
PHYSICAL REVIEW A, VOLUME 61, 052707
Time-dependent close-coupling calculations for the electron-impact ionization of helium
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Electron-impact ionization cross sections for helium are calculated using time-dependent close-coupling
theory. In a frozen-core approximation, the wave function for the three-electron system is expanded in terms of
two-electron wave functions which fully describe the ejected and scattered electrons at all times following the
collision. The resulting close-coupled partial differential equations for the two-electron radial wave functions
include a direct and a local approximation to the exchange interactions with the remaining core electron. By
direct projection of the time-dependent wave functions onto continuum lattice eigenstates, both ejected energy
differential and total integrated cross sections are extracted. The agreement between theory and previous
experimental measurements for helium is excellent.

PACS number~s!: 34.80.Dp
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I. INTRODUCTION

For many atoms and their ions the total electron-imp
ionization cross section is dominated by the direct ‘‘knoc
out’’ ionization process. The final state of such a direct p
cess finds two electrons moving in the long-range Coulo
field of a third body. Only in the last few years have nonp
turbative theoretical collision methods been developed wh
can successfully treat the three-body Coulomb continu
problem and thus make accurate predictions for direct i
ization cross sections. For electron scattering from a hyd
gen atom, the converged close coupling@1#, the hyperspheri-
cal close-coupling@2#, the R-matrix pseudostates@3#, the
time-dependent close coupling@4#, and the exterior complex
scaling @5# methods have all produced total integrated io
ization cross sections in excellent agreement with exp
mental measurements@6#.

Recently the time-dependent close-coupling method
been used to calculate the direct electron-impact ioniza
cross section for the quasi-one-electron targets found in
lithium @7,8# and sodium@9# isoelectronic sequences. A
though the time-dependent close-coupling results are in
sonably good agreement with the converged close-coup
andR-matrix pseudostates results, the overall agreement
tween nonperturbative theory and some of the older exp
ments is less than satisfactory. New experiments on B21 @10#
and Al21 @11# are now in much better agreement with t
predictions of the nonperturbative methods.

In this paper we extend the formulation of the tim
dependent close-coupling method to calculate the di
electron-impact ionization cross section of helium. This is
important first step in the eventual application of this partic
lar nonperturbative method to the direct ionization of
open and closed shell atomic systems. In a frozen core
proximation, the wave function for the three-electron syst
is expanded in terms of two-electron wave functions wh
fully describe the ejected and scattered electrons at all ti
following the collision. Reduction of the time-depende
Schrödinger equation yields coupled sets of partial differe
tial equations for two-electron radial wave functions whi
include a direct and a local approximation to the excha
interactions with the remaining core electron. Through u
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tarity considerations, total integrated cross sections may
obtained by direct projection of the time-dependent wa
functions onto either bound or continuum lattice eigensta
In contrast to previous work on theL50 model for hydrogen
@12,13#, we now find that ejected energy differential cro
sections are most effectively calculated by direct project
onto the continuum lattice eigenstates. The new extensio
the time-dependent close-coupling method is presente
Sec. II, the integrated and differential ionization cross s
tions for helium are presented in Sec. III, and a brief su
mary is found in Sec. IV.

II. THEORY

For electron scattering from a helium atom, the nonre
tivistic Hamiltonian~in atomic units! is given by

H5(
i 51

3 S 2
1

2
¹ i

22
Z

r i
D1 (

i , j 51

3
1

urW i2rW j u
, ~1!

whererW i are the coordinates of the electrons andZ52 is the
atomic number. The total wave function for a givenLS sym-
metry may be expanded in coupled spherical harmonics:

CLS~xW1 ,xW2 ,xW3 ,t !

5A12A13A23(
L,S

(
l 1 ,l 2 ,l 3

Pl 1l 2l 3LS
LS ~r 1 ,r 2 ,r 3 ,t !

r 1r 2r 3

3W~„l 1 ,~ l 2 ,l 3!L…LML!W~„s1 ,~s2 ,s3!S…SMS!,

~2!

where the three electron coupling operatorsWare themselves
coupled products involving two electron coupling operato
given by

W„~ l ,l 8!LML…5 (
ml ,ml 8

Cmlml 8ML

ll 8L Ylml
~V!Yl 8ml 8

~V8!,

~3!

and
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W„~s,s8!SMS…5 (
ms ,ms8

Cmsms8MS

ss8S xms
~s!xms8

~s8!. ~4!

In Eqs. ~2!–~4!, Ai j is an antisymmetrization operato
Cm1m2m3

l 1l 2l 3 is a Clebsch-Gordan coefficient,Ylm(V) is a

spherical harmonic, andxm(s) is a spinor. Reduction of the
time-dependent Schro¨dinger equation yields a set of time
dependent close-coupled partial differential equations
eachLS symmetry involving the three dimensional radi
wave functions,Pl 1l 2l 3LS

LS (r 1 ,r 2 ,r 3 ,t), of Eq. ~2!. The full

three-dimensional radial solutions are needed for elec
double ionization of helium near threshold@14#, so that the
correlated quantal dynamics of three free electrons mov
in the long-range Coulomb field of a fourth body may
accurately described.

For electron single ionization of helium near thresho
the total wave function for a givenLS symmetry may be
expanded in coupled spherical harmonics using a frozen
approximation:

CLS~xW1 ,xW2 ,xW3 ,t !5A12A13(
L,S

Pn1l 1
~r 1!

r 1
cLS~xW2 ,xW3 ,t !

3W„~ l 1 ,L !LML…W„~s1 ,S!SMS…,

~5!

where the two-electron wavefunctions are given by

cLS~xW2 ,xW3 ,t !5A23(
l 2 ,l 3

Pl 2l 3
LS ~r 2 ,r 3 ,t !

r 2r 3

3W„~ l 2 ,l 3!LML…W(~s2 ,s3!SMS). ~6!

The two-dimensional radial solutions are needed so that
correlated quantal dynamics of two free electrons moving
the long-range Coulomb field of a third body may be ac
rately described. If we restrict ourselves to electron scat
ing from the ground state of helium~i.e., n1l 151s) and as-
sume no exchange scattering with the core electron~i.e.,
A125A1351), then reduction of the time-dependent Sch¨-
dinger equation yields the following set of time-depend
close-coupled partial differential equations for eachLS sym-
metry:

i
]Pl 2l 3

LS ~r 2 ,r 3 ,t !

]t
5Tl 2l 3

~r 2 ,r 3!Pl 2l 3
LS ~r 2 ,r 3 ,t !

1 (
l 28 ,l 38

Ul 2l 3 ,l
28 l

38
L

~r 2 ,r 3!Pl
28 l

38
LS

~r 2 ,r 3 ,t !,

~7!

where
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l 2~ l 211!

2r 2
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l 3~ l 311!

2r 3
2

2
Z

r 2
1VD~r 2!2

Z

r 3
1VD~r 3!, ~8!

and the coupling operator is given by

Ul 2l 3 ,l
28 l

38
L

~r 2 ,r 3!

5~21!L1 l 31 l 38A~2l 211!~2l 2811!~2l 311!~2l 3811!

3(
l

r ,
l

r .
l11 S l 2 l l 28

0 0 0
D S l 3 l l 38

0 0 0
D H L l 38 l 28

l l 2 l 3
J .

~9!

In Eq. ~6! the ‘‘direct’’ potential terms are given by

VD~r !5E
0

` P1s
2 ~r 1!

max~r 1 ,r !
dr1 ~10!

and act to shield the outer active electrons~with coordinates
rW2 and rW3) from the full Coulomb attraction of the nucleus

If the antisymmetrization operatorsA12 and A13 are in-
cluded in the total wave function of Eq.~5!, the resulting
time-dependent close-coupling equations for s-wave c
scattering will include further ‘‘exchange’’ potential terms
Tl 2l 3

(r 2 ,r 3) of Eq. ~8!. We approximate those nonloca
terms using a semiempirical potential given by@15#

VX~r !52aS 24r1s~r !

p D 1/3

, ~11!

wherea is a parameter determined by removal energies
r1s(r )5P1s

2 /4pr 2 is the radial probability density.
The frozen-core radial orbital of Eq.~5! is calculated as

the hydrogenic ground state radial orbital of He1. This or-
bital provides a precise description for the final state of
ionized target with two escaping electrons. A set of sin
particle radial orbitalsP̄nl(r ), are obtained by diagonaliza
tion of the single particle Hamiltonian given by

h~r !52
1

2

]2

]r 2 1
l ~ l 11!

2r 2 2
Z

r
1VD~r !1VX~r !. ~12!

The parametera in the exchange term is adjusted so that t
single particle energies for each angular momentum are
reasonable agreement with the configuration-average ex
mental spectrum. TheP̄1s(r ) radial orbital with energye1s
5224.6 eV is very similar to the Hartree-Fock ground sta
radial orbital of He.

The two-electron radial wave functions of Eq.~6! at time
t50 are constructed according to
7-2
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Pl 2l 3
LS ~r 2 ,r 3 ,t50!5A1

2
@Gk2l 2

~r 2!d0,l 3
P̄1s~r 3!

1~21!Sd0,l 2
P̄1s~r 2!Gk3l 3

~r 3!#,

~13!

wherek is the linear momentum andGkl(r ) is a radial wave
packet. The factor (21)S assures overall antisymmetry fo
the two-electron wave function. We employ a simple ‘‘sta
gered leapfrog’’ approximation@16# to time propagate the
time-dependent close-coupling equations for eachLS sym-
metry.

The two-electron radial wave functions at a timet5T
following the collision are projected onto products of sing
particle continuum radial orbitals to yield the momentu
space probabilities given by

Pk2l 2k3l 3
LS

5U E
0

`

dr2E
0

`

dr3P̄k2l 2
~r 2!P̄k3l 3

~r 3!Pl 2l 3
LS ~r 2 ,r 3 ,t5T!U2

.

~14!

In the (k2 ,k3) plane the momentum space probabilities a
peaked along the line of total energyE5k2

2/21k3
2/25k0

2/2
2I p , whereI p is the ionization potential of the atom. Th
diagonalization ofh(r ) of Eq. ~12! on the lattice determine
the density of states. The (k2 ,k3) plane may be divided into
angular segments specified by the hyperspherical an
tan(u)5k3 /k2. The differential cross section in hypersphe
cal angle is given by

Ds

Du
5

p

2k0
2Du(L,S

~2L11!~2S11! (
k2 ,k3

8

(
l 2 ,l 3

Pk2l 2k3l 3
LS ,

~15!

where the sum over linear momentums is restricted to
within a certain angular sectorDu given by

u2
Du

2
,tan21S k3

k2
D,u1

Du

2
. ~16!

The differential cross section in ejected energy (e5k2
2/2) is

given by

ds

de
5

1

k2k3

ds

du
, ~17!

and the total cross section is given by

s5E
0

Eds

de
de. ~18!

Through unitarity considerations, a bound-state project
operator may also be used to extract ionization probabili
from the two-electron radial wave functions at a timet5T
following the collision. The method is more efficient for e
tracting total integrated cross sections, but is very slow
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convergent in lattice box size for extracting ejected ene
differential cross sections@13#. In the latter case, we strongl
recommend the continuum state projection method outli
above.

III. CROSS-SECTION RESULTS

For electron scattering from a helium atom, the tim
dependent close-coupled partial differential equations@see
Eq. ~7!# are solved on a 2503250 point lattice with each
radial direction from 0 to 50 a.u. spanned by a uniform me
with spacingDr 50.2 a.u. The initial radial wave packe
Gkl(r ) of Eq. ~13!, is centered at 25 a.u. from the nucle
with a full width at half maximum of 6.25 a.u. Propagatio
times depend solely on the initial incident energy,E5k0

2/2,
from a total time ofT523 a.u. forE575 eV toT515 a.u.
for E5200 eV. The actual number of numerical time ste
depends on the initial incident energy and theLS symmetry,
from 11 500 time steps for1,3I symmetry atE575 eV to
3000 time steps for1,3S symmetry atE5200 eV. The num-
ber of coupled channels (l 2l 3 values! ranged from 4 for1,3S
symmetry to 16 for 1,3I symmetry. For example, the 1
coupled channels for1,3F symmetry havel 2l 3 values of
~0,3!, ~3,0!, ~1,2!, ~2,1!, ~1,4!, ~4,1!, ~2,3!, ~3,2!, ~2,5!, ~5,2!,
~3,4!, and ~4,3!, in accordance with rules governing the a
dition of angular momenta. The full lattice was partitione
over 25 distributed memory computing processors, so
each processor time evolved in parallel the coupled ra
wave functions on a 250310 point sublattice. The only com
munication needed is that of the kinetic energy on the bou
aries.

Partial ionization cross sections for electron scatter
from helium calculated in the time-dependent close-coupl
method are presented in Table I. We also carried out tim
independent distorted-wave calculations based on a tr
partial-wave expansion of the first-order perturbation the
scattering amplitude, including both direct and exchan
terms. The incident and scattered electrons are calculated
VN potential, while the bound and ejected electrons are
culated in aVN21 potential@17#. The bound electron is rep
resented by a Hartree-Fock ground-state radial orbital of
and the phase between the direct and exchange terms i
scattering amplitude is determined by the angular alge
~the so-called ‘‘natural’’ phase!. Partial ionization cross sec

TABLE I. Partial ionization cross sections (10218 cm2) for he-
lium from the time-dependent close-coupling method (E is the in-
cident energy andL is the total angular momentum!.

L E575 eV E5100 eV E5150 eV E5200 eV

0 2.26 1.86 1.27 0.92
1 3.75 3.23 2.34 1.76
2 6.73 5.55 3.76 2.72
3 6.65 6.18 4.63 3.47
4 5.23 5.56 4.72 3.74
5 3.57 4.36 4.25 3.60
6 2.32 3.21 3.58 3.26
7-3
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tions for electron scattering from helium for this particul
distorted-wave method are presented in Table II. The ove
agreement between the perturbative and nonperturbative
culations for the partial ionization cross sections for elect
scattering from helium is reasonably good. For other ato
and for other formulations of the first-order distorted-wa
method, we do not expect to find such good agreement,
pecially for low total angular momentum.

Total ionization cross sections for electron scattering fr
helium are presented in Fig. 1. The solid and dashed cu
are perturbative distorted-wave results with and without
change terms in the scattering amplitude. The solid squ
are hybrid results: nonperturbative close coupling forL50
26 and perturbative distorted wave forL57230. We find
excellent agreement between the hybrid results and the
perimental measurements of Montagueet al. @18# The time-
dependent close-coupling cross sections, topped up at
angular momentum with distorted-wave results, are also
excellent agreement with previous converged close-coup
@19# andR-matrix pseudostates@20# calculations for the tota

TABLE II. Partial ionization cross sections (10218 cm2) for he-
lium from the distorted-wave with exchange method (E is the inci-
dent energy andL is the total angular momentum!.

L E575 eV E5100 eV E5150 eV E5200 eV

0 2.52 1.96 1.16 0.75
1 2.72 2.39 1.68 1.21
2 9.24 6.85 3.96 2.57
3 8.14 7.34 5.03 3.48
4 6.05 6.38 5.12 3.83
5 4.13 4.99 4.64 3.75
6 2.66 3.68 3.90 3.40

7-30 4.37 8.54 13.84 15.76
0-30 39.82 42.12 39.34 34.73

FIG. 1. Total electron-impact ionization cross section for h
lium. Solid squares: time-dependent close-coupling method, top
up at high angular momentum with distorted-wave results, s
curve: distorted-wave with exchange method, dashed cu
distorted-wave with no exchange method, solid circles: experim
tal measurements@18# (1.0 Mb51.0310218 cm2).
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ionization cross section of helium. Subsequent experime
@21,22# have confirmed the original measurements repor
by Montagueet al. @18#.

Ejected-energy differential ionization cross sections, at
incident energy of 100 eV, for electron scattering from h
lium are presented in Fig. 2. The time-dependent clo
coupling results, topped up at high angular momentum w
distorted-wave results, are given by the solid curve, while
distorted-wave with exchange results are given by the das
curve. Both theoretical predictions are in excellent agr
ment with the ‘‘derived’’ experimental measurements
Shyn and Sharp@23#. The ‘‘raw’’ experimental measure
ments are for the double differential cross section. We in
grated the ‘‘raw’’ measurements over the scattering angle
obtain single differential cross sections in ejected energy
then redefined the cross section for a range of 0 toE by
dividing by 2. A further integration over ejected energ
yielded a total ionization cross section at 100 eV that w
25% larger than the experimental normalization value
3.54310217cm2 @23#. We then renormalized the single di
ferential cross sections so that their integrated value is ind
3.54310217cm2. The resulting ‘‘derived’’ measurement
are the ones compared to theory in Fig. 2. Once the exp
mental normalization is corrected, the time-dependent clo
coupling results, previous converged close-coupling res
@24#, and the Shyn and Sharp experimental measurement
all found to be in excellent agreement.

IV. SUMMARY

Direct ionization cross sections for electron scatter
from a helium atom are calculated using an extension o
time-dependent close-coupling method developed for o
electron targets@4,7#. The resulting close-coupled partial di
ferential equations for the two-electron radial wave functio

-
ed
d
e:
n-

FIG. 2. Ejected-energy differential electron-impact ionizati
cross section for helium at an incident energy of 100 eV. So
curve: time-dependent close-coupling method, topped up at h
angular momentum with distorted-wave results, dashed cu
distorted-wave with exchange method, solid circles: experime
measurements@23# (1.0 Mb51.0310218 cm2).
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describing the ejected and scattered electrons contain a d
and a local approximation to the exchange interactions w
the remaining core electron. Total integrated and ejected
ergy differential ionization cross sections are found to be
excellent agreement with experimental measurements.
ture plans include calculations of other positive and nega
ions in the helium isoelectronic sequence, as well as fur
extensions of the theory for the treatment of other open
closed shell atomic systems.
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