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High-order impulse approximation for calculating pulsed-field recombination

F. Robicheaux
Department of Physics, Auburn University, Auburn, Alabama 36849

and FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
~Received 10 February 1999!

In a recent paper, Benskyet al. @Phys. Rev. Lett.81, 3112 ~1998!# experimentally reattached an outgoing
continuum electron to an ion using a pulsed electric field. Quantum and classical calculations are presented that
illustrate the importance of various mechanisms for this reattachment process. The quantum calculations are
based on a high-order impulse approximation. Both calculations support the idea that after an initial rapid
dispersal, the bound part of the wave packet reforms after one Rydberg period; it continues to reform out to
long times. A quantum calculation of the electron flux ejected from Ca Rydberg states in a static electric field
suggests that classical calculations should not accurately describe pulsed-field recombination in the presence of
a static field unless the atom is H or the fields are very weak; this observation agrees with experiment.
@S1050-2947~99!06907-3#

PACS number~s!: 32.60.1i, 32.80.Rm, 32.80.Fb
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I. INTRODUCTION

There have been many recent experimental and theo
cal investigations into the action of a half cycle pulse of
electric field on a Rydberg electron@1–25#. The pulsed elec-
tric fields can be used to control some aspects of the e
tron’s motion and also can be used to probe the behavio
a Rydberg wave packet. The theoretical studies of this t
of system have utilized both classical and fully quantu
techniques. For low values of the principal quantum numb
fully quantum techniques are used since the discrete na
of the bound levels is important. However, for high values
the principal quantum number, a purely classical approxim
tion can accurately describe the behavior of these Rydb
systems kicked by a half cycle pulse since there are m
nodes in the wave function~thus the correspondence princ
pal is applicable!. Often, the parameter being measured
calculated involves integration over a large part of the wa
function; this strongly reduces interference effects wh
greatly increases the accuracy of purely classical calc
tions. Thus, classical calculations are accurate for m
lower principal quantum numbers than might be expecte

Although classical methods should be accurate in m
cases, quantum calculations should also be performed w
ever possible. If both types of calculations are possible,
provides a double check on the theory since a quantum
culation does include interference effects which could be
portant, while classical calculations do not suffer from so
of the problems of quantum calculations. For example, qu
tum calculations often suffer from convergence problem
basis sets become too large to allow the description o
particular experiment. This reasoning can also be reve
and leads to the implication that if there is substantial d
agreement between the quantum and classical results
there may be interesting quantum effects governing the
namics.

In this paper, the results of classical and fully quantu
calculations are presented for pulsed field recombination
electrons and ions. Also, I describe the utilization of a s
PRA 601050-2947/99/60~1!/431~8!/$15.00
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stantially different technique for the quantum calculati
than is usually employed: the action of the half cycle pu
on the electron is obtained by continuing the impulse
proximation to high order until convergence is achieved@6#.
Thus no basis functions are employed in the time propa
tion except for the Rydberg eigenstates in zero field. T
coefficients of the eigenstates are obtained through nume
integration of two-dimensional functions. As a demonst
tion of the power of the method, the results presented in S
III A model the behavior of a wave packet with princip
quantum number up to 180 and angular momentum as la
as 150.

The qualitative effect of a half cycle pulse on a Rydbe
electron has been discussed many times. If the pulse act
a short enough time, the main effect is to give the electro
‘‘kick’’ that changes its momentum by a fixed amount ind
pendent of its distance from the nucleus. For the part of
electron wave far from the nucleus, effects from the fin
width of the pulse are thought to be small. The next ord
change arising from the finite width is the change in t
electron’s position due to the action of the pulse. A hig
order impulse approximation can be developed, using
width of the pulse as the expansion parameter, and can
made to converge in certain cases. Each of the terms in
expansion has a physical meaning~e.g., the lowest order
term is the impulse! which can serve as a guide to the app
cability of impulse ideas to other systems.

Also, it will be obvious that if this series rapidly con
verges then very little information about the pulse is im
pressed on the wave function. This is analogous to the ef
of a short-range potential in scattering problems. At low e
ergy, very little information about the potential is obtaine
by scattering; roughly speaking only the depth and the ra
of the potential are important. For the action of a sh
electric-field pulse on an electron, only the change in
electron’s momentum and the change in position due to
pulse are important; no other information about the pulse
important if the width is short enough.
431 ©1999 The American Physical Society
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432 PRA 60F. ROBICHEAUX
II. HIGH-ORDER IMPULSE APPROXIMATION

The time-dependent Schro¨dinger equation for a Rydber
electron subjected to a pulsed electric field in thez direction
has the form

i
]c

]t
5Fp2

2
1V~r !2F~ t !zGc ~1!

whereV(r ) is a static potential; for the situation discussed
Sec. III A, the static potential has an asymptotic Coulo
form. ~Atomic units are used throughout this paper.! The
most typical method employed for solving this equation is
expansion ofc in a time-independent basis. Calculating t
time-dependent wave function thus reduces to a brute fo
numerical propagation of the coefficients of the basis
The advantage of using this method is that all quantum
fects are automatically included in the calculation. There
two disadvantages of this method. Often, the wave func
cannot be converged with current computational resour
Also, it is often not possible to understand why the wa
function behaves as it does which makes it difficult to exte
the insight gained in one situation to other situations. F
example, this method cannot be used for the experime
parameters in Ref.@25# since the size of the basis would b
prohibitively large.

A completely different quantum method can be made
work for one of the experiments described in Ref.@25#. This
method is essentially based on a transformation from
length to the acceleration gauge@6#. It can also be thought o
as a systematic method for carrying the impulse approxi
tion to higher order. This method only works when the d
ration of the electric field is small. To be specific, we su
pose that the electric-field pulse is essentially zero excep
the range of timet1,t,t2 and that the pulse durationT
[t22t1 is small with the restriction onT given below.

The derivation of the wave function after the electric fie
is given in the Appendix. During and just after the pulse,
wave function is given by

C~r ,t !.exp@2 iw~ t !#exp@ iDpz~ t !z#

3exp@2 iDz~ t !p#exp@2 id~r ,t !#c0~r ,t !, ~2!

wherec0 is the wave function if there were no electric-fie
pulse and

Dpz~ t !5E
2`

t

F~ t8!dt8, ~3!

w~ t !5E
2`

t

Dpz
2~ t8!dt8/2, ~4!

Dz~ t !5E
2`

t

Dpz~ t8!dt8, ~5!

d~r ,t !5~]V~r !/]z!E
2`

t

Dz~ t8!dt8. ~6!
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In the exponentials in Eq.~2!, pz is the momentum operato
in the z direction (2 i ]/]z) and z is the position in thez
direction. There is a physical interpretation to each of
exponentials in Eq.~2!. The exponential with theDpz gives
the change in the momentum due to the impulse from
pulsed electric field. The exponential with theDz gives the
change in the position due to the pulsed electric field. T
term with w(t) gives the change in phase due to the tem
rary change in energy during the pulse; this term has
physical effect on the wave function since it only gives
overall phase change after the pulse. The term with
d(r ,t) gives the change in the change in momentum due
the acceleration of the electron from the static potential d
ing the electric-field pulse; this is the only term in Eq.~2!
that depends on the position of the electron.

The size of the different terms can be estimated from
maximum of the electric-field pulseFmax and the duration of
the pulse,T. The impulseDpz;FmaxT. The change in posi-
tion due to the impulse isDz;FmaxT

2. The change in the
change in momentum due to the Coulomb field
;FmaxT

3/r 2. The convergence and applicability of th
higher-order impulse approximation depends on the size
the terms relative to the parameters being measured.

The exponential withd must be included when the chang
in d across the nonzero part ofc0 is greater than;1. For
example, reasonable accuracy can be obtained when on
small fraction of the wave function is withinAFmaxT

3 of the
nucleus. Whether or not it is necessary to include the ex
nential with Dz is a difficult question that depends on th
situation being investigated. In some experiments,
change in energy due to the action of the pulsed field is
only important parameter; for this situation, one can estim
the change in potential energy due to theDz term and com-
pare to the change in kinetic energy due to the impulse
some experiments, the final-state distribution is import
and can sensitively depend on whether or notDz is included.

To gain some intuition about the sizes of terms for a
alistic experiment, I used the parameters from Ref.@25#. For
Fmax52100 V/cm54.131027 a.u. andT51 ps54.13104

a.u., the impulse is 0.017 a.u., the change in position is
a.u., and the change in the momentum is;2.83107/r 2. For
these parameters, the higher-order impulse approxima
will work well if the electron is further than 5300 a.u. from
the nucleus. For the experiments in Ref.@25#, the effect from
d is negligibly small but the effect from the change in po
tion Dz is noticeable.

If this method converges, it implies that very little info
mation about the pulsed electric field is impressed on
wave function. For example, suppose that the third-or
term d(r ,t) is negligible. For this case, the only two prope
ties of the pulsed electric field that affect the wave functi
are the impulseDpz and the change in positionDz: the only
important aspects of the field is its time integral and t
double integral

Dz~ t !5E
2`

t

dt8E
2`

t8
dt9F~ t9!. ~7!

This is analogous to low-energy scattering from a sho
range potential where the scattering cross section only
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PRA 60 433HIGH-ORDER IMPULSE APPROXIMATION FOR . . .
pends on the strength and the range of the potential. W
the impulse approximation is applicable, the final results
not depend on the details of the pulse but only depend
two parameters:Dpz(t2) andDz(t2).

The wave function at any time after the electric-fie
pulse (t.t2) may be obtained by projecting the wave fun
tion onto the eigenstates of the static potential. Thus, al
the numerical effort is condensed into numerically evaluat
integrals. The eigenstates are defined in the usual way

Fp2

2
1V~r !Gcn~r !5Encn~r !, ~8!

where cn are the orthonormal eigenstates andEn are the
eigenenergies. The wave function at any time after the p
is given by

C~r ,t !5(
n

cn~r !Cn exp@2 iEn~ t2t2!#, ~9!

where the time-independent coefficients are given by

Cn5E cn* ~r !C~r ,t2!dr . ~10!

The integrations can be quite time consuming but do not
much memory.

This method can be implemented in several ways t
incorporate different levels of approximation and insight. F
example, if the integrals in Eqs.~9! and ~10! are performed
using WKB wave functions and the stationary phase
proximation, then a semiclassical approximation resu
which connects the evolution of the wave function into d
ferent regions of space with classical trajectories. At the m
accurate level, the eigenstates and wave functions are
tained exactly with the numerical integrations performed
ing small radial step sizes and high-order integration te
niques. In the current implementation, the radial eigenst
are calculated exactly for zero and one nodes in the ra
direction; for a higher number of nodes, a uniform WK
approximation@26# based on the Milne method was us
with the Airy function from each turning point bein
matched at the midpoint of the classically allowed region

III. RESULTS

The ideas of the previous section were used to analyze
two experimental arrangements described in Ref.@25#.

A. Pulsed-field recombination:F static50

In Ref. @25#, an interesting experimental arrangeme
was realized. Low-energy continuum electrons were p
duced through the interaction of a pulsed laser (;1.5 ps
width! with Ca atoms in the 4s4p 1P1

o state. This creates
a radially outward moving shell of electron probability. Th
an outgoing electron at the point (x,y,z)
5r (cosf sinu, sinf sinu, cosu) has momentum px
5p cosf sinu, py5p sinf sinu, and pz5p cosu. After a
short delay, a half cycle pulse of electric field (;1 ps width!
interacted with the outgoing electron. This electric-fie
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pulse affects the motion of the electron; the main effect is
give a momentum change to the electron:ẑDpz . After the
pulse, the electron’s momentum is (px ,py ,pz1Dpz) where
(px ,py ,pz) is the electron’s momentum before the puls
Depending on the strength of the half cycle pulse and
delay between the laser pulse and electric-field pulse, pa
the continuum wave can be stopped; thus changing par
the outgoing continuum wave into a bound-state Rydb
wave packet. An interesting aspect of this process is
only a small angular extent of the outgoing wave packet w
become bound when the impulse given to the electron
actly cancels the electron’s original momentum on thez axis.

Fully quantum basis set calculations are not possible
the parameters used in the experiment. However, the s
tion explored in the experiment was ideal for the use of
higher-order impulse approximation@6#. No part of the elec-
tron wave is near the nucleus. The parameters used in
calculation were: maximum field strength of 2103 V/cm, t
electric-field pulse of duration 1 ps at full width at half max
mum ~FWHM!, the laser pulse excited the electron only
outgoingd waves with thez component of angular momen
tum equal to zero, a central energy of 20 cm21 above the
ionization threshold, width of the laser pulse of 1.5 ps
FWHM, and the time of the maximum field strength w
13.2 ps after the laser excitation. For the Gaussian pulse
in the calculation, the impulseDpz50.018 a.u. and the
change in positionDz51116 a.u.

The results from the high-order impulse calculation we
compared to classical calculations. For the classical calc
tions, a Monte Carlo distribution of 320 000 trajectories w
used. The distribution was chosen to simulate all import
aspects of the quantum wave packet. The time of launch
the electron had a distribution in proportion to the tim
dependent intensity of the laser pulse. The trajectories h
distribution in energy proportional to the quantum ener
distribution. And the trajectories were launched with ze
angular momentum but with an angular distribution matc
ing the quantumd-wave angular distribution; the electron
initial angular momentum had no noticeable effect on
classical dynamics because the electron was extremely
from the nucleus during the electric-field pulse.

In Fig. 1, the real and imaginary part of the unperturb
radial wave function is plotted at timet2 to show the position
and wave length of the electron. All of the electron probab

FIG. 1. The real~solid line! and imaginary~dotted line! part of
the unperturbed radial wave function is plotted at a time just a
the half cycle pulse. The angular momentum is 2 and thez compo-
nent of the angular momentum is 0.
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434 PRA 60F. ROBICHEAUX
ity is further than 104 a.u. from the nucleus and the wav
length of the electron is roughly 350 a.u. The highest-or
correction termd is nowhere larger than 0.3 and it was foun
that convergence was achieved after includingDz.

The classical and quantum angular momentum distri
tion after the electric-field pulse are plotted in Fig. 2; t
distribution is only for the part of the packet with energy le
than 3.4 cm21 below threshold. The quantum distribution
plotted for the first-order impulse approximation,Dz50 and
d50, the second-order impulse approximation,d50, and
the third-order impulse approximation. There are a num
of important features of the distribution that should be n
ticed. The first feature is the rapid convergence of the
pulse approximation with order. The main shape is rep
duced with the lowest order impulse approximation; t
second-order impulse approximation gives an essentially
act result even though it only includes the change in mom
tum and change in position due to the electric-field pul
Another interesting feature is that less than 0.04% of
electron probability is in angular momentum less than
equal to 3; this means that the behavior of the wave after
electric-field pulse will be nearly independent of the ato
since it is only thel <3 partial waves that have nonze
quantum defect. A final interesting feature is the sharp cu
of the probability near angular momentum of 135 whi
arises from the physical impossibility of having angular m
mentum larger thanr maxpmax. The lowest order impulse ap
proximation extends further in angular momentum beca
the bound part of the packet is pushed back towards
nucleus in the higher-order approximation which slightly d
creasesr max and therefore the maximum angular momentu

In Fig. 3, the quantum and classical energy distributio
are plotted. As in Fig. 2, the first- through third-order im
pulse approximations are plotted for the quantum calcula
to show the convergence of the wave function. The quan
distributions are restricted to energies less than 3.4 cm21

below the threshold in order to model the recombined par
the wave packet. Notice how the sharp rise of the quan
distribution depends on the order of the impulse approxim
tion. The edge of the rise decreases in energy in going f
first to second order. The difference between these calc

FIG. 2. The angular momentum distribution after the half cy
pulse. The dotted line is the classical distribution. The dashed lin
the lowest order impulse approximation which only includes
change in momentum due to the pulse. The solid line is the sec
order impulse approximation which includes the change in mom
tum and the change in position due to the pulse. The third-o
approximation is indistinguishable from the second-order appr
mation in this figure.
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tions is the inclusion of theDz term. The edge of the rise
decreases in energy when including theDz term because this
part of the energy distribution is from the fraction of th
wave packet that is opposed by the half cycle pulse; this
of the packet loses energy becausepz is decreased and it als
loses energy in second order because that part of the pa
is moved back towards the nucleus.

One of the interesting features of Ref.@25# was a discus-
sion of the behavior of the bound part of the packet. In F
4 the quantum density is plotted for the part of the wa
function with energy less than 3.4 cm21 below the threshold
and in Fig. 5 the corresponding classical density is plott
Note the small angular extent of the packet and also the ra
dispersal of the packet at short times.~Because of the smal
angular features, both the quantum and classical densitie
r , cosu is integrated over the angular step.! The small angu-
lar extent just after the pulse can occur because of the la
distribution of angular momenta shown in Fig. 2. At lat
times, the packet reforms very near the position it was or
nally formed. The time at which it reforms can be estimat
from its original radial position,;1.33104 a.u. This dis-
tance corresponds to a principal quantum number,r;2n2, of
roughly 80; the Rydberg period corresponding to this prin
pal quantum number is roughly 80 ps. It was found@25# that
the packet reformed after one Rydberg period.

A striking feature of the probability distribution is th
good agreement between the classical and quantum cal
tions. Even quite subtle and strange features are reprodu
For example, the band of probability near cosu50 is visible
in both the quantum and classical 48 ps graph; also the
tails of the triangular structure near cosu51 is visible in both
the quantum and classical 120 ps graph. The only feature
reproduced by the classical calculation is some interfere
patterns; on the scale of these graphs the only visible oc
rence is in the 24 ps graph near cosu50.5 andr 51.53104

a.u. This suggests that simple semiclassical calculations
included interference would be able to account for all of t
features of the quantum calculation.

Figures 4 and 5 verify the striking behavior of the bou
part of the wave packet. In fact, calculations showed
wave packet continues to reform even out to very long tim
This shows that there is plenty of time after the initi
electric-field pulse to perform further manipulations on t
atom. For example, another electric-field pulse could k
the electron to the side and launch it in a circular orbit
another laser pulse could launch the inner electron t
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e
d-
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FIG. 3. Same as Fig. 2 but for the energy distribution.
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FIG. 4. After the half cycle pulse, the quantum spatial distribution for the part of the packet at energies less than 3.4 cm21 below the
ionization threshold. The times in the upper right corner are measured from just after the half cycle pulse. The packet quickly disp
reforms near times of 72 ps. The original angular extent is very small because there is a large angular momentum distribution.
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Rydberg wave packet thus making a double Rydberg w
packet.

B. Pulsed-field recombination:F staticÞ0

A second series of experiments in Ref.@25# gave ex-
tremely striking results considered from a general persp
tive. In these experiments, a Rydberg wave packet in Ca
initiated by a pulsed laser but with Ca in a static electric fi
of 212 V/cm. The wave packet was created at an energy s
that the electron could not escape in zero field but co
escape with the field on. For the results presented, the ce
energy of the packet corresponded to the zero-field posi
of n542 states. After a time delay, a pulsed electric field
;2700 V/cm and 1 ps duration was applied. The probabi
for causing the electron to remain attached to the atom
measured; the electron will remain attached to the ion if
Rydberg electron has less energy than22AF relative to the
zero-field threshold after the pulsed electric field.

The surprising feature of this experiment was that a c
sical simulation only produced qualitative agreement and
e
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-
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qualitative agreement only extended for 20–30 ps after
laser excitation. Why do the classical calculations reprod
the quantum calculations so well for zero static field but g
only marginal agreement for nonzero static field? All indic
tions are that this experiment should be very accura
simulated by a classical calculation since the measured q
tity is the probability for the electron to have energy less th
22AF after the electric-field pulse. This quantity involve
an enormous amount of averaging and thus one does
expect any quantum effects to survive.

The key to explaining the discrepancy rests with the
havior of the Rydberg wave packet from the time it is excit
to the time the electric-field pulse is applied. Just after
laser excitation, part of the wave packet moves down fi
and directly leaves the atom while part of the packet mo
up field and is temporarily trapped near the atom. If the at
is hydrogen, then the temporarily bound part of the packe
trapped near the atom for a very long time. This is beca
the Hamiltonian for H in a static field is separable; thus, t
trapped part of the packet can only leave the atom by t
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FIG. 5. Same as Fig. 4 but the classical spatial distribution.
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neling which is a relatively slow process. However for C
the trapped part of the packet can also escape by elasti
scattering off of the nonhydrogenic potential generated
the core electrons and move down field. The speed w
which the packet can scatter down field depends on the
strength and on then states excited and on the size of t
quantum defects.

In Fig. 6, the fraction of the wave packet left on the ato
is plotted as a function of time after the laser excitation; th
is roughly a 10 ps delay between when the electron be
moving in the down potential direction and when it
counted as having left the atom. This fraction can be ca
lated using the time-dependent flux of electrons ejected f
the atom. UsingI (t) to denote the time-dependent flux
ejected electrons, the fraction of the wave packet left on
atom is

f ~ t !5E
t

`

I ~ t8!dt8Y E
2`

`

I ~ t8!dt8. ~11!

Notice that roughly half of the packet is excited to the te
porarily bound region of space. However, during the cou
,
lly
y
th
ld

e
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e

of the experiment most of the originally bound part of t
packet subsequently escapes. Only 20% is left on the a
after 120 ps. Roughly 30 ps after the initial excitation, t
fraction bound to the atom drops from roughly 50% to belo

FIG. 6. The fraction of the probability distribution still in th
bound region near the Ca atom is plotted versus the time after
excitation. There is a 10 ps time shift between when the elec
begins moving in the down potential direction and when it
counted as having left the atom. Note that originally 50% of t
probability is bound to the atom, but only 20% remains after 120
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40% which means that after a short time over 20% of
electron probability that was initially bound to the atom h
left.

There is a further effect that skews the distribution in t
bound region. This is the effect arising from the large ene
distribution in the original laser excitation. This energy d
tribution extends from just above the classical ionizat
threshold in the field to energies just below the ionizat
threshold in zero field. The difficulty with such a broad e
ergy distribution is that near the ionization threshold in t
field it is difficult for the electron to scatter in the down fie
direction and leave the atom. However, near the ioniza
threshold in zero field, it is very easy for the electron
scatter in the down potential direction and leave. Thus,
higher energy components rapidly scatter and leave the a
while the lower energy components are bound for a lon
time; the energy distribution shifts to lower energy wi
time. This introduces a large uncertainty in how the h
cycle pulse will affect the wave packet because the long t
tail of the pulse can cause the small change in energy ne
to cause the electron to lose enough energy to bec
bound.

The explanation of the discrepancy between the exp
ment and the classical simulation appears to be founded
relatively large quantum effect: the scattering of the elect
wave from the non-Coulombic potential arising from t
core electrons. This effect can be decreased by using an
with a smaller core~e.g., Li! and can be eliminated by usin
hydrogen. It can also be decreased by using smaller s
fields and going to higher energy; as the principal quant
number increases, the fraction of angular momenta that h
nonzero quantum defects decreases which reduces
amount of scattering.

The contribution of the non-Coulombic core potential
the dynamics was inferred by examining the scattering of
electron into the unbound region of space. However, it m
be remembered that part of the scattered wave will remai
the bound region of space thus changing the form of
bound probability distribution. This is why the experimen
results and classical simulation only qualitatively agree fo
short time.

IV. CONCLUSIONS

A higher-order impulse approximation has been appl
to the calculation of quantum wave packets affected b
pulsed electric field. A physical interpretation for the fir
three orders was given which allows an understanding
even fine details of the electron probability distribution. R
sults for parameters used in Ref.@25# were presented; this
approximation allowed the calculation to correctly inclu
the behavior of angular momenta as high as 150 and pri
pal quantum numbers as high as 180. Also, the discrepa
between the experimental results and classical simulatio
Ref. @25# was analyzed and shown to result from a quant
property of the non-Coulombic potential.
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APPENDIX

The wave function for the higher-order impulse appro
mation is obtained by a series of gauge transformations@6#.
The transformation from length to velocity gauge gives

C~r ,t !5exp@ iDpz~ t !z#c̄~r ,t !, ~A1!

where theDpz(t)5*2`
t F(t8)dt8 is the classical change in

momentum of a free electron subjected to a pulsed elec
field; for t.t2 , Dpz is a constant and is the impulse given
a free electron by the pulsed field. The functionc̄ is the
solution of the velocity gauge Schro¨dinger equation

i
]c̄

]t
5Fp2

2
1Dpz~ t !pz1

Dpz
2~ t !

2
1V~r !G c̄. ~A2!

The time-dependent functionDpz
2(t)/2 only contributes an

overall phase and has no effect on any observable. The tr
formation from velocity gauge to acceleration gauge give

c̄~r ,t !5exp@2 iw~ t !#exp@2 iDz~ t !pz#c̃~r ,t !, ~A3!

where theDz(t)5*2`
t Dpz(t8)dt8 is the change in position

of a free electron due to the pulsed electric field and
time-dependent phasew(t)5*2`

t Dpz
2(t8)/2dt8 is irrelevant.

Thec̃ wave function is the solution of the acceleration gau
Schrödinger equation

i
]c̃

]t
5Fp2

2
1exp@ iDz~ t !pz#V~r !exp@2 iDz~ t !pz#G c̃.

~A4!

The next order correction can be obtained by expanding
exponentials to first order inDz(t). This gives the approxi-
mate equation

i
]c̃

]t
5Fp2

2
1V~r !1Dz~ t !

]V

]z G c̃. ~A5!

This process can be continued indefinitely; however, for
case discussed in this paper, convergence is achieved a
order. The wave function can be well approximated by

c̃.exp@2 id~r ,t !#c0~r ,t !, ~A6!

where d(r ,t)5*2`
t Dz(t8)dt8]V/]z and c0 is the wave

function without any electric-field pulse.
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