermore, it is only transitions which
tion for the scattered wave to lowest order in the interactiorpreserve the magnetic quantum numbey,n the beam di-
between thegth incident particle and the target. To lowest rection that will be enhanced since this is the direction in
order in the interaction potential, the scattered wave can behich the “classical electric field” from the beam is oscil-

B. Perturbative limit

written as the solution of lating. This is the same trend we found from the expression
Eq. (24); for electron-atom scattering, the coherent transition
| — —Ho | 52h(r, 1) = Vpa(r) g (r, 1) €' (Fo~Fa, most strongly affects the excitation into dipole allowed
ot states.
(25)
whereH,=p?/2M is the kinetic energy operator and the po- C. Transverse and longitudinal coherence
sition dependent matrix elemem;,(r)=(®|V|P,). For The perturbative expression for the coherent transition

the example of a transition between one-electron states of afinplitude can be used to show that a beam that misses the
atom, Vio(r)=[d%’ ®f (r')D,(r')/|r—r’|. This equation target can still cause transitions. In essence, a coherent beam

has the solution has a time and position dependent density which generates a
time dependent potential at the targelv/(r,t)
P (p t)=—ift e Hot-ty, (1) =[d% p(r',t)/[r—r'|. This time dependent potential can
balty —w ba cause a transition between stageandb if the potential has

o _ ) Fourier component&,—E,. This result contains the usual
X el (r,t)el Bo~ Bl gt (26)  scattering result; in the limit of an incoherent beam, the short
time average of the beam density does not vary with time.

We can now perform the projection of the incident wave onThus, the potentialV, does not have Fourier components

the scattered wave to obtain E.— Ep, and there are no transitions unless the beam overlaps
the target.
o . [t L o These results violate property) of the Introduction: “no
(fapt) = —'f f d3rf e Mot =y (r 1) ]* transitions unless the beam and target overlap.” This effect
o is similar to the theoretical method for treating ion atom
vaa(r)lpg‘C'i(r,t’)ei(Eb*Ea)"dt’ scattering[11] in the sense that one does not treat the elec-

trons and nucleus of the ion as independent objects.

t ’
- f—mVE’]a)(t,)el(Eb_Ea)t at’, @7) IV. DISCUSSION
. It is clear that scattering with a longitudinally coherent
where Vgg(t)=bea(r)p(j)(r,t)d3r is the time dependent beam has several interesting consequences. In this section,
interaction between the statasndb that arise from the time  will present calculations for several situations where the lon-
dependent density from partiglelf we sum the contribution gitudinal coherence of a beam will have an observable effect.
from all of the particles in the beam, we obtain the coherenfThese will provide illustration for some of the ideas dis-
scattering amplitude cussed in the previous section.
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=¢£5,=3.26 Gb, £,,=4.01 Gh. There are a couple proper-
ties of this matrix that should be noted. First, all elements are
real at this level approximation for the case when both initial
states have the same angular momentum. For the transitions
chosen, 2&,|= &1+ &,, which means that beam coherence

-2 . , will drastically change the transition probability.
0 2000 4000 6000 In the first case, | suppose the incident electron is in a
Y — r (au) —— wave packet that is a single pulse and will be modeled by a

Gaussiarp,(z,2) =[Azy/7] texd —(z—20)4AZ], whereAz
is a spatial width of the beam arg is the position of the

n” 0.5 incident pulse at=0. The Fourier transform of the longitu-

] dinal density needed in E¢16) can be obtained analytically

0.0 . l ] as ex|piAk,,Z— AZAK, /4]. Before evaluating the expres-
6o 02 04 06 08 10 sion for the transition probability, note that the cross terms

t/7 which give the coherent scattering rapidly decreasa af

FIG. 2. (a) The dotted line is the Rb wave packet tatO: .>1/Ak.21; this Cor_1dit_i0n can be recast as a conditign on the
(53s+545)2 72 The solid line is the wave packet &t r/2: time width of the |n.C|d.ent electromtzA.z/k wherel<_|s the
(535—54s)2~ Y2 (b) The normalized scattering probabiliti, momentum of.the incident electron. Since the mmdgnt elec-
=P(t)/max(P) for a one pulse electron beam causing the transition{f0N'S energy is much greater than the energy spacing of the
to the 53 state(solid line) and to the 6@ state(dotted ling; t/7is  States making the wave packet, the difference in wave num-
the time of arrival of the electron pulse in units of the wave packeto€r Aky;=(E,—E;)/k. Thus the condition for observing ef-
period. Note the transition to the p3tate is 180° out of phase with fects from the coherent target is that the time width of the
the expectation that the transition is reduced when the electron is dbcident electron pulse times the beat frequefiey— E,| be
larger. smaller than 1. This makes sense on physical grounds since
there should not be any coherence effects if there are several
radial oscillations of the Rydberg wave packet while the in-
cident electron passes the atom.

In this case, the beam is so weak that the many particle | introduce one last parameter to get a final formula that
effects of the next section are not present. This case can lghows the relevant physics as clearly as possible. This is the
thought of as a quantum target that is in a wave packet statéme that the incident electron packet passes the atom:
interacting with a one particle beam that is also in a wave=z,/k. At the high incident energies and small energy dif-
packet. This situation raises interesting possibilities. For exferences of the target states, the facthk,, zy=(E,
ample, a wave packet constructed of Rydberg states on theE_,)t. When the time width of the beam is much shorter
atom gives a probability distribution for the Rydberg elec-than the period of the wave packet, the excitation cross sec-
tron that radially oscillates with a period that can be experition to the 5% and 62 states can be written as(t)
mentally controlled through excitation to specific states; if= g+ 0o .CO$(E,—Ey)t] where og,,=111.3 Th and
the time when a charged particle passes the atom can he _=—111.2 Tb for the 5B final state and 6.73 and 6.52
controlled, then the dependence of the transition on the radiabp, respectively, for the G2final state. In Fig. &), | plot
distapce of the Rydberg electron can be experimentally deg(t)/(og,nt|0oesd) for the two cases. It is clear that the
termined. combined coherence of the target and beam can produce in-

To take a specific example, | will consider the scatteringteresting effects if the incident electron pulse is short.
of a 1 keV electron from a Rb atom in a radial wave packet There is a simple lesson that can be learned from Fig. 2. It
consisting of the 58 (state 1 and 54 (state 2 states. This  should be experimentally possible to measure in which re-
gives a wave packet with a probability distribution that radi- gion of space the electron makes a transition. For many final
ally oscillates with a period of roughly 19.4 ps. For simplic- states, a transition from a high Rydberg state occurs much
ity, | take the two states to be equally populated and with anore strongly when the Rydberg electron is close to the
phase relationship so that &0 the Rydberg electron has nucleus than when the electron is at the outer turning point
the smallestr) [dotted line of Fig. 2a)] and att=9.7 psthe  (62p final state in Fig. 2 This property has been surmised
largest(r) [solid line of Fig. 2a)]. If the radial wave func-  from calculations on the radial dependence of the transition
tions are both chosen to be positiverat0, then the density matrix elements. However, the transition to thep5&ate
matrix is paar = 1/2. (which is between the 53and 54 state$ is enhanced when

| chose to examine the transition to 2 different final statesthe electron is far from the nucleus which disagrees with
the 53 and the 6p states. The scattering amplitudes can beexpectations. This simple case should be explored in order to
numerically evaluated using a first order Born approxima-show that it is possible to experimentally observe the chang-
tion. The amplitudes can be numerically integrated in Eqing properties of scattering amplitudes with position.

(14) to obtain the following values for the transitiofy. There are many possible schemes that could be used to
matrix to the 59 state ¢;;=56.3 Th, £1,=¢5,=—55.6  observe the effect in Fig. 2. | will briefly discuss two possi-
Tb, £,,=55.0 Th and to the 6@ state ¢,,=2.67 Gb, &,  bilities. The most important point is that the time between

A. Ultraweak beams, coherent target
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Z2

. (29

the peaks in Fig. 2 correspond to a travel distance-880  states. Thus it is possible to control the excitation probability
um for a 1 keV electron beam. If an electron pulse travelsto the specific final states by varying the time between elec-
through a gas of Rydberg atoms all in the same wave packéton pulses. To take a specific example, | will consider the
state, then the excitation cross section will oscillate in thescattering éa 1 keV electron beam with a Rb atom in the
beam direction with a wavelength 6f380 um. The excited 53s state. The transition cross section to eight different states
atoms can be detected in a position dependent manner Byill be investigated: 4p through 5. The electron beam at
ramping an electric field perpendicular to the beam directiort =0 Will consist of a cosine modulated exponential
so that the electrons stripped from the Rydberg atoms are
imaged onto a CCD camera. Resolution of roughly 100 p(2,2)= 1 ex;{ _c 1+cos( E)
can be obtained with this arrangement; this is over a factor of 2o Az\/; AZ® N
2 better than needed to detect the signal in Fig. 2. Another
possible experimental arrangement is to only excite Rydbergvhere Az is a spatial width of the beam and the spatial
atoms in a small region of space and detect all of the excitechodulation of the beam <Az.
atoms by ramping an electric field; the time of the collision The transition probability arises from two qualitatively
relative to the wave packet can be controlled by delaying thelifferent mechanisms. There is an incoherent term that arises
time of the creation of the wave packet. With optical light it from the scattering of an electron so that it does not overlap
should be possible to focus the light to a spot smaller thahe initial beam direction; this gives a probability equal to
~100 wm which is all that would be needed to see the effectthe inelastic cross section times the time integral of the elec-
of the pulsed electron beam. tron current density. This term is present in all scattering
The case considered in this section is only meant to illusexperiments. There is a coherent scattering term that arises
trate a general possibility. There are more interesting situaffom an electron in the beam causing a transition but the
tions that occur in molecular physics that might be worthscattered electron still overlaps with the incident wave after
investigating. For example, the transition between two electhe transition. Since it is impossible to tell which electron
tronic states depends on the positions of the nuclei. A vibraeauses the transition, the amplitudes for each electron in the
tional wave packet on the molecule can interact with abeam must be added. This term may be qualitatively related
pulsed electron beam; by varying the time of the interactionto a semiclassical approximation where the modulated elec-
the strength of the transition can be mapped as a function dfon density of the beam generates a modulated electric field
position of the nuclei since the nuclear positions move in at the atom; the time varying electric field causes transitions
wave packet. Two simple, physical cases can be used a® the atom. Since it is the amplitudes that are added, the
illustration. (1) A vibrational wave packet on K ground transition probability from the coherent scattering is propor-
state potential curve. Measure the dissociation cross sectidional to the square of the time integral of the current density.
as a function of the time of interaction with a pulsed electron The transition probability can be obtained from E24).
beam. This will give anexperimentaldetermination of the There are four factors that contributé: the time integrated
dependence of thézgalzu transition on the internuclear current densityg,. 5, the inelastic cross sectiodg/qdq,
separation(2) A vibrational wave packet on the NO ground the differential cross section in the forward scattering direc-
state potential curve. Measure the dissociation cross sectidion, and the Fourier transform of tie=0 beam density. A
into specific atomic states as a function of the time of inter-useful quantity is the effective cross section for a transition
action with a pulsed electron beam. This will giveexperi-  which is the transition probability divided by the time inte-
mental determination of electronic state specific cross secgrated current density. The effective cross section can be
tions as a function of internuclear separation. In polyatomiawritten in the form
molecules, there is also the possibility for measuring the time
dependence of the flow of vibrational energy by interaction o= 0 (1+ |F[* {min), (30
with a pulsed electron beam.

whereo is the usual inelastic cross sectidf;, is the min-
imun time integrated current for which the coherent transi-
. . . tion probability can equal the incoherent transition probabil-
Now, I will consider examples where the beam is weakity and F is the Fourier transform of the=0 density in Eq.

(sequential transitions such a&s—b then b—c are ne- (24, In the limit, {< ¢y, this definition reduces to the usual
glected but strong enough so that the coherence of the beagefinition of cross section.

can affect the total transition probabilities. This case can be |n Fig. 3, | show the transition probability divided by the
thought of as the quantum target interacting with the fluctuatime integrated current density for the transition from the 53
tions (individual particles in a beanmandwith the large scale  state of Rb to eight differemip final states; the transition
“macroscopic” properties of the beam. probability divided by¢ is an effective cross section for the
transition. In Table I, | give the relevant parameters for the
eight transitions. The time width of the electron beam is
In Ref. [2], we considered how a sequence of pulses cachosen to be~35 ps and the wavelength modulation was
change the apparent cross section for a particular state. Fhosen to enhance the transition to the State. Without the
this section, | will consider a similar case but show how themodulation, the transitions to the pzand 53 states com-
coherence can change the relative cross section to differeptetely dominate all other transitions. It would be relatively

B. Weak beam, single initial state

1. Longitudinal coherence
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100 ' ' ' ' quadratic function of the integrated current density if the
i Fe ] time width of the pulse is shorter than the transition period.
801~ ! ' ] Another arrangement can have a small number of equally
— ] b spaced short pulses interacting with the atom. For dipole
g 60~ T allowed transitions, the probability will depend on the time
5 __ - ]: i between the pulses if there is enough electrons and the pulses
o 40 | ' E l are shorter than the transition period.
20 |- - .
L Lo 2. Transverse and longitudinal coherence
0 N I l 1 ke L|_=

Beams that contain transverse and longitudinal coherence
49 50 51 52 53 54 55 56 can qualitatively change expectations of scattering by caus-
n ing transitions even when the beam does not overlap the
FIG. 3. The effective cross section for electron impact excitationtarget. These nonstandard transitions can occur due to the
from the 53 state intonp states fom=49—56 for electrons with 1 coherent interaction of the incident particles with the target.
keV incident energy. The solid line is the usual cross section whichAt the perturbative level, the coherent transitions can be re-
holds when the time integrated electron currént0. The dotted lated to the interaction of the quantum target with the “clas-
and dashed lines are for an electron beam specifically chosen ®ical fields” generated by the beam. For example, an elec-
enhance transition to the p%tate. The dotted line has a time inte- tron pulse that has a small extent in the transverse and
grated electron current ¢f=2 um~? and the dashed line has  |ongitudinal directions generates a classical electric field pro-
=4 um™2. This shows that extremely weak transitions can be enportional to the charge of the pulse and inversely propor-
hanced in electron scattering when the coherence properties of thgyngl to the squared distance from the pulse. If the electron
beam are controlled. pulse moves past a quantum target with a kinetic energy of 1
keV, then the time varying electric field can cause transitions
simple to make a beam that emphasized thp Bansition in the target.
over the 59 transition(and vice versg for example, a time I will take a very simplified case as an illustration. In this
integrated current density af=700 mn 2 could give an case, a single pulse of electrons with a kinetic energy of 1
effective cross section into the p3tate over 10 times larger keV will interact with a Rb atom in the S3state. The pulse
than into the 5@ state if the modulation of the beam was has a spherical charge distribution given by
chosen properly. Figure 3 shows a much more difficult ar-—=N(A ) ~3exp{—[(x—b)?+y?+(z—vt)?)/A%, where N is
rangement. In this situation, | have shown that it is possibléhe number of electrond) is the impact parameter for the
to make the transition to the p5state larger than any other charge distribution, and is the velocity. The integrated cur-
although it is negligibly small without a coherent beam. Thisrent density at the target(at x=y=z=0) is ¢
shows that it is possible to manipulate the probabilities for=N(A\/7) 2 exp(~b%A?). The electric field at the target is
excitation into different final states by controlling the modu- F(t) = (b,0pt)Q(t)/r3(t), wherer?(t) =b?+v2t? is the dis-
lation of an electron beam. tance from the target to the center of the charge cloud and
There are two experimental arrangements that could de-
tect the coherent scattering. Perhaps the simplest arrange- rOo.  ~y o
ment, is to measure the transition probability versus the cur- Q(t)=4(A2\/;)7lf ree "Adr (32)
rent density for a short pulse electron beam. For dipole 0

allowed transitions, the probability will increase similar to a . ) o )
is the charge contained within a sphere of radiuentered

on the charge cloud.

In Fig. 4, a specific case is chosen to show the transition
from Rb 53 state to 5p state with experimentally reason-
able parameters. The radius of the charge cloud is chosen to
(}ge A=100 um with an energy of 1 keV. The number of
electrons was chosen to be 14 so the incohe®olid line)
and coherent(dashed ling transition probabilities are

TABLE |. Parameters for transition from the $3tate of Rb to
nearby np states causeg b 1 keV electron beamr=2m/(Esgz
—E,p) is the transition periodg is the usual definition of the
inelastic cross section, and,, is the minimum time integrated
current density that can give equal amounts of coherent and inc
herent scattering.

n (9 o (Th) £ (M2 roughly equal for zero impact parameter. The coherent tran-
sition probability decreases proportional to exgp|E;

49p —4.815 0.0516 6220 —E,|/v) for large impact parameteb, whereas the incoher-
50p —6.96 0.167 2900 ent transition probability decreases as a Gaussian. Since the
51p -11.95 0.994 935 coherent transition probability is proportional to the square
52p —36.7 50.6 88 of the number of particles, it should be possible to measure a
53p 38.6 56.3 80 transtion when the beams do not overlap simply by increas-
54p 13.2 1.09 800 ing the number of electrons in the beam. For example, if the
55p 8.12 0.193 2250 number of electrons is increased to 1400 the coherent tran-
56p 5.96 0.0636 4360 sition probability at 40Qum is 5.6x 10~° whereas the inco-

herent transition probability is 2:810™ 1%,
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107%¢ | ‘ | restriction on the time to bt~ +/A3/10N. For 1000 par-
ticles in a 100um pulse this translates to a time of 0.6 ns.
1078 - This is a travelling distance of 1.2 cmrfa 1 keV electron
beam which seems to be experimentally reasonable.
1077 \\\\ =
F 3 V. CONCLUSIONS
107 f | have described a theoretical formulation of a longitudi-
g 3 nally coherent beam interacting with a quantum target. |
ol v s N ] have found that it is possible to violate all of the well-known
0 100 200 300 400 qualitative properties of scattering theory if the beam has
b (um) longitudinal coherence. The propertié§—(6) discussed in

the Introduction can be completely wrong in many situations.

FIG. 4. The transition pmbap'"ty.fm.m the Rb $3tate to t.he | have also calculated transition probabilities in several situ-

53p state for a Gaussian spatial distribution of electrons in the_.. . .
) S X 2, .2 ations to show that it is possible to observe these effects. It
beam; the beam density is proportional to £xf(x—b)+y“+(z ms likelv that there are manv other interesting henomen

—ut)?JA?. The solid line is for the incoherent transition probabil- Seems fikely that there aré many othe eresting phenomena
(i)hat become possible when using a longitudinally coherent

ity: the cross section times the overlap of the beam with the target; ~th h include obtaini level of .
The dashed line is the coherent transition from the collective field?©aM: these phenomena include obtaining a level of experi-

of the beam. For this case, the width of the beah4s100 um, the ~ Mental control over scattering, measuring how scattering de-

kinetic energy is 1 keV, and there are 14 electrons in the electroR€NdS on internal properties such as the spatial configuration

pulse. The solid line is proportional to the number of electronsOf objects in the target, measuring differential cross sections

while the dashed line is proportional to the square of the number ofvithout measuring the scattered particle, ... . Since there

electrons in the pulse. are several prospective beam sources with longitudinal co-
herence, it is worthwhile to further investigate this type of

The only difficulty in performing an experiment to show system.

this effect arises from mutual repulsion of the electrons in the
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