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Isolated-core excitations in strong electric fields. I. Theory

F. Robicheaux
Department of Physics, Auburn University, Auburn, Alabama 36849

~Received 14 January 2000; published 17 August 2000!

A basic theory is presented for the photoexcitation of a core state of a Rydberg atom in any type of static
field; in this situation, the core state is excited by the photon while the Rydberg electron is essentially a
spectator. This simple picture is made interesting through the interaction of the Rydberg electron with the core
which can cause a change in the Rydberg electron’s state and can cause the Rydberg electron to autoionize.
The method is computationally efficient and has been used for alkaline-earth atoms in a static electric field. An
approximation to the formalism is presented that illustrates a mechanism controlling the isolated core excita-
tion in a static electric field; this approximation may serve as a paradigm for extending the interpretation of
isolated core spectra to other types of fields.

PACS number~s!: 32.60.1i, 32.80.Dz, 32.80.Rm
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I. INTRODUCTION

There are many tools that have been used to probe co
lation in many electron atoms. The study of photoabsorpt
spectra is especially useful since the high resolution of
laser allows precise determination of the energies and wi
of the states while the strength of transitions contains in
mation about the composition of the state. Most photo
sorption studies use compact initial states which thus pr
final-state correlation as manifested near the nucleus.
contrast, the technique known as isolated core excitation
lizes a highly excited initial state@1–8#. With this technique,
the atom is initially prepared such that one electron is exc
to a Rydberg state with the remaining electrons left in
ground state of the positive ion. A second laser is th
scanned over optically allowed transitions of the positive i
A large ionization signal is observed at the frequencies
optically allowed transitions in the core; ionization is al
observed at other frequencies because both the core an
Rydberg electron can simultaneously make transitions du
the electron-core interaction.

The isolated core excitation directly probes the interact
of the Rydberg electron with the core electrons. In the ex
tation process, the core changes character which
changes the potential for the Rydberg electron. The stren
of the excitation to the final state depends almost solely
the projection of the initial Rydberg wave function onto t
final Rydberg wave function. If the potential for the Rydbe
electron is unchanged, then only one final state is excited
the change in the potential increases, then the characte
the final states change and increasingly many final states
be excited. The electron-core interaction is also manifes
through the autoionization widths of the final states. Oft
the resonance widths can be measured quite simply u
isolated core excitations because there is very little dir
excitation to the open channels. Thus, there is little inter
ence between the direct ionization path and the indirect
ization path through the resonance states; the photoabs
tion cross section near a resonance is often a sim
Lorentzian.

In the past, most isolated core experiments and all isola
core calculations were for atoms unperturbed by static fie
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Two previous studies presented experimental results for
lated core excitations by a cw laser for Mg in a static elec
field @6# and by a pulsed laser for Mg in a static electric fie
@7#. It is important to extend the study of isolated core ex
tations to atoms in strong, static fields. Photoionization
isolated core excitations is the time reverse of dielectro
recombination~DR!. In DR, an electron scatters from an io
excites the ion so that it is captured into a doubly exci
resonance state, and is stabilized when the core elect
emit a photon. It is known that static electric fields~for ex-
ample, the microfields that exist in plasmas! can affect the
recombination rate due to thel mixing of the autoionizing
Rydberg states@9,10#. Early measurements@11# and calcula-
tions @12# showed the effect of electric fields on a Rydbe
series. However, it has not yet been possible to perform
tailed comparisons between experimental and calculated
combination cross sections for individual resonances i
static electric field; this is because the resolution in elect
scattering experiments is not high enough to resolve the
dberg states that are most strongly affected. The isolated
excitations can be studied with high resolution since the lim
tation is from the resolution of a laser. Thus, detailed co
parison can be performed at the individual resonance lev

Finally, it is also worth studying isolated core excitatio
in static electric fields as an interesting example of chan
interactions and correlations between different degrees
freedom. The Hamiltonian for the nonrelativistic treatme
of a hydrogen atom in a static electric field separates in p
bolic coordinates. However, the Hamiltonian does not se
rate for any other atom in a static electric field. For a Ry
berg state with an excited ion core, the electron-elect
interactions can cause the Rydberg electron to scatter
tween different channels in parabolic coordinates wh
keeping its total energy fixed; also, this interaction can ca
an exchange of energy between the Rydberg electron and
ion which may lead to the ejection of an electron from t
atom. The competition and interplay between these two ty
of correlation can give interesting features in the spectra
the isolated core excitation, the initial state is already a R
dberg state and can be chosen to be a state that is essen
an uncoupled state in parabolic coordinates or a state th
essentially an angular momentum eigenstate; this leads
©2000 The American Physical Society06-1
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F. ROBICHEAUX PHYSICAL REVIEW A 62 033406
level of control over what aspects of the final states
probed.

Although no specific results are presented for isola
core excitations in a static magnetic field and no experime
have yet been performed, it may be that this will be the m
interesting case. Classically, the motion of an electron i
Coulomb potential plus static magnetic field can be eit
regular or chaotic depending on the scaled energy whe
the motion can only be regular in a static electric field. Th
are several fascinating features of an electron’s eigenstat
a Coulomb potential plus static magnetic field, including t
scarring of the wave function on the unstable classical
jectories. How will the isolated core spectra reflect these f
tures? Will the number of final resonance states that are
cited in an isolated core excitation increase or decrease w
going from the classically regular region to the classica
chaotic region?

In this and the following two papers@13,14#, the proper-
ties of isolated core excitations in static electric fields
studied. In this paper a basic theory for isolated core exc
tions in static fields will be presented; some of the implic
tions of the theory will be discussed. In the second pa
@13#, the experimental results for isolated core excitations
Mg will be compared to the theory; the relationship of th
data with previous time-resolved electron-emission meas
ments@7# and some of the interesting properties of Mg w
be discussed. In the third paper@14#, the experimental result
for isolated core excitations in Ba will be compared to t
theory; some of the interesting properties of Ba isolated c
excitations will be discussed. Atomic units will be use
throughout this paper.

II. THEORY OF ISOLATED CORE EXCITATIONS
IN STATIC FIELDS

In this section I give a derivation of a method for calc
lating dipole matrix elements for isolated core excitatio
~ICE! in static fields. This derivation is later recast into
approximate form that more clearly shows the mechanis
controlling the cross section for ICE in an electric field.
derivation of the isolated core dipole matrix elements in z
field is given in the Appendix to enable a comparison b
tween the treatment in this paper and the older formalism

A. ICE in a static field

The starting point for ICE theory is the idea that it is t
core electrons that absorb the photon while the Rydberg e
tron is a spectator. This is a good approximation because
photon-absorption process happens most efficiently whe
electron is near the core; the core electrons are localized
the nucleus whereas the Rydberg electron has only a s
probability to be found in this region.

To apply the theory, it is assumed that the static field
too weak to perturb the electrons when they are near the
~outside of an overall energy shift!; as a conservative est
mate, the fields should be weaker than 1023 atomic units.
This condition is satisfied by even the strongest laborat
strength fields available today. It is thus possible to sepa
the wave function into an inner and outer region. In the in
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region, the wave function can be represented as a super
tion of zero-field wave functions. In the outer region, t
field can drastically change the wave function from its ze
field form. For convenience, I will represent the wave fun
tion near the core using multichannel quantum-defect the
although this restriction can be easily removed. For exam
the formalism can be easily extended to compute dipole
trix elements when the wave function is obtained fro
R-matrix calculations.

The main difficulty is in obtaining the dipole matrix ele
ments between the initial bound statea and the final con-
tinuum statesb; it is assumed that the problem of computin
the wave function in the field is solved. This dipole matr
element will be denoteddba5^CbuDuCa&. The i th core
state will be denoted by the symbolF i ; the core state will
also include the spin of the Rydberg electron in order for
wave function of the Rydberg electron to only depend on
spatial coordinates. The energy of the core state will be gi
by Ei . The symboli actually denotes several properties
the core state:x iJc,iQim i where the parameterx i denotes all
of the quantum numbers of the coreexceptthe total angular
momentum,Jc,i is the total angular momentum of thei th
core state,Qi is the angular momentum that results fro
coupling the angular momentum of the core to the spin of
Rydberg electron, andm i is the eigenvalue of the projectio
of the Qi angular momentum on thez axis. As an example
from Mg, the x8 is the 1s22s22p63p state of Mg1, Jc,8
53/2, Q852, andm8521.

The initial and final wave functions can be quite comp
cated due to the channel couplings that arise from
electron-electron interactions near the core. Theath initial
state can be represented as

Ca5(
i

F iAia~r ! for ur u.r c , ~1!

where the cutoff radiusr c is typically less than 10 a.u. Sinc
the Rydberg electron is outside of the core region for t
part of the wave function, the Rydberg wave function is
solution of a one-electron Hamiltonian with a potential th
is simply the Coulomb potential plus the potential from t
field, HFAia5e iaAia ; the energy of the Rydberg electro
will be given bye ia such that the energy of thea initial state
is Ea5Ei1e ia . TheAia go to zero or effectively go to zero
@15# as ur u→`. The bth continuum function can be written
in a similar form

Cb5(
i

F iBib~r ! for ur u.r c . ~2!

Again, the Rydberg wave function is a solution of a on
electron Hamiltonian with a potential that is simply the Co
lomb potential plus the potential from the field,HFBib
5e ibBib ; the energy of the final state isE5Ea1v5Ei
1e ib wherev is the photon energy.

The dipole matrix elements may be obtained to a go
approximation by noting that the photon is absorbed by
core electrons and that the spatial extent of the Rydberg e
tron is large compared to the core,
6-2
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dba5(
i i 8

Dii 8E Bib* ~r !Ai 8a~r !dV ~3!

@compare to Eq.~A3!# where the integration for the Rydber
wave function extends over all space outside of the c
region and the core dipole matrix elements areDii 8
5^F i uDuF i 8&. The approximations in this equation are th
the effect from the dipole operator on the Rydberg electro
not included and the projection ofA onto B is only for the
region outside of the core. The error in the dipole mat
element from each of these approximations will be prop
tional to 1/n3/2 wheren is the principle quantum number o
the initial state and thus the error in the cross section will
quite small for Rydberg states.

The relationship of the productB* A to the Wronskian
@16# of B* andA can be substituted into the equation for t
dipole matrix element, Eq.~3!, to obtain a surface integrals a
the radiusur u5r c and a surface integral atur u→`. The latter
surface integral is zero since the original bound-state fu
tion goes to zero at large distances. This leaves the sur
integral at the cutoff radius

dba5
r c

2

2 (
i i 8

Dii 8E W~Ai 8a ,Bib* !dV/~e ib2e i 8a!, ~4!

where the integration is only over the anglesdV
5dwd cosu and the radial Wronskian W(A,B* )
5(]B* /]r )A2B* (]A/]r ) is evaluated atr c . This expres-
sion is general and only entails knowing the Rydberg wa
functions at a radial surface close to the core. These sur
integrals may be obtained from many different types of c
culations includingR matrix @17# or multichannel quantum
defect theory~MQDT! @18,19#. Equation~4! is the main re-
sult of this paper; the rest of this section and the followi
sections are only devoted to discussing methods of im
mentation and to discussing some of the implications of
equation. Of course, this equation also applies when the
no field present, in which case it reduces to the usual exp
sion for ICE dipole matrix elements.

B. MQDT form of dipole matrix elements

As an illustration, specific formulas for the dipole matr
element will be obtained in terms of the MQDT paramete
Near the core the wave functions are not affected by the fi
and thus may be represented in terms of the zero-field fu
tions. I will choose to utilize theK-matrix form of the func-
tions at small distances. For the bound state, these func
are

c i 8
(0)

5(
i

F iYl imi
~V!@ f i~r !d i i 82gi~r !Kii 8

(0)
#/r ~5!

@compare to Eq.~A6!# whereYlm is the spherical harmonic
the f ,g are field-free regular and irregular Coulomb fun
tions, andK (0) is the K matrix at the energy of the boun
state. For the final state, these functions are
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( f )

5(
i

F iYl imi
~V!@ f i~r !d i i 82gi~r !Kii 8

( f )
#/r ~6!

@compare to Eq.~A7!# where K ( f ) is the K matrix at the
energy of the final state. The initial-state function and fin
state function near the core are superpositions of these f
tions,

Ca5(
i

c i
(0)z ia

(0) and Cb5(
i

c i
( f )z ib

( f ) . ~7!

Using these formulas and the Wronskians@20# for the
Coulomb functions, the dipole matrix elements may be o
tained in terms of theK matrices, core dipole matrix ele
ments, and the transformation coefficients to obtain thea
initial state and theb final state,

dba5
1

p (
i ,i 8

@Dii 8d l i l i8
dmimi8

/~e ib2e i 8a!#

3(
i 9

@z ib
( f )* Ki 8 i 9

(0) z i 9a
(0)

2Kii 9
( f )z i 9b

( f )* z i 8a
(0)

# ~8!

@compare to Eq.~A8!#. The accuracy of these expressions
directly related to the accuracy of the short-range scatte
parameters~i.e., the K matrices! and the accuracy of the
transformation parameters that give the states in the fiel
terms of the field-free states near the core~i.e., thez vectors!.
I expect that the approximations used to derive these for
las are much more accurate than the approximations tha
used to obtain the scattering and transformation parame
One of the more interesting features of this derivation is t
the field dependence only enters through the transforma
coefficients. Whether the atom is in a static electric field
magnetic field or a combination of the two is not importa
for the form of the matrix element.

There is a peculiar feature of Eq.~8!; becauseK matrices
decrease rapidly withl for l larger than 2 or 3, Eq.~8! ap-
parently shows that only the low-l part of the Rydberg wave
function contributes to the dipole matrix element. This
quite surprising because a Rydberg state of energye often
contains a large number~roughly 1/A22e) of l components.
It is apparently a paradox or error that the overlap of t
Rydberg states~where both can have a large range ofl com-
ponents! is determined only by the low-l part of the states.
Actually, the high-l part of the Rydberg wave functions d
contribute substantially to the overlap. This contribution
hidden in the transformation coefficientsz; the high-l part of
the wave function strongly affects the energy dependenc
the transformation coefficients which, with theK matrices,
determine the dipole matrix elements.

C. Approximation for a static electric field

The equations from the preceding section are expecte
be very accurate when the atomic scattering and transfor
tion parameters can be computed accurately. In all of
calculations presented in the following papers, the res
from the preceding section are used. However, it is imp
6-3
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F. ROBICHEAUX PHYSICAL REVIEW A 62 033406
sible to gain an intuitive understanding from the preced
section due to the generality of the derivation. This sectio
devoted to deriving and discussing an approximation to
ICE dipole matrix element in a static electric field that mo
clearly shows the mechanisms controlling ICE in a field. T
ideas for the form of an electric field, multichannel wa
function are from Ref.@18# which is based on Ref.@19#.

The idea is to do the opposite of the derivation in t
preceding section where we superposed zero-field ato
wave functions; this resulted in a formulation in terms
zero-field parameters and transformation coefficients tha
clude the field effects. Here we will superpose the solutio
in the field that have the correct asymptotic boundary con
tions; the coefficients of the superposition are determined
forcing the wave function with the correct boundary con
tion in the field to match onto the correct atomic wave fun
tion at short distances.

The Hamiltonian for an electron in a Coulomb potent
plus static electric field is separable in parabolic coordina
The wave functions can be written as superpositions of
solutions in parabolic coordinates in the form

Bib~r !5(
n1m

Fe ibn1m~h!Je ibn1m~j,f!Yn1m,b
(0) ,

~9!

Aia~r !5(
n1m

Fe ian1m~h!Je ian1m~j,f!Yn1m,a
( f ) ,

where Y are the transformation coefficients that give t
correct match to the atomic wave function near the nucle
the functionsJ are bounded functions and play the role th
the spherical harmonics play in spherical coordinates~the
number of nodes in thej direction isn1), and theF func-
tions go to zero ash gets large when the channels a
strongly closed. TheF functions vary rapidly with energy
near the origin and it is useful to express this function
terms of parameters that vary rapidly with energy and fu
tions that vary more slowly. This combination isFen1m

5 f en1m cos@dn1m(e)#1gen1msin@dn1m(e)# where dn1m(e) is

roughly the WKB phase accumulated in theh direction for
channeln1 ,m; in zero field the phase accumulated in t
channel isd5pn5p/A22e. Compare this equation to Eq
~A1! and ~A2!. The f ,g functions are chosen to have th
same Wronskians as the zero field case.

We can use these functions in the dipole formula but
stead of choosing a spherical surface we can choose a su
of small h. This gives an approximate expression for t
dipole matrix element as

dba.
1

p (
i ,i 8

Dii 8(
n1m

Yn1m,b
(0) Yn1m,a

( f )*

3
sin@dn1m~e ib!2dn1m~e i 8a!#

~e ib2e i 8a!
~10!

@compare to Eq.~A5!#. The main reason that a. symbol is
used in this equation is that another level of approximat
has been utilized which is not as high in accuracy as
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previous approximations. In this approximation theJ func-
tions have been treated as orthonormal over the surface
whene ibÞe i 8a ; these functions are only orthonormal whe
evaluated at the same energy. Equation~10! has not been
used in the numerical calculations where high accuracy
desired but it is useful for interpreting the expected behav
of ICE in static electric fields.

It is interesting to note that the field-dependent proper
are explicit in Eq.~10! but the parameters that specify th
atom, the short-range scattering matrices, are only inclu
implicitly through the transformation matricesY. For the
derivation in the preceding section, the atomic scattering
rameters were explicit but the parameters that specify
type of field and the field strength are only included impl
itly through the transformation matricesz. It is uncertain
which form will be more useful for future calculations an
experiments. For example, it might be possible to extend
Eq. ~10! to other types of fields. The phased is approxi-
mately equal to the phase accumulated by the electron
traveling from small to largeh. Perhaps for ICE in other
static fields for which a separation of variables is not p
sible, this formula will still hold but with the phase differ
ences calculated semiclassically.

III. DISCUSSION

I expect Eq.~10! to be accurate except for transitions
far off resonance that the principle quantum number chan
The equation will still be qualitatively accurate in this cas
however, the accuracy decreases as the change in
n-manifold increases. Therefore, I will only examine the im
plications for transitions where the core is excited and
Rydberg electron also changes quantum numbers but w
its original n manifold. When the change in energy is le
than 1/n3 ~the requirement for not changing then manifold
of the Rydberg electron!, the phase differencedn1m(e ib)

2dn1m(e i 8a) is less thanp and can be approximated b

(e ib2e i 8a)ddn1m /de plus higher-order terms in the energ
difference. This means that the leading energy-depend
term in the second line of Eq.~10! is the slowly varying
function ddn1m /de.

To get a better idea of the general features of the I
spectrum, it is necessary to have at least a crude unders
ing of the behavior of the transformation coefficientsY.
There are two extreme cases that will be considered for
initial state. The first is when the initial state is not chang
strongly by the static field. For example, a small-l Rydberg
state will not mix with the otherl components of then mani-
fold until a large enough field strength is used. In this ca
the Y (0) coefficients are substantial for a large number
channelsn1; the precise distribution depends on whether
low-l state has mainlys, p, or d character. The second ex
treme case is when taking a state with strong-l mixing from
the field. In this case, theY (0) coefficients are substantia
only for a small fraction of the allowed channels,n1.

The properties of the final-state transformation coe
cients are more difficult to understand. In the final sta
there are many resonancesr with perhaps wildly differing
6-4
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energieser and widthsGr . Roughly, the form of the coeffi-
cients is given by

Yn1ma
( f ) ;(

r
Un1m,rCra /~e ia2er1 iGr/2!, ~11!

where the parameterUn1m,r gives the fraction of ther reso-

nance with character in then1 ,m channel and the paramete
Cra gives the fraction of ther resonance in the final statea.
Again, there are two extreme cases that will be considere
the angular momentum of the resonance is dominated by
low-l channel, then theUn1m,r will be distributed over many

n1 channels; these resonances tend to be relatively b
because the Rydberg electron can easily reach the core
trons and scatter into the open channels. However, if the s
is strongly mixed by the field then theU coefficients are
substantial only for a small fraction of the allowed chann
n1; these resonances tend to be relatively sharp becaus
Rydberg electron has a substantial amount of high-l charac-
ter and thus does not strongly interact with the core e
trons.

We can combine the ideas of this section to note tha
resonancer in the final state will be excited with an ampl
tude proportional to(n1mYn1m,b

(0) Un1m,r . First consider the

case when the initial state has not strongly mixed with ot
l states. The spectrum will have two types of structures fr
the final states: sharp features from the field mixed states
broader features from the unmixed final states. The prop
tion of each type of feature will depend on the strength of
mixing in the final state. If the field is too weak to cause t
initial-l to mix in the final state, then only relatively broa
features like in zero-field spectra will be visible. However,
the field is strong enough to cause mixing in the final sta
then mostly sharp features related to the Stark states wi
seen; there will be a large number of these sharp features
will be visible because each of the final Stark states h
some low-l character. Perhaps surprisingly, it will not b
difficult to find cases where thel state is not mixed in the
initial state but is mixed in the final state. The field streng
needed to cause mixing depends on the difference of q
tum defects withl; these differences can be substantially d
ferent for the initial and final states.

Now consider the case when the initial state is a stro
mixture of l states so that theYn1m,b

(0) is substantial for only a

few n1. In this case, the spectrum will only show features
a small energy range near the ionic transitions. Very f
resonancesr will be substantially excited and these will b
the sharp resonances that have a strongl mixing with a simi-
lar character to the initial state. An exception is when sta
from a different threshold fall very near the energy of t
unperturbed final states and mix with them through confi
ration interaction; in this case, there will be several sta
that have a large fraction of their character the same as
initial state. However, all of these states will be in a narro
energy range because the channel interaction is strongl
duced for these states because they have mostly high-l char-
acter. It will be difficult to observe the final resonance sta
that have unmixed low-l character from initial strongly
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l-mixed states. There are two reasons for this. The first is
the oscillator strength to the low-l states will be roughly a
factor of ;A22e51/n smaller than to the strongest stat
the second is that the oscillator strength to a low-l state will
typically be spread over a larger energy range due to t
faster autoionization rate.

Thus, the expectation is that when starting from a lowl
state the cross section may contain relatively broad feat
from low-l final states or a large number of sharp featu
from strongly l-mixed states or a combination of both; b
when starting from a stronglyl-mixed state, only a few sharp
features will be readily observable. Of course, there will a
be intermediate cases which do not conform to the exam
discussed in the preceding paragraph. These may have
most interesting properties but the correlation and excita
behavior should then be discussed on a case-by-case ba

The following papers@13,14# present experimental result
that largely confirm this analysis. The Mg spectra@13# al-
most exactly follow the behavior sketched in this sectio
The Ba spectra@14# are more problematic due to complica
tions from short-range 5dnl states perturbing the 6snl Ryd-
berg states and from shape resonances in the 6pn f final
states; thus, it is possible that a substantial fraction of
dipole matrix element arises from the fraction of the init
state that has perturber character. Reference@14# gives a
fuller discussion.

IV. SUMMARY

In this paper a basic theory of isolated core excitations
been given for the case when the Rydberg atom is in a s
field. The formalism gives the dipole matrix elements
terms of the properties of the wave function near the co
The method is expected to be very accurate and easily a
cable to calculations of isolated core excitations in sta
electric or magnetic fields or a combination of the two. In t
following two papers@13,14#, we present detailed compar
sons of ab initio calculations to experimentally measure
isolated core spectra for Mg and Ba in a static electric fie

An approximation to the method for an atom in a sta
electric field allowed an analysis of the expected proper
of the isolated core spectrum. The approximate form of
matrix element was composed of a sum over terms cont
ing the difference of the WKB phase at the initial and fin
energy. This intriguing result may also hold, but in a gen
alized form, for isolated core excitations in fields for whic
the Hamiltonian is not separable. Further studies of isola
core excitation in different types of fields may provide
interesting window into how the core mediated channel
teractions affect atomic Rydberg states.
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APPENDIX: ICE IN ZERO FIELD

The theory for ICE in zero field has been described ma
times so it will only be presented briefly with enough deta
for the similarities with the theory for ICE in a static electr
field to be apparent. The formulas for ICE are simplest
derive when the initial state is a simple Rydberg state outs
of the core and the final state is a two channel system w
one closed and one open channel. I will denote the ini
core state asF i and the final core state asF f .

The initial wave function may be written asC i
5F iFi(r )/r when the Rydberg electron is outside of t
core region; the functionFi may be written in terms of the
regular and irregular Coulomb functions@8# as

Fi~r !5@cos~pn i ! f i~r !1sin~pn i !gi~r !#/n i
3/2, ~A1!

wheren i is the effective quantum number and is defined
n i51/A22e i whene i is the energy of the Rydberg electro
This form is necessary in order that the wave function g
to zero asr goes to infinity.

The final wave function may be written as the sum of tw
terms; a bound wave in the closed channel and a contin
wave in the open channel:c f5@F iCi(r )1F fBf(r )#/r . The
continuum wave arises because the core and the Ryd
electron can interact; the Rydberg electron can gain ene
from the core and escape the atom while causing the tra
tion F f→F i . The continuum functionCi and the bound
function Bf may also be expressed in terms of Coulom
functions; most importantly

Bf~r !5@cos~pn f ! f f~r !1sin~pn f !gf~r !#Af~E!, ~A2!

whereAf is an energy-dependent coefficient that depends
the coupling between the open and closed channels in
final state andn f51/A22e f with e f being the energy of the
Rydberg electron.

If we use the assumption that the photon causes a tra
tion in the core, then the dipole matrix element between
initial and final state is

d~E!5D f iE
r 0

`

Bf* ~r !Fi~r !dr ~A3!

@compare to Eq.~3!# where D f i5^F f uDuF i& is the dipole
matrix element for the core transition. As in@16#, the product

Bf* Fi52
1

2

d

dr
W~Fi ,Bf* !/~e f2e i !, ~A4!

where the WronskianW(A,B)5AB82A8B. The difference
in energy in the Rydberg channels is the difference in
photon energy from the transition energy of the core st
e f2e i5v2v f i wherev is the photon frequency.
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The result from Eq.~A4! should be substituted into th
equation for the dipole matrix element to show thatd(E)
5D f iW(Fi ,Bf* )/@2(e f2e i)#. The final expression may b
obtained by using the forms for the radial functions and
ing the Wronskian properties of the Coulomb functions@20#
giving

d~E!5
Af* ~E!D f i

n i
3/2p

sin@p~n f2n i !#

~e f2e i !
. ~A5!

@compare to Eq.~10!#. This equation is interesting because
separates the contribution to the dipole matrix element in
factor from the final-state interactionsAf(E), a factor from
the core transitionD f i , and a factor that only depends on th
energy difference of the Rydberg electron in the initial a
final state. Note that the only factor that is really atom d
pendent in this two-channel model is theAf(E) sinceD f i is
energy independent.

It is instructive to rederive this result from a multichann
quantum-defect formalism. In this formalism, the wave fun
tions do not have the physical asymptotic behavior ar
→`; typically, all wave functions diverge in the close
channels. It is only at a later stage in the calculation that
proper asymptotic behavior is imposed. The initial-sta
wave function is now written as

c̄ i5F i@ f i~r !2gi~r !tan~pm i !#/r ~A6!

@compare to Eq.~5!# wherem i is the quantum defect and th
two linearly independent final state functions are written

c̄ j5(
j 8

F j 8@ f j 8~r !d j 8, j2gj 8~r !K j 8, j #/r ~A7!

@compare to Eq.~6!# whereK j 8, j is theK matrix that contains
the information about the coupling between the closed
open channels.

Using the same assumptions about the dipole excitat
we obtain

dj~E!5
1

p (
j 8

@d j 8 j tan~pm i !2K j 8 j #D j 8 i /~e j 82e i !

~A8!

@compare to Eq.~8!# for the dipole matrix element. To obtai
the original expression for the dipole matrix elements, it
necessary to normalize the initial wave function by multip
ing it by Ni5cos(pmi)(21)n/ni

3/2. It is also necessary to not
that both of the final-state functions diverge in the clos
channel and it is necessary to superpose the two solution
eliminate the divergence; the proper superposition,c f

5g i c̄ i1g f c̄ f , is achieved when the coefficients have t
properties: K f ig i1K f fg f52sin(pnf)Af(E) and g f
5cos(pnf)Af(E). Using these expressions, one can show
equivalenced(E)5Ni@g i* di(E)1g f* df(E)#.
6-6



A

ys
re
ns

w-

ly

ical

the

M.

. T.

. A

for
ch

y

ISOLATED-CORE EXCITATIONS IN . . . . I. . . . PHYSICAL REVIEW A62 033406
@1# W. E. Cookeet al., Phys. Rev. Lett.40, 178 ~1978!.
@2# F. Gounandet al., Phys. Rev. A27, 1925~1983!.
@3# V. Lange, U. Eichmann, and W. Sandner, J. Phys. B22, L245

~1989!.
@4# C. J. Dai, G. W. Schinn, and T. F. Gallagher, Phys. Rev. A42,

223 ~1990!.
@5# S. A. Bhattii, C. L. Cromer, and W. E. Cooke, Phys. Rev.

24, 161 ~1981!.
@6# M. D. Lindsayet al., Phys. Rev. A50, 5058~1994!.
@7# J. B. M. Warntjeset al., Phys. Rev. Lett.83, 512 ~1999!.
@8# M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Ph

68, 1015~1996!; see Sec. IV E for discussion of isolated co
excitations and Sec. II B for discussion of Coulomb functio

@9# V. L. Jacobs, J. Davis, and P. C. Kepple, Phys. Rev. Lett.37,
1390 ~1976!.

@10# V. L. Jacobs and J. Davis, Phys. Rev. A19, 776 ~1979!.
@11# D. S. Belicet al., Phys. Rev. Lett.50, 339 ~1983!.
@12# K. LaGattuta and Y. Hahn, Phys. Rev. Lett.51, 558~1983!; C.

Bottcher, D. C. Griffin, and M. S. Pindzola, Phys. Rev. A34,
860 ~1986!.

@13# J. B. M. Warntjes, F. Robicheaux, and L. D. Noordam, follo
ing paper, Phys. Rev. A61, 033407~2000!.

@14# R. R. Joneset al., this issue, Phys. Rev. A61, 033408~2000!.
@15# For a static electric field in thez direction, all solutions of

Schrödinger’s equation oscillate asz→` independent of en-
ergy. However, the amplitude of the oscillation is extreme
03340
.

.

small for quasibound states at energies well below the class
ionization threshold. Treating theAia as if they were zero as
ur u→` introduces a negligibly small error in this case.

@16# Because the Rydberg wave functions are all solutions of
same Hamiltonian, the following relations hold:

Bib* Ai8a5@~HFBib!*Ai8a2Bib* ~HFAi8a!#/~eib2ei8a!

52
1

2
@~¹2Bib!*Ai8a2Bib* ~¹2Ai8a!#/~eib2ei8a!

52
1

2
¹•@~¹Bib!*Ai8a2Bib* ~¹Ai8a!#/~eib2ei8a!.

@17# There have been several applications ofR-matrix ideas to non-
hydrogenic atoms in magnetic fields. For an example, see
H. Halleyet al., J. Phys. B25, 1775~1993!; For an application
to crossed electric and magnetic fields, see J. Rao and K
Taylor, ibid. 30, 3627~1997!.

@18# F. Robicheaux, C. Wesdorp, and L. D. Noordam, Phys. Rev
60, 1420 ~1999!; F. Robicheaux and J. Shaw,ibid. 56, 278
~1997!.

@19# D. A. Harmin, Phys. Rev. A24, 2491~1981!; 26, 2656~1982!.
@20# The Coulomb functions have very little energy dependence

distances of a few atomic units; for energy differences mu
less than 1/r , W( f , f )5W(g,g)50 and W( f ,g)52W(g, f )
52/p. In the cases we considerr ,10 a.u. whereas the energ
differences are less than 1023 a.u.
6-7


