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Time-dependent close-coupling calculations for the electron-impact ionization of helium
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Electron-impact ionization cross sections for helium are calculated using time-dependent close-coupling
theory. In a frozen-core approximation, the wave function for the three-electron system is expanded in terms of
two-electron wave functions which fully describe the ejected and scattered electrons at all times following the
collision. The resulting close-coupled partial differential equations for the two-electron radial wave functions
include a direct and a local approximation to the exchange interactions with the remaining core electron. By
direct projection of the time-dependent wave functions onto continuum lattice eigenstates, both ejected energy
differential and total integrated cross sections are extracted. The agreement between theory and previous
experimental measurements for helium is excellent.

PACS numbd(s): 34.80.Dp

[. INTRODUCTION tarity considerations, total integrated cross sections may be
obtained by direct projection of the time-dependent wave
For many atoms and their ions the total electron-impacfunctions onto either bound or continuum lattice eigenstates.
ionization cross section is dominated by the direct “knock-In contrast to previous work on the=0 model for hydrogen
out” ionization process. The final state of such a direct pro{12,13, we now find that ejected energy differential cross
cess finds two electrons moving in the long-range Coulomisections are most effectively calculated by direct projection
field of a third body. Only in the last few years have nonper-onto the continuum lattice eigenstates. The new extension of
turbative theoretical collision methods been developed whicihe time-dependent close-coupling method is presented in
can successfully treat the three-body Coulomb continuun$ec. Il, the integrated and differential ionization cross sec-
problem and thus make accurate predictions for direct iontions for helium are presented in Sec. Ill, and a brief sum-
ization cross sections. For electron scattering from a hydromary is found in Sec. IV.
gen atom, the converged close couplidd the hyperspheri-
cal close-coupling2], the R-matrix pseudostatefg3], the Il. THEORY
time-dependent close couplifd], and the exterior complex ) )
scaling[5] methods have all produced total integrated ion-  FOr electron scattering from a helium atom, the nonrela-
ization cross sections in excellent agreement with experitivistic Hamiltonian(in atomic units is given by
mental measuremen{s]. 3
Recently the time-dependent close-coupling method has H=S
been used to calculate the direct electron-impact ionization =
cross section for the quasi-one-electron targets found in the

lithium [7,8] and sodium[9] isoelectronic sequences. Al- whereﬂ are the coordinates of the electrons ahd?2 is the

though the time-dependent _cIose-coupIing results are in r®3tomic number. The total wave function for a gives sym-
sonably go_od agreement with the converged close-couplln%etry may be expanded in coupled spherical harmonics:
and R-matrix pseudostates results, the overall agreement be-

tween nonperturbative theory and some of the older experi-

ments is less than satisfactory. New experiments ©h[RO]

and AP [11] are now in much better agreement with the

predictions of the nonperturbative methods. = ApAsAsy, D
In this paper we extend the formulation of the time- LS 11203 Fifals

dependent close-coupling method to calculate the direct

elepctron-impact ionizagongcross section of helium. This is an XKW1, (12,1 ) LM ) W((S1.(S2,55) SM.s),

important first step in the eventual application of this particu- (2

lar nonperturbative method to the direct ionization of all

open and closed shell atomic systems. In a frozen core apvhere the three electron coupling operatéfare themselves

proximation, the wave function for the three-electron systenfoupled products involving two electron coupling operators

is expanded in terms of two-electron wave functions whichgiven by

fully describe the ejected and scattered electrons at all times

following the collision. Reduction of the time-dependent , _ n'L ,

Schralinger equation yields coupled sets of partial differen- Wl )LML)_mI%H, Crymymy Yim (L)Y, (7).

tial equations for two-electron radial wave functions which (3)

include a direct and a local approximation to the exchange

interactions with the remaining core electron. Through uni-and

1 z 3
R

-

’\I,L:S()_()l 1)22 1)_()3 vt)
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P|1|2|3LS(rllr2!r31t)
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' _ ss'S ’ R _ =
W((s,s )SMS)—mqu, Crnmg MXm () Xm, (). (4) T,(r2.rs)= 2 o2 2(9_@"‘ 212 22
A Z
In Egs. (2)-(4), A; is an antisymmetrization operator, — - Vo(ra) = —+Vo(ra), (8)
C'nﬁ'ﬁ'fm is a Clebsch-Gordan coefficient,,,(2) is a 2 *
17723

spherical harmonic, angy,(o) is a spinor. Reduction of the and the coupling operator is given by
time-dependent Schdinger equation yields a set of time-

dependent close-coupled partial differential equations for |

each £LS symmetry involving the three dimensional radial U|2|3,|é|é(r2’r3)
wave functions,Pfl,S2|3Ls(rl,r2,r3,t), of Eq. (2). The full i
three-dimensional radial solutions are needed for electron =(=1)""° 3\/(2|2+1)(2|2+1)(2l3+1)(2|3+1)

double ionization of helium near threshdlt¥4], so that the R VAN T VAN TR TR,
correlated quantal dynamics of three free electrons moving XE _<( 2 2)( 3 3 { 3 2].
in the long-range Coulomb field of a fourth body may be x r2*1l0 0 0/10 0 O/(Nn Iy g
accurately described.

For electron single ionization of helium near threshold, ©

the total wave function for a give£S symmetry may be . ) )
expanded in coupled spherical harmonics using a frozen col® Ed. (6) the “direct” potential terms are given by
approximation:

Pis(rl)
o Poi(r) VD(r):fo maxry,r) ° * (10
\PES(X1=X21X3at):A12-A13L§:S %w'—s(xz,x?,,t)
' ! and act to shield the outer active electrgnith coordinates
XW((11,L) LM W((s1,S)SM ), r, andrg) from the full Coulomb attraction of the nucleus.

(5) If the antisymmetrization operatotd,;, and A5 are in-
cluded in the total wave function of Ed5), the resulting
time-dependent close-coupling equations for s-wave core
scattering will include further “exchange” potential terms in
T|2|3(r2,r3) of Eq. (8). We approximate those nonlocal

where the two-electron wavefunctions are given by

- - Z Pf‘jg(rz,rg,t) terms using a semiempirical potential given [iyp]
) 1t :A - .
b(Xa,X3,1) 2321 o y
_ [24p44(1)
XW(I. 1) LMOW((S;,55)SMg). (6) Vxn=—al = —] . 19

The two-dimensional radial solutions are needed so that th&herea is a parameter determined by removal energies and
correlated quantal dynamics of two free electrons moving irp,(r)=P2/4mr? is the radial probability density.

the long-range Coulomb field of a third body may be accu- The frozen-core radial orbital of E@5) is calculated as
rately described. If we restrict ourselves to electron scatterthe hydrogenic ground state radial orbital of HeThis or-

ing from the ground state of heliufie., n,l;=1s) and as-  bital provides a precise description for the final state of the
sume no exchange scattering with the core electian, ionized target with two escaping electrons. A set of single
A= A15=1), then reduction of the time-dependent Sehro particle radial orbitalsP,(r), are obtained by diagonaliza-
dinger equation yields the following set of time-dependentiy;, of the single particle Hamiltonian given by
close-coupled partial differential equations for eachsym-

metry: 12 1(1+1)

s h(r):_5(97+72—_7+VD(V)+VX(V)- (12)
.0P|2|3(r2!r3!t)
I—

it =Ti,1,(r2,r3)PLT(F2,3,t)

The parametew in the exchange term is adjusted so that the
single particle energies for each angular momentum are in
+ U|L| |'|’(r21r3)P|L’?’(r2 at) reasonable agreemen_twith the.config_uratio_n-average experi-
10y %2 23 mental spectrum. The,4(r) radial orbital with energye;
) =—24.6 eV is very similar to the Hartree-Fock ground state
radial orbital of He.
The two-electron radial wave functions of E§) at time
where t=0 are constructed according to
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LS 1 5.
Pi5(12,73,1=0)= /5[ Gy,1,(r2) do) ;P1s(r3)

+(=1)%80),P1s(12) Giy,(1a) ],
(13

wherek is the linear momentum an@,(r) is a radial wave
packet. The factor € 1)S assures overall antisymmetry for
the two-electron wave function. We employ a simple “stag-
gered leapfrog” approximatiofl6] to time propagate the
time-dependent close-coupling equations for ea&hsym-
metry.

The two-electron radial wave functions at a timeT
following the collision are projected onto products of single
particle continuum radial orbitals to yield the momentum
space probabilities given by
szs'zks's
2

:’ fo drzfo dr3sk2'2(r2)3k3'3(r3)Plei(rzyfs.t=T) _
(14
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TABLE I. Partial ionization cross sections (18 cn?) for he-
lium from the time-dependent close-coupling methédi¢ the in-
cident energy and is the total angular momentym

L E=75eV E=100eV E=150eV E=200eV
0 2.26 1.86 1.27 0.92
1 3.75 3.23 2.34 1.76
2 6.73 5.55 3.76 2.72
3 6.65 6.18 4.63 3.47
4 5.23 5.56 4.72 3.74
5 3.57 4.36 4.25 3.60
6 2.32 3.21 3.58 3.26

convergent in lattice box size for extracting ejected energy
differential cross sectiorf4 3]. In the latter case, we strongly
recommend the continuum state projection method outlined
above.

IIl. CROSS-SECTION RESULTS

For electron scattering from a helium atom, the time-
dependent close-coupled partial differential equatipsee

In the (kp,ks) plane the momentum space probabilities aregq. (7)] are solved on a 250250 point lattice with each

peaked along the line of total enerdy=ks/2+k3/2=k2/2
—1p, wherel, is the ionization potential of the atom. The
diagonalization oh(r) of Eq. (12) on the lattice determines
the density of states. Thé{,ks) plane may be divided into

radial direction from 0 to 50 a.u. spanned by a uniform mesh
with spacingAr=0.2 a.u. The initial radial wave packet,
Gy (r) of Eq. (13), is centered at 25 a.u. from the nucleus
with a full width at half maximum of 6.25 a.u. Propagation

angular segments specified by the hyperspherical angléimes depend solely on the initial incident energys kS/Z,

tan(0) =ks/k,. The differential cross section in hyperspheri-
cal angle is given by

B TS aL+1)(25+1) E > pis
A0 2kiA 0TS Kp.K3 1513 kal

2Kal3?

(19

from a total time ofT=23 a.u. forE=75 eV toT=15 a.u.

for E=200 eV. The actual number of numerical time steps
depends on the initial incident energy and tHi& symmetry,
from 11500 time steps fot3l symmetry atE=75 eV to
3000 time steps fot>S symmetry atE =200 eV. The num-
ber of coupled channel$ A ; values ranged from 4 for!3S
symmetry to 16 for'® symmetry. For example, the 12

where the sum over linear momentums is restricted to beoupled channels fot3F symmetry havel,l; values of

within a certain angular sectdré given by

|

The differential cross section in ejected energytkg/Z) is
given by

Ks

ka

Ao
<0+ —.

] At9<t 1
an >

5 (16)

do B 1 do 1
de  Kokz d@’ (a7
and the total cross section is given by
_ (g 18
o= ,de €. (18)

(0!3)1 (310)1 (1!2)! (2!1)1 (114)1 (4!1)1 (213)1 (312)! (2!5)1 (512)1
(3,4, and (4,3, in accordance with rules governing the ad-
dition of angular momenta. The full lattice was partitioned
over 25 distributed memory computing processors, so that
each processor time evolved in parallel the coupled radial
wave functions on a 25010 point sublattice. The only com-
munication needed is that of the kinetic energy on the bound-
aries.

Partial ionization cross sections for electron scattering
from helium calculated in the time-dependent close-coupling
method are presented in Table I. We also carried out time-
independent distorted-wave calculations based on a triple
partial-wave expansion of the first-order perturbation theory
scattering amplitude, including both direct and exchange
terms. The incident and scattered electrons are calculated in a
VN potential, while the bound and ejected electrons are cal-

Through unitarity considerations, a bound-state projectiorculated in avN~?! potential[17]. The bound electron is rep-
operator may also be used to extract ionization probabilitiesesented by a Hartree-Fock ground-state radial orbital of He,

from the two-electron radial wave functions at a timeT
following the collision. The method is more efficient for ex-

and the phase between the direct and exchange terms in the
scattering amplitude is determined by the angular algebra

tracting total integrated cross sections, but is very slowly(the so-called “natural” phagePartial ionization cross sec-
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TABLE II. Partial ionization cross sections (18 cn?) for he-
lium from the distorted-wave with exchange meth&di¢ the inci-
dent energy andl is the total angular momentym

S
C
L E=75eV E=100eV E=150eV E=200 eV E
0 252 1.96 1.16 0.75 s
1 2.72 2.39 1.68 1.21 2
2 9.24 6.85 3.96 2.57 ®
3 8.14 7.34 5.03 3.48 g
4 6.05 6.38 5.12 3.83 ©
5 4.13 4.99 4.64 3.75
6 2.66 3.68 3.90 3.40 00 20 20 60 80
7-30 4.37 8.54 13.84 15.76 Ejected Energy (eV)
0-30  39.82 42.12 39.34 34.73

FIG. 2. Ejected-energy differential electron-impact ionization
cross section for helium at an incident energy of 100 eV. Solid
tions for electron scattering from helium for this particular curve: time-dependent close-coupling method, topped up at high
distorted-wave method are presented in Table 1. The overafngular momentum with distorted-wave results, dashed curve:
agreement between the perturbative and nonperturbative Céjl_storted-wave with exchange metf]od, solid circles: experimental

; S : easurement23] (1.0 Mb=1.0x 10" 8cn?¥).
culations for the partial ionization cross sections for electror"
scattering from helium is reasonably good. For other atoms,
and for other formulations of the first-order distorted-wave.

method, we do not expect to find such good agreement, e _nizatic;]n cross ?ection gf he!iqm.ISubsequent experiments
pecially for low total angular momentum. 21,22 have confirmed the original measurements reported

Total ionization cross sections for electron scattering fromby yggtfg_iﬁral' [dliff]érential ionization cross sections. at an
helium are presented in Fig. 1. The solid and dashed curves . J ay . '

. . . . incident energy of 100 eV, for electron scattering from he-

are perturbative distorted-wave results with and without ex

) . . . lium are presented in Fig. 2. The time-dependent close-
change terms in the scattering amplitude. The solid Squarecsoupling results, topped up at high angular momentum with
are hybrid results: nonperturbative close coupling lferO '

: | ) distorted-wave results, are given by the solid curve, while the
—6 and perturbative distorted wave for=7—-30. We find  gigtorted-wave with exchange results are given by the dashed
excellent agreement between the hybrid results and the e

: ) %urve. Both theoretical predictions are in excellent agree-
perimental measurements of Montageteal. [18] The time- o+ \vith the “derived” experimental measurements of

dependent close-coup_ling cross sections, topped up at hi_géhyn and Sharg23]. The “raw” experimental measure-
angular momentum with distorted-wave results, are also igyants are for the double differential cross section. We inte-

excellent agreement with previous conve_rged close—couplingrated the “raw” measurements over the scattering angle to
[19] andR-matrix pseudostatgg0] calculations for the total - ohiain single differential cross sections in ejected energy and

then redefined the cross section for a range of (€ toy

50 ‘ ‘ dividing by 2. A further integration over ejected energy
& I yielded a total ionization cross section at 100 eV that was
40 25% larger than the experimental normalization value of
2 3.54x 10 "cn? [23]. We then renormalized the single dif-
é ferential cross sections so that their integrated value is indeed
=% 3.54x10 Ycm?. The resulting “derived” measurements
2 are the ones compared to theory in Fig. 2. Once the experi-
@ 20 mental normalization is corrected, the time-dependent close-
g coupling results, previous converged close-coupling results
O 49! [24], and the Shyn and Sharp experimental measurements are
all found to be in excellent agreement.
0 ‘ ; ;
0 50 100 150 200

Incident Energy (eV)
IV. SUMMARY
FIG. 1. Total electron-impact ionization cross section for he-

lium. Solid squares: time-dependent close-coupling method, topped Direct ionization cross sections for electron scattering
up at high angular momentum with distorted-wave results, solidrom a helium atom are calculated using an extension of a
curve: distorted-wave with exchange method, dashed curvelime-dependent close-coupling method developed for one-
distorted-wave with no exchange method, solid circles: experimenelectron target§4,7]. The resulting close-coupled partial dif-

tal measuremen{d 8] (1.0 Mb=1.0x 10" *8cn?). ferential equations for the two-electron radial wave functions
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