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Electron-impact detachment of weakly bound negative ions: Threshold and scaling laws

F. Robicheaux
Department of Physics, 206 Allison Laboratory, Auburn University, Alabama 36849-5311

and FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
~Received 3 March 1999!

The details of a recent theoretical formulation of electron-impact detachment of weakly bound negative ions
are presented. The formalism is applied at low energies to find the behavior of the cross section near threshold.
Also, the applicability of a recently proposed scaling law is discussed. The formulation uses different coordi-
nate systems for the initial and final states. The initial state is a simple product of wave functions of each
electron, while the final state is a simple product of wave functions in center-of-mass coordinates.
@S1050-2947~99!08908-8#

PACS number~s!: 34.80.Kw, 34.10.1x
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I. INTRODUCTION

There have been several recent experiments measu
the electron-impact detachment cross section of atomic
molecular negative ions@1–8#. There have also been sever
calculations@9–15# that investigated this process. It is diffi
cult to accurately calculate the detachment cross section
cause there are two free electrons in the final state and
theoretical studies all struggled with the large amount of c
relation between the two free electrons. A wide variety
theoretical methods has been used to describe this pro
when the energy of the incident electron is several times
threshold energy. These methods have included anR-matrix
pseudostate technique, distorted-wave Born approximati
a classical calculation of the threshold law, and semiclass
time-dependent methods.

The method used in Ref.@14# was based on a distorted
wave Born approximation, but is expected to be accurat
all energies, including the threshold region. The key insi
into Ref. @14# was that, to a large extent, the final-state c
relation is an illusion resulting from the use of the wro
coordinate system; how correlated a system appears dep
on the coordinate system that is chosen to describe it. In
center-of-mass coordinate system for the two electrons, t
is almostno correlation because the interelectron repuls
cannot cause interaction between the motion of the electr
center-of-mass and interelectron degrees of freedom;
only way to exchange energy between the electrons’ cen
of-mass motion and the interelectron motion is for one of
electrons to scatter from the atom, which is not likely af
the weakly bound electron has been detached. Thus, the
state distorted wave is expected to be a very good appr
mation to the exact wave function. The correspond
T-matrix elements and cross section calculated with this fi
state are expected to be correspondingly accurate.

The method can be described as a lowest-order disto
wave and Coulomb Born approximation. The initial state
given as an uncorrelated two-electron wave function wh
one electron is weakly bound to the atom and the wave fu
tion for the incoming electron is a distorted continuum wa
that is asymptotically the solution for a repulsive Coulom
potential. The final state wave function is given as an unc
related wave function in center-of-mass coordinates. T
PRA 601050-2947/99/60~2!/1206~10!/$15.00
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wave function is taken to be the product of a plane wave
the center of mass and undistorted continuum waves fo
repulsive Coulomb potential in the interelectron coordina
r22r1. This method differs from the usual implementatio
of distorted-wave theory because the final state is usu
taken to be uncorrelated continuum waves of the individ
electron’s coordinates,r1 and r 2. This difference is crucial
because there is much less final-state correlation in
center-of-mass coordinates. Thus, the apparently cr
method described in this paper is accurate because
double continuum final state in center-of-mass coordina
approximates the exact double continuum wave funct
very well.

The first purpose of this paper is to describe the pract
implementation of this method in detail; there are seve
steps that can be made either less or more efficient t
expected depending on the methods used. The second
pose is to use the method to calculate the total cross sec
and cross-section differential in the center-of-mass energ
the region near threshold. The results are compared to
different threshold laws from Refs.@15,16#. The present re-
sults indicate that it will be extremely difficult to measure t
threshold law in the region where the formulation in Re
@16# applies; the extended threshold law given in this pa
gives an energy dependence that can be tested in the
future. The threshold law presented here confirms the or
of the dominant energy dependence discussed in Ref.@15#.
Although the threshold law from Ref.@15# and this work are
very similar, it should be possible to experimentally disti
guish between them. The third purpose is to use the met
to calculate the total detachment cross section for sev
binding energies of a negative ion and assess the applic
ity of a scaling rule for the cross section. Atomic units a
used unless explicitly stated otherwise.

II. IMPORTANT THEORETICAL CONSIDERATIONS

In the electron-impact detachment of weakly bound ne
tive ions, the main effects arise from the interaction betwe
the incident electron and the extra electron on the atom.
the purposes of this paper, weakly bound means that
extra electron only has a small probability to be in the reg
of the atomic electrons. The probability of finding the exce
1206 ©1999 The American Physical Society
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electron outside of the atom should be greater than;90%.
The reason for this restriction is that after the bound elect
is detached from the atom there should be very little pr
ability for one of the two continuum electrons to scatter fro
the atom. Since the incoming electron causes the detach
at large distances, it has a very small probability for scat
ing from the atom. However, the electron that was origina
bound to the atom is relatively likely to scatter from the ato
if it is tightly bound. Fortunately, the bound electron tends
gain angular momentum when it gains energy from the
coming electron and thus it cannot penetrate into the reg
of the atomic electronsif it originally has a large probability
for being outside of the atom.

The restriction to being weakly bound removes almost
of the dependence on properties of the neutral atom.
cross section only depends on the angular momentum
binding energy of the weakly bound electron and on
asymptotic form of its wave function. The formalism d
scribed below is a two-electron method.

The basic approximation and insight into the dynam
may be obtained from a two-electron Hamiltonian in whi
each of the electrons interact with an infinitely heavy at
through a short-range potentialU(r ). In atomic units, the
Hamiltonian in ther1 ,r2 coordinate system is

H52 1
2 ¹1

22 1
2 ¹2

21U~r 1!1U~r 2!11/ur22r1u. ~1!

This clearly shows the difficulty in using this coordinate sy
tem to describe the final state since the 1/ur22r1u potential
causes correlation between the two electrons out to e
mous distances; by correlation, I mean that there can b
exchange of energy and angular momentum between thr1
andr2 degrees of freedom. The Hamiltonian is useful in th
form for understanding the behavior of the electrons in
initial state. One of the electron’s wave function is an eige
state of the one-electron Hamiltonian2(1/2)“21U(r ) and
the other electron’s wave function is a continuum eigens
of the screened repulsive Coulomb potential2(1/2)“2

1Ũ(r ). Thus the wave function for the initial state is a pro
uct of two one-electron functions to a good approximatio

The very strong final-state correlation is an artifact of d
scribing the dynamics in ther1 ,r2 coordinate system. If we
use the coordinate systemr65(r26r1)/A2, then the Hamil-
tonian becomes

H52 1
2“1

2 2 1
2“2

2 11/~A2r 2!1U~ ur11r2u/A2!

1U~ ur12r2u/A2!. ~2!

This Hamiltonian suggests that the final state is a prod
of the eigenstates of the2(1/2)“1

2 operator and the
(21/2)“2

2 11/(A2r 2) operator. Now the correlation in th
dynamics arises from the short-range potentialsU. In the
final state, these potentials are effectively zero since botr 1
and r 2 are large. However, this coordinate system give
very poor description of the initial state because one of
electrons is near the atom. Thus, in the initial state, there
very strong correlation between the motion in ther2 direc-
tion and ther1 direction.

Fortunately, there is no rule that forces the use of
same coordinate system for both the initial and final sta
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choosing the same coordinate system is simply a matte
convenience. The main insight in Ref.@14# is that it is prac-
tical to perform calculations with initial and final states
different coordinate systems. This increases the accuracy
first-order distorted-wave Born approximation to the po
where going to higher order is not necessary.

A. Basic formulation

The T-matrix element at energyE for scattering from
channeli to j is

Ti j 5pE dV@~H02H !c i
(0)#* c j

( f ) , ~3!

where both the initial and final states are energy normaliz
This expression is exact ifc j

( f ) is the exact solution of (E
2H)c j

( f )50 with the correct asymptotic boundary cond
tions. The relative size of the error in theT-matrix element is
proportional to the size of the error inc j

( f ) . By using final
states that accurately represent the double continuum
state, we greatly reduce the error in theT-matrix. If the final
state is exact, the T-matrix does not depend onH0 as long as
the exact bound states are produced and the asymptotic
of the potential for the continuum electron is correct. Th
property gives a method for estimating the error in the c
culation; the size of the variation of the cross section w
different choices ofH0 is zero for exactc j

( f ) and increases a
the error in the final state increases.

The initial wave function is

c i
(0)5

1

A2
$Rl b

~r 1!F l i
~r 2!@Yl b

~ r̂ 1!Yl i
~ r̂ 2!#M

L

6Rl b
~r 2!F l i

~r 1!@Yl b
~ r̂ 2!Yl i

~ r̂ 1!#M
L %, ~4!

where Rl b
(r )Yl b

( r̂ ) is the wave function for the weakly

bound electron,F l i
(r )Yl i

( r̂ ) is the wave function for the
incident electron, and the two electrons are coupled to t
angular momentum,L, with the z component beingM ~the
notation @YY#M

L is meant to indicate that the two angul
momenta are coupled using Clebsch-Gordon coefficien!.
The incident electron’s wave function is the solution of
one-particle Hamiltonian with a potentialŨ(r ) that has the
form 1/r asr˜`; the proper choice forŨ(r ) for smallerr is
discussed below. The incident continuum wave is norm
ized per unit energy. The1 (2) in Eq. ~4! is for the singlet
~triplet! wave function.

The bound orbital is the space normalized solution of

F2
1

2r

]2

]r 2 r 1
l b~ l b11!

2r 2 1U~r !GRl b
~r !5EbRl b

~r !,

~5!

where l b is the angular momentum of the bound electr
andEb is its energy with respect to the detachment thresho
The potentialU(r ) was chosen in a manner similar to that
Ref. @17#. The basic idea is that the binding energy and
asymptotic normalization of theRl b

(r ) should match that of
a more exact many-electron wave function@18,19#.
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1208 PRA 60F. ROBICHEAUX
The prescription for obtaining the short-range poten
was not involved. The multielectron wave function was co
verted to a radial density by integrating over all of the ele
tronic coordinates except for one radius. Outside the c
region the density has the form

r~r !˜Nb
2 kb

r 2 e22kbr as r˜`, ~6!

wherekb5A22Eb andNb is a normalization constant tha
depends on the fraction of the weakly bound electronic w
function that is in the region near the electrons of the ato
The potentialU(r ) was chosen so that the space normaliz
orbital Rl b

(r ) has the form

Rl b
~r !˜Akb

Nb

r
e2kbr as r˜` ~7!

with the sameNb and kb as for the exact many-electro
wave function. The only other restriction is that the range
U(r ) be roughly the size of the atom.

The incident continuum wave is the solution of

F2
1

2r

]2

]r 2 r 1
l i~ l i11!

2r 2 1Ũ~r !GF l i
~r !5EiF l i

~r !,

~8!

whereEi5E2Eb is the incident energy. The radial functio
is normalized per unit energy so that at asymptotically la
distances, it has the form

F l i
~r !˜

1

r
A 2

pk
sinFkr2

1

k
log~kr !1dG as r˜`,

~9!

wherek5A2Ei is the wave number of the incident electro
andd is an energy dependent phase shift. The distorted-w
potential for the incident electron has been chosen to be

Ũ~r !5@12~11kbr !e22kbr #/r , ~10!

which has the correct asymptotic form asr˜` and mimics
the screening from the weakly bound electron. If the fin
state were exact, then the results would be independen
Ũ(r ) as long asŨ(r )˜1/r asr˜`. The results of the cal-
culations were not very sensitive to the precise form ofŨ
~10–15 % changes were observed if the distorted-wave
tential was set to 1/r for all r ); the screened potential wa
chosen because it seems the results were slightly more a
rate.

The final-state wave function is

c f5A2k1

p
j l 1

~k1r 1! f l 2
~r 2!@Yl 1

~ r̂ 1!Yl 2
~ r̂ 2!#M

L ,

~11!

where E15k1
2 /2, j l is the spherical Bessel function an

f l (r )Yl ( r̂ ) is the solution of the Schro¨dinger equation for a
repulsive Coulomb potential with charge 1/A2. The f l 2

and

A2k1 /p j l 1
are normalized per unit energy. The tripl

wave function hasl 2 equal to an odd integer whilel 2 is an
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even integer for the singlet wave function. The energies
the initial state are the energy of the weakly bound electr
Eb , and the energy of the incident electron,Ei . The energies
for the final state are the energy in the1 degrees of freedom
E1 , and the energy in the2 degrees of freedom,E2 . Con-
servation of energy meansE5Eb1Ei5E11E2 , where 0
<E1<E.

The T-matrix elements are the important parameters
calculating the cross section. The initial and final states h
the same symmetry for the operationr1↔r2 and bothH and
H0 are symmetric with respect to this operation. This mea
that both terms inc (0) contribute equally to theT-matrix
element. TheT-matrix element will now be indexed with al
relavent parameters to give an explicit expression:

Tl bl i ,l 2l 1

L 5A4pk1E dV1dV2F Ũ~r 2!2U~r 2!2
1

r 12
G

3 j l 1
~k1r 1! f l 2

~r 2!@Yl 1
~ r̂ 1!Yl 2

~ r̂ 2!#M
L

3$Rl b
~r 1!F l i

~r 2!@Yl b
~ r̂ 1!Yl i

~ r̂ 2!#M
L %* .

~12!

This is a six-dimensional integration that can be reduced
five-dimensional integration becausef11f25f11f2 .

For a fixedE1 , the cross-section@20# differential in E1

is

ds

dE1
5

2p

Ei
(

l i l 1l 2LS

~2L11!~2S11!

~2l b11!4
uTl bl i ,l 1l 2

LS u2.

~13!

The total cross section is obtained by integrating the diff
ential cross section overE1 from 0 toE. The proper weight
for each matrix element arises from summing over all of
components ofL and S @this gives the (2L11)(2S11)
term# and averaging over the components ofl b and the spin
of the core electron and spin of the incoming electron@this
gives the (2l b11)4 term#. To show that this is the prope
expression for the cross-section differential inE1 , first arti-
ficially force the final-state wave function to be zero at
fixed but finite value ofr 1 and normalize the1 part of the
wave function to have a volume integral equal to 1. Th
there are only quantized energy levelsE1 and inelastic cross
sections for having the system in each level in the final st
In the last step, take the limit that this quantization distan
goes to infinity to obtain the expression in Eq.~13!.

The initial and final states are decomposed into a to
angular-momentum representation because the poten
commute with the total angular-momentum operator; t
means the total angular momentum and itsz component are
conserved. Thus, the number of integrals that must be
formed can be reduced since the total angular momen
and thez component of the total angular momentum does
depend on whether the wave function is in the 1,2 coordin
system or the1,2 system. Furthermore, theT-matrix ele-
ments are independent of thez component of the total angu
lar momentum; this meansM can be set to zero in the ca
culation.

Because the total orbital angular-momentum operato
the same in both coordinate systems, the initial and fi
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states must have the sameL andM to give a nonzero matrix
element. A very good test of convergence and other pr
lems with the computer programs is to calculate theT-matrix
element for final states with anL or M that differs from the
initial state. When such a calculation gives results subs
tially different from zero, then there is a problem with th
calculation.

B. Atoms with nonzero angular momentum

The derivation of theT-matrix elements and cross sectio
assumed that the atomic electrons form a closed shell. A
ally, very few closed-shell atoms can bind an extra elect
~Ca, Sr, and Ba are notable exceptions!. In this section, the
treatment is generalized to atoms that have nonzero ang
momentum. It is shown that when relativistic effects can
ignored, then the atom can be treated as if the atomic e
trons have1S coupling unless the orientation or alignment
the atom is probed after detachment.

Let Lc ,Sc be the orbital angular momentum and spin
the core,Li , Si be the orbital angular momentum and spin
the ion,L,S be the total orbital angular momentum and sp
and L,S be the orbital angular momentum and spin of t
two electrons in the continuum. TheT-matrix element for
this case can be obtained from Eq.~12! and factors that give
the extra angular-momentum coupling of the electrons to
atom. These extra factors arise from projecting the init
state angular-momentum coupling onto the final-st
angular-momentum coupling and are equal to

P5^~Lcl b!Li l i uLc~ l bl i !L&L3^~Scsb!Sisi uSc~sbsi !S&S,
~14!

wheresi5sb51/2 are the spins of the incoming electron a
the excess electron, respectively. These terms arise fro
recoupling of the angular momenta. The newT-matrix is this
factor times the1S T-matrix element.

The newT-matrix element can be expressed in terms
six j coefficients and other simple factors:

Tl bl iLiSi ,l 1l 2LS
L,S 5~21!Lc1l b1l i1L@Li ,L#H Lc l b Li

l i L L J
3~21!Sc1sb1si1S@Si ,S#

3H Sc sb Si

si S SJ Tl bl i ,l 1l 2

LS , ~15!

where Tl bl i ,l 1l 2

LS is from Eq. ~12! and the symbol@L#

5A2L11.
The cross-section@20# differential in E1 is

ds

dE1
5

2p

Ei
(

l i l 1l 2LSLS

~2L11!~2S11!

~2Li11!~2Si11!2

3uTl bl iLiSi ,l 1l 2LS
L,S u2. ~16!

The proper weight for each matrix element arises from su
ming over all of the components ofL andS @this gives the
(2L11)(2S11) term# and averaging over the compo
b-
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u-
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nents ofLi , Si and spin of the incoming electron@this gives
the (2Li11)(2Si11)2 term#. Using Eq. ~6.2.9! of Ref.
@21#, the identity

(L ~2L11!H Lc l b Li

l i L L J 2

5
1

2l b11
~17!

can be shown and a similar one can be shown for the sp
Using Eqs.~15! and~17! in the total cross section@Eq. ~16!#,
the previous expression for the total cross section, Eq.~13!,
is recovered.

The expression of the energy differential and the to
cross section in terms of an expression that completely
glects the angular momenta of the atom will be accurate
long as relativistic effects can be ignored. In practice t
means that the orbital for the weakly bound electron does
depend strongly on the spin-orbit interaction; the spin-or
splitting for the weakly bound electron cannot be a subst
tial fraction of the binding energy. In practice, this rare
occurs.

C. Monte Carlo integration

The five-dimensional integral for theT-matrix elements
are performed numerically with an unweighted Monte Ca
technique using Sobel’s sequence of quasirandom num
@22#. Sobel’s sequence of numbers are ‘‘random numbe
that tend to fill theN-dimensional unit cube more smooth
than pseudorandom number generators, such as the l
congruential generators; the Sobel’s sequence of ‘‘rand
numbers’’ converged the integrals with roughly a factor o
fewer points. The same sequence of points in the fi
dimensional space was used for everyT-matrix element so
the integration of the differential cross sections could be p
formed in a reasonable manner.

The radial ranges were chosen sor 1<6/A22Eb and r 2

<40p/A2Ei . If s1(n),s2(n),s3(n),s4(n),s5(n) is the nth
five-dimensional point of Sobel’s sequence, then thenth
point of the spatial integration was

r 1~n!5s1~n!r 1,max,

r 2~n!5s2~n!r 2,max,

cosu1~n!52s3~n!21, ~18!

cosu2~n!52s4~n!21,

f2~n!2f1~n!52ps5~n!.

The nth point in ther6 coordinates was obtained from th
point in r1 ,r2 coordinates by simple algebra.

Estimates of the convergence with the number of poi
was obtained by running very large calculations for a f
energies and noting the relative errors inherent in the sma
integration. Another technique was to change which com
nent of Sobel’s number went with each variable and comp
the results from the two different runs. For example, anot
sequence of random points is generated whenr 1(n)
5s2(n)r 1,maxandr 2(n)5s1(n)r 2,max, with all other compo-
nents the same. In general, the integrations are converge
better than 3%.
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1210 PRA 60F. ROBICHEAUX
One difficulty in numerically evaluating the integrals fo
theT-matrix elements is that a sharp integration boundary
the r 2 coordinate substantially slows the convergence r
with r 2,max; this is an inherent property of the integral an
does not depend on which numerical method is used. Th
a large problem because the number of points needed fo
Monte Carlo integration increases roughly linearly w
r 2,max. The solution was to introduce a ‘‘soft boundary’’ i
the r 2 direction. This was achieved by replacing the co
tinuum wave in ther 2 direction by a function that was
smoothly reduced as the boundary was approached:

F l i
~r 2!˜F l i

~r 2!exp@2~2r 2 /r 2,max!
4#. ~19!

For smallr 2, the exponential hardly changes the continuu
function but smoothly cuts off the integration asr 2 ap-
proaches the boundary.

The number of integration points is fairly large, usua
between 105 and 106, but not so large that the method cou
not be implemented on a work station or personal compu
One of the important tricks to speed the evaluation of
integrands involved the four radial functions. For a giv
Ei ,E1 ,l b ,l i ,l 1 ,l 2 , and L, the radial functions were
computed on a mesh of equally spaced points. In the Mo
Carlo loop over the number of points, the radial functio
were interpolated for the value ofr 1(n),r 2(n), . . . using a
three-point, quadratic interpolation. Another obvious s
was to calculate all Clebsch-Gordon coefficeints outside
the Monte Carlo loop since they do not depend on the va
of the five-dimensional point.

D. Large angular momenta

The five-dimensional integrations are very time consu
ing and thus it makes sense to search for regions where
not necessary. The most obvious region to investigate
whenL becomes large. In this case, the incident electron
always further from the atom than the weakly bound el
tron. Thus, the incident electron always experiences a re
sive 1/r potential, whereas the inner electron only experien
the atomic potential. We use these considerations to sup
ment the calculations of the cross section.

The idea is to use distorted waves inr1 ,r2 coordinates for
the final state forL greater than a maximum value,Lmax ~i.e.,
center-of-mass coordinates are used forL<Lmax, but single-
electron coordinates are used forL.Lmax!. The final states
in single-electron coordinates are not as accurate as
center-of-mass coordinates, but it is much more accurat
use this procedure than to use nothing forL.Lmax; the re-
sults converge much faster withLmax when using this top-up
procedure.

The only change to the formulation is that instead of
final-state wave function in center-of-mass coordinates
final-state wave function is changed to

c j
( f )5 f l 1

~r 1!F l 2
~r 2!@Yl 1

~ r̂ 1!Yl 2
~ r̂ 2!#M

L , ~20!

where f l 1
(r ) is the energy normalized continuum wave c

culated in the atomic potentialU(r ) andF l 2
(r ) is the energy

normalized continuum wave calculated in the distorted w
potentialŨ(r ) that has the asymptotic form 1/r .
n
te
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Because the initial and final states are in the same c
dinate system, theT-matrix elements can be evaluated ve
efficiently. Thus, theT-matrix is calculated fromLmax11 to
very high L, until the matrix elements become negligib
small. The integrations are performed using a partial-wa
expansion of the 1/r 12 potential. The new final-state wav
function does not include exchange between the two e
trons.

III. THRESHOLD REGION

The behavior of the differential and total cross section
the threshold region was originally discussed in Ref.@16#. In
this region,E.0, which meansEi.2Eb and E1.0 and
E2.0. Their results may be rederived in a brief manner
investigating the behavior of the continuum functions in t
expression for theT-matrix element, Eq~12!. In Ref. @16#, it
was shown that the main contribution to theT-matrix ele-
ment was from the region of space near the atom. The i
dent continuum wave hardly changes with energy in
threshold region since the incident energy hardly change
this region; thus, this function contributes no energy dep
dence in the threshold region. Because the momentum in
1 coordinate is small, the Bessel function hardly chang
over the reaction region; thus, contribution to theT-matrix
elements from the continuum motion of the center of mas
proportional toAk1}E1

1/4. The continuum wave in the2
coordinate contributes a very rapidly varying function wi
E2 since smallr 2 is in the tunneling region; the tunnelin
factor can be obtained from a WKB~J! approximation using

A2E
0

1/A2E2S 1

A2r 2

2E2D 1/2

dr25
p

2AE2

~21!

to obtain a factor for theT-matrix that is proportional to
exp(2p/2AE2); the tunneling factor is calculated as if th
electron needs to tunnel from the origin to the classica
allowed region.

The threshold behavior of the cross section may be
tained by squaring these contributions to theT-matrix ele-
ments and by noting thatEi is nearly constant near threshol
This gives

ds

dE1
5CAE1 exp~2p/AE2E1!, ~22!

whereC is anE-independent constant and all energies are
atomic units. The integration overE1 may be performed to
give the threshold dependence of the total cross sect
The change of variables E15E sin2b and dE1

52E sinb cosbdb give

s~E!52CE3/2E
0

p/2

sin2b cosb expS 2
p

AE cosb
D db

.2CE3/2expS 2
p

AE
D E

0

`

b2 expS 2
pb2

2AE
D db

5CA2

p
E9/4expS 2

p

AE
D , ~23!
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where all energies are in atomic units. This function d
creases extremely rapidly asE˜0.

The main difficulty with threshold laws is in knowing th
range of validity. In Ref.@16#, it was estimated thatE!0.4
eV for electron-impact detachment of H2. Unfortunately, the
cross section decreases very rapidly for energies less tha
eV. At E50.37 eV the total cross section is.1/40 Mb,
whereas it is.1/2 b (1b510224 cm2) at E50.19 eV.
Thus, there is no hope for an experimental test of this law
is also extremely difficult to test this law using Eq.~12!
because the convergence of the integrals becomes extre
slow for E,0.3 eV.

The threshold law for electron-impact detachment can
extended by a more careful analysis of the behavior of
functions in Eq.~12!. This will allow the application of the
threshold law over a larger range of energies so it can
tested experimentally and theoretically. The first import
point to note is that the substantial part of the integral is fr
the region of space wherer 2;1/Ei andr 1;1/A22Eb. Also,
the electrostatic repulsion causesr 2.(r 21r 1)/A2 and r 1

.(r 22r 1)/A2.
The difficulty in finding the behavior of theT-matrix ele-

ment is in knowing what region of space gives the m
contribution in the integrals; it may be surprising that t
main contribution to the integral is in the region of spa
near the turning point of the incoming wave andnot in the
region near the turning point for the final state. Clearly,
region with r 2,1/Ei is not important because this region
not classically allowed for the incident electron. For the
gion r 2;1/Ei , the continuum wave for the incident electro
oscillates with increasingr 2. In the classically allowed re
gion, this continuum wave can be usefully expressed as
imaginary part of an outgoing wave. Because the functi
in the integral for theT-matrix are analytic, the integratio
path can be deformed to go into the complex plane forr 2;
instead of integrating along the realr 2 line, the contour of
integration is deformed to go into the complex plane toi`;
the continuum wave then becomes a rapidly decreasing
ponential function. Thus, most of the integral is accumula
near the turning point,r 2;1/Ei .

There are several changes to the integrand that arise
having the main region be nearr 2;1/Ei instead ofr 2;0.
Becauser 1!r 2, the value ofr 6;r 2 /A2. The largest change
to the threshold law is that the tunneling factor changes

FWKB(J)~E2 ,Ei !5A2E
1/A2Ei

1/A2E2S 1

A2r 2

2E2D 1/2

dr2

5
p

2AE2

H 12
2

p
@arcsin~x!1xA12x2#J ,

~24!

where x5AE2 /Ei . This shows that the correction to th
exponential in the threshold goes to zero as threshold is
proached becausex˜0 as threshold is approached. How
ever, the correction goes to zero very slowly since it goes
the square root of the excess energy does.

There are a few other corrections that have a smaller
fect. The contribution from the continuum wave of the cen
of mass remains the same since the Bessel function is slo
-

0.4
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varying. The only other terms are those proportional toEi .
There are four terms that contribute factors ofEi to the
T-matrix element. The potential terms give a contribution
1/r 2

2, which is proportional toEi
2 . There is a term propor-

tional to Ei
21/4 from the incident continuum wave. From th

amplitude of ther 2 continuum function, there is a term pro
portional tor 2

1/4, which is proportional toEi
21/4. And, from

the integration into the complex plane is a factor ofEi
21/2.

Thus,

T}EiAk1 exp@2FWKB(J)~E2 ,Ei !# ~25!

in the region near threshold. Substituting this form into t
cross section gives

ds

dE1
5CEiAE1 exp@22FWKB(J)~E2E1 ,Ei !# ~26!

for the threshold law. This differs from the original thresho
law by the factor ofEi and by the WKB~J! tunneling integral
not going all of the way to the origin.

The threshold law for the total cross section may be
tained by performing the same change of variables as ab
E15Esin2b and dE152Esinb cosb. This gives a total
cross section with the form

s~E!}EiE
9/4G~AE/Ei !exp@22FWKB(J)~E,Ei !#, ~27!

where G(x)5122@arcsin(x)2xA12x2#/p arises from the
derivative of the WKB~J! phase with respect toE2 . In the
limit E˜0, this form for the threshold cross section is ide
tical to Eq. ~23!. It is interesting to note that some of th
generic properties of this threshold law are also observe
Refs. @23# and @24#, where there is a Coulomb interactio
with the heavy particle. These properties include the reac
zone being defined in the incoming channel, an energy
pendence for the size of the reaction zone, and the m
energy dependence arising from a WKB~J! tunneling factor.

Recently, the threshold law for electron-impact detac
ment was reexamined from a classical formulation. T
threshold law, from Ref.@15#, appears to be quite differen
from the law in Eq.~27!. However, the basic idea abou
which processes control the threshold behavior is the sa
The idea is that the electrons must tunnel out from the reg
where the incident electron reaches its turning point. Th
the main energy dependence, which comes from the WKB~J!
integral, is exactly the same. The only difference is in t
energy dependence of the prefactor. Using the notation
this paper the threshold law from Ref.@15# is

s~E!}~ b̃01Ei !
21 exp@22FWKB(J)~E,Ei !#, ~28!

where b̃05(b021)uEbu with the b05119 from Ref. @15#.
The reason for the difference of the prefactors is that R
@15# did not account for energy going into the center-of-ma
motion and only used the differential cross section at
point E150 or, equivalently,E25E. However, the cross
section is exactly 0 for this energy because of the Wig
threshold lawE1

1/2 in the center-of-mass motion.
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1212 PRA 60F. ROBICHEAUX
In Fig. 1, the differential cross section for detachme
from H2 is plotted for the full numerical calculation and th
different forms of the threshold law, Eqs.~22! and~26!. The
two energies are forEi;25% higher than threshold (E/Ei
;1/4) and forEi roughly twice threshold. The interestin
feature is that the two forms of the threshold law give ve
similar shapes so they agree roughly equally well with
shape of the full calculation@25#. They both agree fairly well
with the differential cross section considering the lar
change in the total cross section. However, there is an e
mous difference between the two forms in that the coeffice
used to match the height of the differential cross section
changed by a factor of;150 for the simple threshold law
and a factor of;0.6 for the extended threshold law.

In Fig. 2, the total cross section for detachment from H2

is plotted for the full numerical calculation and the differe
forms of the threshold law, Eqs.~23!, ~27!, and~28!. All of
the threshold laws are scaled to give the total cross sectio
the lowest energy point. Although the total cross sect
changes by over 7 orders of magnitude in this energy ran
the extended threshold law, Eq.~27!, agrees with the full
calculation to within 40%, while the simple threshold la
Eq. ~23!, differs by up to a factor of;150. The reason for
the relative size of the errors is that in the simple thresh
law, the electrons must tunnel too far in the final state; th
do not need to tunnel out fromr 2;0, only from r 2

;1/A2E2 . This causes the cross section to decrease too
as E˜0. The threshold law@15# given in Eq. ~28! is too
small by a factor of;30 at the highest energy point. How

FIG. 1. Differential cross section in arbitrary units from the fu
calculation~solid line! and from the threshold laws from Eq.~22!
~dotted line! and Eq.~26! ~dashed line!. ~a! At E50.19 eV, total
energy; the two threshold laws give nearly identical results at
energy.~b! At E50.75 eV, total energy.
t
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ever, it is important to stress that all of the threshold la
discussed here agree with each other in the sense that
have the same dominant functional form asE˜0.

These figures suggest that the extended threshold
gives a reasonable description of the electron-impact det
ment process. However, it must be remembered that the
oretical method used totest the threshold law was also use
to derive it. The agreement in Figs. 1 and 2 only shows th
the analysis of the behavior of the functions in Eq.~12! was
substantially correct. I expect that the relative size of
T-matrix elements from Eq.~12! is more accurate in the
threshold region than in any other energy range, but this
not been shown. A serious test of the threshold law requ
a completely different style of calculation or requires an e
periment. The analysis of the threshold behavior from R
@15# does provide a completely different treatment but giv
a law that is somewhat different from that derived here.

Unfortunately, it will be difficult to experimentally tes
the threshold law for electron-impact detachment. The pr
lem is that the cross section is small over the range where
threshold law may be expected to hold and it decreases
tremely rapidly asE˜0. It seems likely that the threshol
law will hold for E,2Eb and it may extend to energie
somewhat higher. In an experimental test of the thresh
law, there will be two competing effects that determine t
choice of atom to use as a test case. The maximum of
total cross section increases as the binding energy is redu
thus, using an atom with a smaller binding energy will i
crease the signal. However, the energy scale becomes
pressed as the binding energy is reduced; thus, using an
with a larger binding energy will decrease the need for hig
energy resolution for the incident electrons. As an exam
from H2, I have compared the relative change in the cro
section from an incident energy of 1.31–1.50 eV. The la
T-matrix calculation gives an increase in cross section o
factor of 9.6, whereas the threshold law from Ref.@16# gives
a factor of 36, from Ref.@15# gives a factor of 5.0, and from
Eq. ~27! gives a factor of 9.1. In principle, these differenc
are measurable so it may be possible to test which thres
law best describes electron detachment in H2 although the
cross section is small~1.6 Mb at 1.31 eV and 15.3 Mb a
1.50 eV!.

IV. RECOIL OF THE ATOM

The differential cross section in Fig. 1 holds an interest
implication for the recoil of the atom after the excess ele

is

FIG. 2. Total detachment cross section for H2 using the full
calculation~crosses! and the threshold laws from Eq.~23! ~solid
line!, from Eq. ~27! ~dotted line!, and from Eq.~28! ~dashed line!.
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tron is detached. In our treatment, the atom is infinit
heavy but, in actuality, it is only 1042106 times heavier than
the electron. Because the atom interacts with the two e
trons, the total momentum of the two electrons is not c
served and the atom can gain momentum during the det
ment process. The momentum given to the atom is the in
momentum of the two electrons minus the final moment
of the two electrons.

The initial momentum of the two electrons arises sol
from the incident electron. In atomic units, the initial tot
momentum isA2Ei . The final momentum isA2p1 , where
p1 is the momentum in the1 coordinate and has a magn
tudeA2E1. In the threshold region,E!Ei and from Fig. 1
most of the scattering probability is forE1;0.1E. Thus, the
final momentum is very small compared to the initial m
mentum.

The implication is that the momentum given to the ato
in the threshold region is nearly equal to the momentum
the incident electron. At much higher energies, the incid
electron is hardly deflected and only a small fraction of
incident momentum is given to the atom. This apparen
paradoxical behavior can be understood by noting that
detachment in the threshold region occurs when the incid
electron is at the closest distancer;1/Ei . At this point, the
incident electron has lost all of its initial momentum and t
negative ion has gained all of the initial momentum. On
the electron is detached from the atom, the two electr
cannot change their total momentum~an external potential is
needed! which is nearly 0. Thus, the atom retains the m
mentum given to the negative ion. At high energies, the
verse situation holds in that the detachment occurs fr
weak interaction between the incident electron and the ne
tive ion when the electron is far from the ion; thus the in
dent electron’s momentum remains nearly unchanged
the atom only acquires a small fraction of the incident m
mentum.

V. SCALING THE CROSS SECTION

In Ref. @14#, a method for scaling the cross section w
proposed which only used the asymptotic form of the wa
function and the binding energy. This scaling rule for t
cross section is not expected to be exact but can serve
guide for making quick estimates using data from anot
atom.

The idea is to use the properties of the functions in
T-matrix elements. One important feature that is used is
weak dependence of theT-matrix elements on the precis
form of the potential for the incoming electron,Ũ(r ). In all
of the calculations, a screened, repulsive Coulomb poten
was used but the cross section changed by less than 10–
when usingŨ(r )51/r for all distances. This form will be
used in the discussion below.

The main point to note is that the energy scale is set
the binding energy,2Eb , and the distance scale is set by t
size of the negative ion,;1/kb51/A22Eb. Thus, all func-
tions will be written in terms of scaled distances,r
5r scal/kb , wherer is meant to indicate any of the distance
and scaled energies,e5escalkb

2, wheree is meant to indicate
any of the energies. All of the continuum functions have
form
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1

rAk
f̄ ~kr !, ~29!

wherek5A2e and thef̄ does not have a strong energy d
pendence. The bound function has the form

R}
NbAkb

r
exp~2kbr !, ~30!

whereNb is the asymptotic normalization.
Now the form of the cross section can be approximated

examining the scaling of all the functions in theT-matrix,
Eq. ~12!. From the four orbitals, there is a 1/r 4 which gives
kb

4 . From the potentials, there is 1/r which giveskb . From
the volume element (dV1dV2), there is ar 6 which gives
1/kb

6 . From the energy dependent amplitude of the four
bitals there is a factor ofNb /kb . Multiplying all of these
factors gives aT-matrix proportional toNb /kb

2 .
To make the total cross section, theT-matrix is squared

and divided by the incident energy and integrated over
allowed range ofE1 . These last two energy terms cancel
give

s~E!5
Nb

2

Eb
2 sscal~E/uEbu!, ~31!

wheresscal is a scaled cross section that does not depend
the binding energy. The normalization constantNb should
not vary much with binding energy as the binding ener
goes to 0. However, for the binding energies in the range
0.521.0 eV, it may give effects at the 20–40 % level.

In Fig. 3, calculations for model atoms are given th
show the level of variation in the cross section that may
expected when changing the binding energy. One calcula
is for detachment from H2, while the other two are for a
H2-like ion ~s-wave attached electron! but with binding en-
ergies a factor of 2 and 3 less than for H2. In Fig. 4, the
cross sections are scaled so that the energies are give
units of the binding energy and the cross section is mu
plied byEb

2/Nb
2 . Now the cross sections appear very simil

There are a few considerations that reduce the accurac
the scaling rule. The first is that the final state is not ex

FIG. 3. Total cross section for H2 ~solid line, Nb51.51),
H2-like ion with 1/2 the binding energy~dotted line,Nb51.33),
and H2-like ion with 1/3 the binding energy~dashed line,Nb

51.26).
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1214 PRA 60F. ROBICHEAUX
and taking the potential for the incident electron to be 1/r for
all distances introduces some error. The main source of e
is that the continuum waves for the repulsive Coulomb int
action cannot be written in the form of Eq.~29!; the turning
point for a repulsive Coulomb potential is at distances p
portional to 1/e and not 1/Ae. There are energy depende
phases that can be important. The reason that the scaling
works as well as it does is because the main contributio
the integral comes from phase-matching conditions for
continuum waves in the classically allowed region of spa
In this region, phase is proportional toAer plus more slowly
varying terms that are not very important.

VI. CONCLUSIONS

In this paper, the details of recent calculations of electr
impact detachment of negative ions have been presen
The calculations are based on the idea that correlatio
small in both the initial state~an incoming electron and a
electron attached to an atom! and the final state~two freely
moving electrons and an atom! if the proper coordinate sys

FIG. 4. Same as Fig. 3 but the incident energy is scaled by
binding energy and the cross section is scaled as in Eq.~32!. The
units of the scaled cross section are Gb eV2 andEi,scal is dimension-
less.
R
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to
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tem is used to describe each. For the initial state, the pro
coordinate system is that of the individual electrons,r1 ,r2.
For the final state, the proper coordinate system is the cen
of-mass coordinates for the electron,r65(r26r1)/A2.

The resulting formalism was used to investigate the
havior of the total cross section near threshold. This has
to an extension of the threshold law to a form that might
experimentally testable. The main correction to the thresh
law from Ref. @16# arises from not forcing the electron t
tunnel from the origin into the classically allowed region; t
main correction to the threshold law from Ref.@15# arises
from allowing energy to also be distributed into the cent
of-mass motion. An analysis of the detachment cross-sec
differential in energy shows that in the low-energy region t
atom recoils with a momentum nearly equal to the mom
tum of the incident electron; this is an apparently paradox
behavior since the recoil momentum becomes alarger frac-
tion of the incident momentum as the energy of the incid
electron decreases to the threshold energy. Finally, the
havior of the cross section as the binding energy chan
~with all other properties remaining fixed! roughly agrees
with the scaling law proposed in Ref.@14#; thus, the energies
scale with the binding energy of the negative ion and
cross section scales inversely with square of the binding
ergy.
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