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Electron-impact detachment of weakly bound negative ions: Threshold and scaling laws
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The details of a recent theoretical formulation of electron-impact detachment of weakly bound negative ions
are presented. The formalism is applied at low energies to find the behavior of the cross section near threshold.
Also, the applicability of a recently proposed scaling law is discussed. The formulation uses different coordi-
nate systems for the initial and final states. The initial state is a simple product of wave functions of each
electron, while the final state is a simple product of wave functions in center-of-mass coordinates.
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[. INTRODUCTION wave function is taken to be the product of a plane wave for
the center of mass and undistorted continuum waves for a
There have been several recent experiments measuriigpulsive Coulomb potential in the interelectron coordinate,
the electron-impact detachment cross section of atomic ankth—r1. This method differs from the usual implementation
molecular negative ionsl—8]. There have also been several of distorted-wave theory because the final state is usually
calculationg9—15] that investigated this process. It is diffi- taken to be uncorrelated continuum waves of the individual
cult to accurately calculate the detachment cross section bé&lectron’s coordinates,; andr,. This difference is crucial
cause there are two free electrons in the final state and tHéecause there is much less final-state correlation in the
theoretical studies all struggled with the large amount of corcenter-of-mass coordinates. Thus, the apparently crude
relation between the two free electrons. A wide variety ofmethod described in this paper is accurate because the
theoretical methods has been used to describe this procedguble continuum final state in center-of-mass coordinates
when the energy of the incident electron is several times th@pproximates the exact double continuum wave function
threshold energy. These methods have includeB-amatrix ~ very well.
pseudostate technique, distorted-wave Born approximations, The first purpose of this paper is to describe the practical
a classical calculation of the threshold law, and semiclassicamplementation of this method in detail; there are several
time-dependent methods. steps that can be made either less or more efficient than
The method used in Ref14] was based on a distorted- €xpected depending on the methods used. The second pur-
wave Born approximaﬁon, but is expected to be accurate d20se is to use the method to calculate the total cross section
all energies, including the threshold region. The key insigh@nd cross-section differential in the center-of-mass energy in
into Ref.[14] was that, to a large extent, the final-state cor-the region near threshold. The results are compared to the
relation is an illusion resulting from the use of the wrong different threshold laws from Ref§15,16. The present re-
coordinate system; how correlated a system appears depen‘éj.gts indicate that it will be extremely difficult to measure the
on the coordinate system that is chosen to describe it. In théreshold law in the region where the formulation in Ref.
center-of-mass coordinate system for the two electrons, theld6] applies; the extended threshold law given in this paper
is almostno correlation because the interelectron repulsiondives an energy dependence that can be tested in the near
cannot cause interaction between the motion of the electronéuture. The threshold law presented here confirms the origin
center-of-mass and interelectron degrees of freedom; thef the dominant energy dependence discussed in [REf.
only way to exchange energy between the electrons’ centeAlthough the threshold law from Reff15] and this work are
of-mass motion and the interelectron motion is for one of thevery similar, it should be possible to experimentally distin-
electrons to scatter from the atom, which is not likely afterguish between them. The third purpose is to use the method
the weakly bound electron has been detached. Thus, the fintd calculate the total detachment cross section for several
state distorted wave is expected to be a very good approxpinding energies of a negative ion and assess the applicabil-
mation to the exact wave function. The correspondingty of a scaling rule for the cross section. Atomic units are
T-matrix elements and cross section calculated with this finased unless explicitly stated otherwise.
state are expected to be correspondingly accurate.
The method can be described as a lowest-order distorted , *\poRTANT THEORETICAL CONSIDERATIONS
wave and Coulomb Born approximation. The initial state is
given as an uncorrelated two-electron wave function where In the electron-impact detachment of weakly bound nega-
one electron is weakly bound to the atom and the wave functive ions, the main effects arise from the interaction between
tion for the incoming electron is a distorted continuum wavethe incident electron and the extra electron on the atom. For
that is asymptotically the solution for a repulsive Coulombthe purposes of this paper, weakly bound means that the
potential. The final state wave function is given as an uncorextra electron only has a small probability to be in the region
related wave function in center-of-mass coordinates. Thef the atomic electrons. The probability of finding the excess
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electron outside of the atom should be greater tha80%. choosing the same coordinate system is simply a matter of
The reason for this restriction is that after the bound electrorronvenience. The main insight in R¢L4] is that it is prac-
is detached from the atom there should be very little probtical to perform calculations with initial and final states in
ability for one of the two continuum electrons to scatter fromdifferent coordinate systems. This increases the accuracy of a
the atom. Since the incoming electron causes the detachmeifitist-order distorted-wave Born approximation to the point
at large distances, it has a very small probability for scatterwhere going to higher order is not necessary.
ing from the atom. However, the electron that was originally
bound to the atom is relatively likely to scatter from the atom A. Basic formulation
if it is tightly bound. Fortunately, the bound electron tends to The T-matrix element at energf for scattering from
gain angular momentum when it gains energy from the in- h itoii 9 9
coming electron and thus it cannot penetrate into the regioﬁ annel to J1s
of the atomic electrons it originally has a large probability
for being outside of the atom. Tij= wf dV[(Ho—H) {071 ¢, ©)

The restriction to being weakly bound removes almost all
of the dependence on properties of the neutral atom. Th@here both the initial and final states are energy normalized.
Cross section only depends on the angular momentum angh;g expression is exact w(f) is the exact solution ofE
binding energy of the weakly bound electron and on the—H)zﬂffEO with the correct asymptotic boundary condi-
asymptotic form of its wave function. The formalism de- tions. The relative size of the error in thematrix element is

scribed below s a two-electron method, Jroportional to the size of the error (" . By using final

The basic approximation and insight into the dynamic . ,

. G . . states that accurately represent the double continuum final
may be obtained from a two-electron Hamiltonian in which state. we areatly reduce the error in frenatrix. If the final
each of the electrons interact with an infinitely heavy atomstate,is ex%ct tr){e T-matrix does not depen .ras lond as
through a short-range potentigl(r). In atomic units, the ' pendg ge

o T . . the exact bound states are produced and the asymptotic form
Hamiltonian in ther,,r, coordinate system is

of the potential for the continuum electron is correct. This
property gives a method for estimating the error in the cal-
culation; the size of the variation of the cross section with
different choices oH, is zero for exacy/{"”) and increases as
the error in the final state increases.

The initial wave function is

H=—1V2-1V3+U(r)+U(rp)+Ur—rq). (1)

This clearly shows the difficulty in using this coordinate sys-
tem to describe the final state since th& i+ r,| potential

causes correlation between the two electrons out to enor-
mous distances; by correlation, | mean that there can be an

1
exchange of energy and angular momentum betweem,the O =~ R, (rYE, (r Y., (FY. (F)1t
andr, degrees of freedom. The Hamiltonian is useful in this i ﬁ{ Al rF ALY (T Y (F2)
form for understanding the behavior of the electrons in the . _—
initial state. One of the electron’s wave function is an eigen- =R (r)F (r)[Y, ()Y, (r)Iuy, (4

state of the one-electron Hamiltonian(1/2)V2+U(r) and
the other electron’s wave function is a continuum eigenstatevhere R, (r)Y, (r) is the wave function for the weakly
of the screened repulsive Coulomb potential(1/2)V? ’ 0
+U(r). Thus the wave function for the initial state is a prod-
uct of two one-electron functions to a good approximation.
The very strong final-state correlation is an artifact of de-
scribing the dynamics in the,r, coordinate system. If we
use the coordinate system=(r,+r;)//2, then the Hamil-
tonian becomes

bound eIectronF/i(r)Y/i(F) is the wave function for the
incident electron, and the two electrons are coupled to total
angular momentuml,, with the z component beingv (the
notation[YY]k,I is meant to indicate that the two angular
momenta are coupled using Clebsch-Gordon coefficients
The incident electron’s wave function is the solution of a

one-particle Hamiltonian with a potential(r) that has the

H=—1V2 —1iVvZ +1/(J2r )+ U(|r, +r_|/\2) form 1k asr—oc; the proper choice fad (r) for smallerr is
discussed below. The incident continuum wave is normal-
+U([r—r_|/V2). (2)  ized per unit energy. The (—) in Eq. (4) is for the singlet

_ o _ _ (triplet) wave function.
This Hamiltonian suggests that the final state is a product The bound orbital is the space normalized solution of
of the eigenstates of the-(1/2)V2 operator and the

. . 2 2
(—1/2)V2 +1/(\/2r _) operator. Now the correlation in the 19 Z(Zpt]) B
dynamics arises from the short-range potentidisin the orar2' T gz TUMRAM=ER (1),
final state, these potentials are effectively zero since bpth 5)

andr, are large. However, this coordinate system gives a )

very poor description of the initial state because one of th&vhere/, is the angular momentum of the bound electron

electrons is near the atom. Thus, in the initial state, there is @"dEy is its energy with respect to the detachment threshold.

very strong correlation between the motion in thedirec- ~ The potential(r) was chosen in a manner similar to that in

tion and ther , direction. Ref.[17]. The basic idea is that the binding energy and the
Fortunately, there is no rule that forces the use of thedSymptotic normalization of the, (r) should match that of

same coordinate system for both the initial and final statea more exact many-electron wave functid8,19.
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The prescription for obtaining the short-range potentialeven integer for the singlet wave function. The energies for
was not involved. The multielectron wave function was con-the initial state are the energy of the weakly bound electron,
verted to a radial density by integrating over all of the elec-E,, and the energy of the incident electréi, The energies
tronic coordinates except for one radius. Outside the coréor the final state are the energy in thiedegrees of freedom,

region the density has the form E ., and the energy in the degrees of freedonk _ . Con-
servation of energy mearis=E,+E;=E, +E_, where 0
Kp _ <E.<E.
rN—N2—e 2" as r—om, 6 - . .
p(N—=N; r? - ® The T-matrix elements are the important parameters for

calculating the cross section. The initial and final states have
where k= y—2E, andN, is a normalization constant that the same symmetry for the operatipp—r, and bothH and
depends on the fraction of the weakly bound electronic wavey | are symmetric with respect to this operation. This means
function that is in the region near the electrons of the atominat poth terms iny(® contribute equally to tha-matrix

The potentialJ(r) was chosen so that the space normalizecsiement. Thel-matrix element will now be indexed with all

orbital R/ (r) has the form relavent parameters to give an explicit expression:
N, ) - 1
R/b(r)HJK—bTe % as r—oo ) T s =NATK, | dVadVy U(ra) —U(ry) - —
e 12
with the sameN, and «, as for the exact many-electron Xj, (ke ), (0OIY, ()Y, (1)
wave function. The only other restriction is that the range of
U(r) be roughly the size of the atom. ><{R/b(r1)F/,(r2)[Y/b(rl)Y/,(rz)]k,,}*.
The incident continuum wave is the solution of ' ' 1
12
1 /(4+D) o . o . . .
o Pr T+ U(r) F/i(r)z EiF/i(r), This is a six-dimensional integration that can be reduced to a

®) five-dimensional integration becaugg+ ¢,= ¢, +¢_ .
For a fixedE, , the cross-sectiof20] differential in E

whereE;=E—E,, is the incident energy. The radial function IS

is normalized per unit energy so that at asymptotically large

distances, it has the form do 2_77 (2L+1)(2S+1) TLS 12
dE;, E T s (2/,+1)4 Mol
1 /2
F/i(r)—>r Hsin (13)
(9) The total cross section is obtained by integrating the differ-
ential cross section ovét, from O to E. The proper weight
wherek= \/2_E| is the wave number of the incident electron for each matrix element arises from summing over all of the
andé is an energy dependent phase shift. The distorted-waveomponents ofL and S [this gives the (2+1)(2S+1)
potential for the incident electron has been chosen to be term] and averaging over the components/gfand the spin
of the core electron and spin of the incoming electftis
U(r)=[1—(1+kyr)e 2 /r, (10) gives the (2°,+1)4 term. To show that this is the proper
expression for the cross-section differentiaBn , first arti-
which has the correct asymptotic form s> and mimics ficially force the final-state wave function to be zero at a
the screening from the weakly bound electron. If the finalfixed but finite value of . and normalize the+ part of the
state were exact, then the results would be independent @fave function to have a volume integral equal to 1. Thus,
U(r) as long adJ(r)— 1/ asr—o. The results of the cal- there are only quantized energy levEls and inelastic cross
culations were not very sensitive to the precise formof ~Sections for having the system in each level in the final state.
(10-15% changes were observed if the distorted-wave pdD the last step, take the limit that this quantization distance
tential was set to t/for all r); the screened potential was 90€S to infinity to obtain the expression in E43).

chosen because it seems the results were slightly more accu- 1he initial and final states are decomposed into a total
rate. angular-momentum representation because the potentials

The final-state wave function is commute with the total angular-momentum operator; this
means the total angular momentum andzittomponent are
2k, ~ . conserved. Thus, the number of integrals that must be per-
Y=\ s (ker )t (rOLY, (rO)Y, (r)lw, formed can be reduced since the total angular momentum
and thez component of the total angular momentum does not
11 e ;
depend on whether the wave function is in the 1,2 coordinate
where E, =k%/2, j, is the spherical Bessel function and System or thet,— system. Furthermore, thE-matrix ele-
f/(r)Y/(F) is the solution of the Schiinger equation for a ments are independent of taeomponent of the total angu-

repulsive Coulomb potential with charge\/f/. Thef, and glarggnmentum; this meartdl can be set to zero in the cal-

V2k,/mj, are normalized per unit energy. The triplet  Because the total orbital angular-momentum operator is
wave function hag”_ equal to an odd integer whilé_ isan  the same in both coordinate systems, the initial and final

1
kr— Elog(kr)+ S| as r—oo,
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states must have the sahe@ndM to give a nonzero matrix nents ofZ;, S, and spin of the incoming electrdthis gives

element. A very good test of convergence and other probthe (2£,+1)(2S,+1)2 term. Using Eq. (6.2.9 of Ref.
lems with the computer programs is to calculateTh®atrix  [21], the identity
element for final states with anor M that differs from the

initial state. When such a calculation gives results substan- Le /b Li)2 1
tially different from zero, then there is a problem with the ; (2£+1) /o L L :—2/b+1 (17)
calculation.

can be shown and a similar one can be shown for the spins.

B. Atoms with nonzero angular momentum Using Eqgs.(15) and(17) in the total cross sectidiEq. (16)],

L . . the previous expression for the total cross section,(E8),
The derivation of th&-matrix elements and cross section is recovered

assumed that the atomic electrons form a closed shell. Actu- The expression of the energy differential and the total

ally, very few closed-shell atoms can bind an extra electron. o« section in terms of an expression that completely ne-

(Ca, Sr, and Ba are notable exceptioria this section, the ;0045 the angular momenta of the atom will be accurate as
treatment is generalized to atoms that have nonzero angul ng as relativistic effects can be ignored. In practice this

momentum. It is shown that when relativistic effects can D&y qang that the orbital for the weakly bound electron does not
ignored, then the atom can be treated as if the atomic eléqenang strongly on the spin-orbit interaction; the spin-orbit
trons have'S coupling unless the orientation or alignment of splitting for the weakly bound electron cannot be a substan-

the atom is probed after detachment. _tial fraction of the binding energy. In practice, this rarely
Let L¢,S; be the orbital angular momentum and spin of 5. (s

the core,l;, §; be the orbital angular momentum and spin of
the ion, L, S be the total orbital angular momentum and spin,
andL,S be the orbital angular momentum and spin of the
two electrons in the continuum. THEmatrix element for The five-dimensional integral for th&matrix elements
this case can be obtained from E#2) and factors that give are performed numerically with an unweighted Monte Carlo
the extra angular-momentum coupling of the electrons to théechnique using Sobel's sequence of quasirandom numbers
atom. These extra factors arise from projecting the initial{22]. Sobel's sequence of numbers are “random numbers”
state angular-momentum coupling onto the final-statghat tend to fill theN-dimensional unit cube more smoothly
angular-momentum coupling and are equal to than pseudorandom number generators, such as the linear
congruential generators; the Sobel's sequence of “random
P=((Lc/b) Li/iILe(Z 6/ L)X ((ScSp) Sisi| Sel(5p51) S)?, numbers” converged the integrals with roughly a factor of 2
(14 fewer points. The same sequence of points in the five-
dimensional space was used for ev@rnatrix element so
wheres;=s,=1/2 are the spins of the incoming electron andthe integration of the differential cross sections could be per-
the excess electron, respectively. These terms arise fromfarmed in a reasonable manner.

C. Monte Carlo integration

recoupling of the angular momenta. The n&matrix is this The radial ranges were chosen ise<6/\/—2E, andr,
factor times thels_T—matrix element. . <407/ 2E;. If s1(n),s,(n),s3(n),S4(n),s5(n) is the nth
The newT-matrix element can be expressed in terms offive-dimensional point of Sobel's sequence, then itk
six j coefficients and other simple factors: point of the spatial integration was
L /b L rl(n)zsl(n)rl,maxa
Tfé,s/ﬁ.s- L Ls:(_l)LC+/b+/i+£[£i’L][ - l}
e /' L L rz(n):SZ(n)rZ,maXa

_ Sctsptsi+ST
X(=1)%*8tI[ S, 8] coshy(n)=2s5(n)—1, (18)

Sc Sh SI
X[Si S S]Tbﬁ/i,@/, (15 codo(n)=2s,4(n)—1,

P2(N) — p1(N)=2msg(N).

where Tbi/i ., is from Eq. (12) and the symbolL]

= 2L+1. The nth point in ther. coordinates was obtained from the
The cross-sectiofR0] differential inE.. is pointinr,r, coordinates by simple algebra.

Estimates of the convergence with the number of points
do 2w (2£+1)(28+1) was o_btained by' running very large cglculations for a few
=— energies and noting the relative errors inherent in the smaller
dE, B /7 7Tises (2£;+1)(25+1)2 integration. Another technique was to change which compo-
% |T"S , |2 (16) nent of Sobel’s number went with each variable and compare
O/ L& /LS the results from the two different runs. For example, another
sequence of random points is generated whgiin)
The proper weight for each matrix element arises from sum=s,(n)r ynaxandr,(n) =s;(N)r, max With all other compo-
ming over all of the components @ andS [this gives the nents the same. In general, the integrations are converged to
(2£+1)(25+1) term and averaging over the compo- better than 3%.
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One difficulty in numerically evaluating the integrals for =~ Because the initial and final states are in the same coor-
the T-matrix elements is that a sharp integration boundary irdinate system, th&-matrix elements can be evaluated very
the r, coordinate substantially slows the convergence ratefficiently. Thus, thel-matrix is calculated fronk,,+ 1 to
with 1, max this is an inherent property of the integral and very high L, until the matrix elements become negligibly
does not depend on which numerical method is used. This ismall. The integrations are performed using a partial-wave
a large problem because the number of points needed for trexpansion of the 14, potential. The new final-state wave
Monte Carlo integration increases roughly linearly with function does not include exchange between the two elec-
lomax- 1he solution was to introduce a “soft boundary” in trons.
the r, direction. This was achieved by replacing the con-
tinuum wave in ther, direction by a function that was [ll. THRESHOLD REGION
smoothly reduced as the boundary was approached:

The behavior of the differential and total cross section in
F/i(rz)—>F/i(r2)exp[—(2r2/r2,ma)g4]. (19 the threshold region was originally discussed in R&6]. In
this region,E=0, which mean€;=—-E, andE, =0 and
Mg _~0. Their results may be rederived in a brief manner by
investigating the behavior of the continuum functions in the

) . L expression for th@-matrix element, Eq12). In Ref.[16], it
The number of integration points is fairly large, usually was shown that the main contribution to thematrix ele-

between 1B.and 16, but not so large that the method could 1ent was from the region of space near the atom. The inci-
not be implemented on a work station or personal computelyent continyum wave hardly changes with energy in the
One of ghe_lmplortﬁnthtncfks to s(,jpele? the evaluation of they, agnoiq region since the incident energy hardly changes in
mtegran/s;pv/oﬂve 1 the four radial functions. For a giveNnys region; thus, this function contributes no energy depen-
Ei.Ey /b7y, /-, andL, the radial functions were yence in the threshold region. Because the momentum in the
computed on a mesh of equally spgced points. In the Montg - coordinate is small, the Bessel function hardly changes
Carlo loop over the number of points, the radial functionsg, e the reaction region; thus, contribution to thenatrix
were mt_erpolated fo_r the value <pf1(n),r2(n), --- USINg @ alements from the continuum motion of the center of mass is
three-point, quadratic interpolation. Another obvious Stepﬁroportional tok, *E¥4. The continuum wave in the-

i . . Lo BT
was to calculate all Clgbsch Gordon coefficeints outside o oordinate contributes a very rapidly varying function with
the Monte Carlo loop since they do not depend on the valu%i since smallr _ is in the tunneling region; the tunneling

of the five-dimensional point. factor can be obtained from a WK8 approximation using

D. Large angular momenta 1NZE_ 1 v T
o . . . . 2 ~-E_| dro=——n (212)
The five-dimensional integrations are very time consum- 0 J2r 2JE_

ing and thus it makes sense to search for regions where it is
not necessary. The most obvious region to investigate ig obtain a factor for thel-matrix that is proportional to
whenL becomes large. In this case, the incident electron igxp(—«/2\E_); the tunneling factor is calculated as if the
always further from the atom than the weakly bound elecelectron needs to tunnel from the origin to the classically
tron. Thus, the incident electron always experiences a republlowed region.
sive 1f potential, whereas the inner electron only experience The threshold behavior of the cross section may be ob-
the atomic potential. We use these considerations to suppl@ained by squaring these contributions to fhenatrix ele-
ment the calculations of the cross section. ments and by noting th&; is nearly constant near threshold.
The idea is to use distorted waves'inr, coordinates for  This gives
the final state fot. greater than a maximum value,,, (i.e., q
center-of-mass coordinates are usedLferl ., but single- o ==
electron coordinates are used forL ). The final states E_C\/E_*exq_ﬁl E-E.), 22
in single-electron coordinates are not as accurate as the
center-of-mass coordinates, but it is much more accurate tyhereC is anE-independent constant and all energies are in
sults converge much faster with,,, when using this top-up  9ive the threshold depgndence of thg total cross section.
procedure. The change of variables E.=Esir/8 and dE.
The only change to the formulation is that instead of the= 2E sinBcospds give
final-state wave function in center-of-mass coordinates the

For smallr,, the exponential hardly changes the continuu
function but smoothly cuts off the integration as ap-
proaches the boundary.

final-state wave function is changed to o(E)=2C Es/zf ﬁlzsinzﬂ cosg exp| — m d
" A .. 0 JE cosB
=1, (r)F (Y, (r)Y, (r2) Iy, (20) )
—2cE2exd — | | g2exy — TP
wheref, (r) is the energy normalized continuum wave cal- =~2CE exp( JE/ Jo B ex 2\E dg
culated in the atomic potentigl(r) andF, (r) is the energy
normalized continuum wave calculated in the distorted wave _ 2 9/4 T
e ) =C\/—E""exp — —=|, (23

potentialU(r) that has the asymptotic formrl/ ™ JE
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where all energies are in atomic units. This function de-varying. The only other terms are those proportionaEto
creases extremely rapidly &—0. There are four terms that contribute factors Bf to the
The main difficulty with threshold laws is in knowing the T-matrix element. The potential terms give a contribution of
range of validity. In Ref[16], it was estimated tha<0.4  1/r3, which is proportional toE?. There is a term propor-
eV for electron-impact detachment of HUnfortunately, the  tional to E;”** from the incident continuum wave. From the
cross section decreases very rapidly for energies less than Oafnplitude of the _ continuum function, there is a term pro-
eV. At E=0.37 eV the total cross section #81/40 Mb,  portional tor**, which is proportional t&E; **. And, from
whereas it is=1/2 b (1b=10 2 (?mz) at E=0.19 eV. " the integration into the complex plane is a factorgf?.
Thus, there is no hope for an experimental test of this law. 'El'hus,
is also extremely difficult to test this law using EL2)
g;s(:)c\:,\z;\l:sttieoc.:gn;\e/fgence of the integrals becomes extremely ToE, \/EeXF[_(I)WKB(J)(E— ED] 25)

The threshold law for electron-impact detachment can be . I . .
extended by a more careful analysis of the behavior of thd the region near threshold. Substituting this form into the
functions in Eq.(12). This will allow the application of the C0SS Section gives
threshold law over a larger range of energies so it can be
tested experimentally and theoretically. The first important d_‘T:
point to note is that the substantial part of the integral is from dE,
the region of space wherg~ 1/E; andr,~1/\/— 2E,. Also,
the electrostatic repulsion causes=(r,+r;)/y2 andr, for the threshold law. This differs from the original threshold
=(r,—r)/2. law by the factor oE; and by the WKBJ) tunneling integral

The difficulty in finding the behavior of th&-matrix ele-  not going all of the way to the origin.
ment is in knowing what region of space gives the main The threshold law for the total cross section may be ob-
contribution in the integrals; it may be surprising that thetained by performing the same change of variables as above:
main contribution to the integral is in the region of spaceE, =Esir’3 and dE, =2EsinBcos3. This gives a total
near the turning point of the incoming wave anat in the  cross section with the form
region near the turning point for the final state. Clearly, the
region withr,<<1/E; is not important because this region is g(E)ocEiE9/4G(,/E/Ei)exq_2q>WKB(J)(E,Ei)], (27)
not classically allowed for the incident electron. For the re-
gionr,~1/E;, the continuum wave for the incident electron where G(x) = 1— 2[ arcsink) —xy1—x2]/« arises from the
oscillates with increasing,. In the classically allowed re- yerivative of the WKRJ) phase with respect t&_ . In the
gion, this continuum wave can be usefully expressed as thgyit E—,0, this form for the threshold cross section is iden-
imaginary part of an outgoing wave. Because the functiongica| 1o Eq. (23). It is interesting to note that some of the
in the integral for theT-matrix are analytic, the integration generic properties of this threshold law are also observed in
path can be deformed to go into the complex planerfor  Refs.[23] and [24], where there is a Coulomb interaction
instead of integrating along the reg line, the contour of ity the heavy particle. These properties include the reaction
integration is deformed to go into the complex plané+4o  zone being defined in the incoming channel, an energy de-
the continuum wave then becomes a rapidly decreasing efendence for the size of the reaction zone, and the main
ponential function. Thus, most of the integral is accumulatezgnergy dependence arising from a WiKBtunneling factor.
near the turning point;,~ 1/E; . _ _ Recently, the threshold law for electron-impact detach-

There are several changes to the integrand that arise frofjent was reexamined from a classical formulation. This
having the main region be neas~1/E; instead ofr,~0.  threshold law, from Ref[15], appears to be quite different
Because ;<r,, the value of . ~r,/y2. The largest change from the law in Eq.(27). However, the basic idea about
to the threshold law is that the tunneling factor changes to which processes control the threshold behavior is the same.

CEVE, exl —2Pyye)(E—E4 ,E)] (26)

12 The idea is that the electrons must tunnel out from the region
P (E_ E)= \/Efl’v“?E— 1 _E dr where the incident electron reaches its turning point. Thus,
WKB(I)L == =i wee \\2r_ - the main energy dependence, which comes from the VWWKB

integral, is exactly the same. The only difference is in the
T 2 ) 5 energy dependence of the prefactor. Using the notation of
= 2VE- 1- —[aresinx) +xy1-x, this paper the threshold law from Ré¢15] is

(24) o(E) (botEj) Lexd — 2duxey(E.EN],  (28)

where x=\E_/E;. This shows that the correction to the _
exponential in the threshold goes to zero as threshold is apvhere bo=(by—1)|Ep| with the by=119 from Ref.[15].
proached because—0 as threshold is approached. How- The reason for the difference of the prefactors is that Ref.
ever, the correction goes to zero very slowly since it goes aklL5] did not account for energy going into the center-of-mass
the square root of the excess energy does. motion and only used the differential cross section at the
There are a few other corrections that have a smaller efeoint E; =0 or, equivalently,E_=E. However, the cross
fect. The contribution from the continuum wave of the centersection is exactly O for this energy because of the Wigner
of mass remains the same since the Bessel function is slowlreshold lawE*? in the center-of-mass motion.
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IR L R ' FIG. 2. Total detachment cross section for Wsing the full
3 T calculation(crosses and the threshold laws from E¢23) (solid
0.8 - line), from Eq.(27) (dotted ling, and from Eq.(28) (dashed ling
0.6 ] _ ever, it is important to stress that all of the threshold laws
3 | discussed here agree with each other in the sense that they
5 04 B have the same dominant functional formE&s»0.

These figures suggest that the extended threshold law
gives a reasonable description of the electron-impact detach-
ment process. However, it must be remembered that the the-
00, , . , oretical method used testthe threshold law was also used

to deriveit. The agreement in Figs. 1 and 2 only shows that
00 01 O'; (eV(;.s 04 08 the analysis of the behavior of the functions in EtR) was
substantially correct. | expect that the relative size of the

FIG. 1. Differential cross section in arbitrary units from the full T-matrix elements from Eq(12) is more accurate in the
calculation(solid line) and from the threshold laws from E2)  threshold region than in any other energy range, but this has
(dotted liné and Eq.(26) (dashed ling () At E=0.19 eV, total not been shown. A serious test of the threshold law requires
energy; the two threshold laws give nearly identical results at thig¢ completely different style of calculation or requires an ex-
energy.(b) At E=0.75 eV, total energy. periment. The analysis of the threshold behavior from Ref.
[15] does provide a completely different treatment but gives
a law that is somewhat different from that derived here.

Unfortunately, it will be difficult to experimentally test
. the threshold law for electron-impact detachment. The prob-
different fqrms of the thres?old'law, Ege2) and(26). The lem is that the cross section is snl?all over the range wheFr)e the
two energies are foE;~25% higher than thresholdE(E;  reshold law may be expected to hold and it decreases ex-
~1/4) and fork; roughly twice threshold. The interesting yemely rapidly asE—0. It seems likely that the threshold
fgat_ure is that the two forms of the threshold law give veryjaw will hold for E<—E, and it may extend to energies
similar shapes so they agree roughly equally well with thesomewhat higher. In an experimental test of the threshold
shape of the full calculatiof25]. They both agree fairly well |jaw, there will be two competing effects that determine the
with the differential cross section considering the largechoice of atom to use as a test case. The maximum of the
change in the total cross section. However, there is an enototal cross section increases as the binding energy is reduced;
mous difference between the two forms in that the coefficeinthus, using an atom with a smaller binding energy will in-
used to match the height of the differential cross section isrease the signal. However, the energy scale becomes com-
changed by a factor of-150 for the simple threshold law pressed as the binding energy is reduced; thus, using an atom
and a factor of~0.6 for the extended threshold law. with a larger binding energy will decrease the need for high-

In Fig. 2, the total cross section for detachment from H energy resolution for the incident electrons. As an example
is plotted for the full numerical calculation and the different from H™, | have compared the relative change in the cross
forms of the threshold law, Eq$23), (27), and (28). All of section from an incident energy of 1.31-1.50 eV. The large
the threshold laws are scaled to give the total cross section d&tmatrix calculation gives an increase in cross section of a
the lowest energy point. Although the total cross sectiofactor of 9.6, whereas the threshold law from Réf] gives
changes by over 7 orders of magnitude in this energy rangé factor of 36, from Ref15] gives a factor of 5.0, and from
the extended threshold law, E(R7), agrees with the full Eq. (27) gives a fact_or of 9.1. In pr_|nC|pIe, these _dlfferences
calculation to within 40%, while the simple threshold law, ar€¢ measurable_z so it may be possible to test which threshold
Eq. (23), differs by up to a factor of-150. The reason for aw best describes electron detachment in &though the
the relative size of the errors is that in the simple thresholT0ss section is smalll.6 Mb at 1.31 eV and 15.3 Mb at
law, the electrons must tunnel too far in the final state; the)il-50 ev.
do not need to tunnel out froon_~0, only from r_
~1/\2E_ . This causes the cross section to decrease too fast
as E—0. The threshold law15] given in Eq.(28) is too The differential cross section in Fig. 1 holds an interesting
small by a factor of~30 at the highest energy point. How- implication for the recoil of the atom after the excess elec-

0.2

In Fig. 1, the differential cross section for detachment
from H™ is plotted for the full numerical calculation and the

IV. RECOIL OF THE ATOM
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tron is detached. In our treatment, the atom is infinitely 20
heavy but, in actuality, it is only 8- 1¢° times heavier than
the electron. Because the atom interacts with the two elec- 15 -

trons, the total momentum of the two electrons is not con-

served and the atom can gain momentum during the detach-

ment process. The momentum given to the atom is the initial

momentum of the two electrons minus the final momentum

of the two electrons. 5
The initial momentum of the two electrons arises solely

from the incident electron. In atomic units, the initial total

.

i

! ~
1

I

=
2 10
[

momentum isy2E;. The final momentum is/2p, , where Ol

p. is the momentum in the- coordinate and has a magni- 0 10 =0 30

tude 2E . . In the threshold regior<E; and from Fig. 1 B, (eV)

most of the scattering probability is f&, ~0.1E. Thus, the FIG. 3. Total cross section for H (solid line, N,=1.51),
final momentum is very small compared to the initial mo-H--like ion with 1/2 the binding energydotted line,N,=1.33),
mentum. and H -like ion with 1/3 the binding energydashed line,Ny

The implication is that the momentum given to the atom=1.26).
in the threshold region is nearly equal to the momentum of
the incident electron. At much higher energies, the incident 1_
electron is hardly deflected and only a small fraction of the foc —f(kr), (29
incident momentum is given to the atom. This apparently rvk
paradoxical behavior can be understood by noting that the _
detachment in the threshold region occurs when the inciderherek=2¢ and thef does not have a strong energy de-
electron is at the closest distance 1/E; . At this point, the ~Pendence. The bound function has the form
incident electron has lost all of its initial momentum and the
negative ion has gained all of the initial momentum. Once Roc Np i
the electron is detached from the atom, the two electrons r
cannot change their total momentyen external potential is ) ) o
neededl which is nearly 0. Thus, the atom retains the mo-WhereNy is the asymptotic normalization. _
mentum given to the negative ion. At high energies, the re- NOw the form of the cross section can be approximated by
verse situation holds in that the detachment occurs frongX@mining the scaling of all the functions in tfematrix,
weak interaction between the incident electron and the negd=d- (12 From the four orbitals, there is arf/which gives
tive ion when the electron is far from the ion; thus the inci- »- From the potentials, there isrlWhich givesxy,. From
dent electron’s momentum remains nearly unchanged ari@e volume elementdV,;dV,), there is ar® which gives
the atom only acquires a small fraction of the incident mo-1/x. From the energy dependent amplitude of the four or-

exp(— Kpf), (30

mentum. bitals there is a factor oN,/«,. Multiplying all of these
factors gives ar-matrix proportional toN,,/ Kﬁ.
V. SCALING THE CROSS SECTION To make the total cross section, tfiematrix is squared

and divided by the incident energy and integrated over the

In Ref. [14], a method for scaling the cross section was,oyed range of , . These last two energy terms cancel to
proposed which only used the asymptotic form of the wave;

function and the binding energy. This scaling rule for the

cross section is not expected to be exact but can serve as a N2
guide for making quick estimates using data from another o(E)= Ezosca(E/|Eb|), (31
atom. b

The_ idea is to use th_e properties of the fun_ct|ons n th‘gwhereascw is a scaled cross section that does not depend on
T-matrix elements. One |mport_ant feature that is used is th?he binding energy. The normalization consta should
weak dependence of thE-matrix elements on the precise not vary much with binding energy as the binding energy
form of the potential for the incoming electrod(r). In all  goes to 0. However, for the binding energies in the range of
of the calculations, a screened, repulsive Coulomb potentiad 5 1.0 eV, it may give effects at the 20-40 % level.
was used but the cross section changed by less than 10-20% | Fig. 3, calculations for model atoms are given that
when usingU(r)=1/ for all distances. This form will be show the level of variation in the cross section that may be
used in the discussion below. expected when changing the binding energy. One calculation

The main point to note is that the energy scale is set bys for detachment from H, while the other two are for a
the binding energy;- E,,, and the distance scale is set by theH™-like ion (s-wave attached electrpbut with binding en-
size of the negative ion- 1/k,=1/\/—2Ey. Thus, all func-  ergies a factor of 2 and 3 less than for Hin Fig. 4, the
tions will be written in terms of scaled distances, cross sections are scaled so that the energies are given in
=rscal kp, Wherer is meant to indicate any of the distances, units of the binding energy and the cross section is multi-
and scaled energies= eg..x2, Wheree is meant to indicate plied by E2/N2. Now the cross sections appear very similar.
any of the energies. All of the continuum functions have the There are a few considerations that reduce the accuracy of
form the scaling rule. The first is that the final state is not exact
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IRV tem is used to describe each. For the initial state, the proper
coordinate system is that of the individual electronsy,.

For the final state, the proper coordinate system is the center-
of-mass coordinates for the electran,= (r,=r,)/+/2.

The resulting formalism was used to investigate the be-
havior of the total cross section near threshold. This has led
to an extension of the threshold law to a form that might be
experimentally testable. The main correction to the threshold
law from Ref.[16] arises from not forcing the electron to
tunnel from the origin into the classically allowed region; the
main correction to the threshold law from RéL5] arises
from allowing energy to also be distributed into the center-
Liscal of-mass motion. An analysis of the detachment cross-section

FIG. 4. Same as Fig. 3 but the incident energy is scaled by thgifferential_ in energy shows that in the low-energy region the
binding energy and the cross section is scaled as in(&). The atom recoils with a momentum nearly equal to the momen-

units of the scaled cross section are GB edE; .., is dimension-  {um of the incident electron; this is an apparently paradoxical
less. behavior since the recoil momentum becomedarger frac-

tion of the incident momentum as the energy of the incident
and taking the potential for the incident electron to befaf ~ €lectron decreases to the threshold energy. Finally, the be-
all distances introduces some error. The main source of errdtavior of the cross section as the binding energy changes
is that the continuum waves for the repulsive Coulomb inter{With all other properties remaining fixedoughly agrees
action cannot be written in the form of E(9); the turning  With the scaling law proposed in R¢fL4]; thus, the energies
point for a repulsive Coulomb potential is at distances pro-Scale with the binding energy of the negative ion and the
portional to 1¢ and not 1{/e. There are energy dependent CrOSs section scales inversely with square of the binding en-
phases that can be important. The reason that the scaling ruf9Yy-
works as well as it does is because the main contribution to
the integral comes from phase-matching conditions for the

Oscal

0 10 20 30 40
E
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