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Electron-impact double ionization of a model helium atom
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Single- and double-ionization processes in electron scattering from a model helium atom are calculated by
a direct solution of the time-dependent Salirmer equation on a 3D lattice. The Coulomb interaction between
the electrons is described yr,,r,)=1/r- and all angular momenta are set to zero. The initial state is a
product of the ground state of the model helium atom on a 2D lattice with a wave packet for the free electron.
At times following the collision and for incident electron energies around 200 eV, the probability density
associated with double ionization is found to be quite small when compared to other scattering processes.
Projections onto 1D continuum states are employed to calculate single- and double-ionization cross sections.
Although absolute cross sections for the model cannot be compared to experiments on helium due to the
neglect of higher partial waves, the ratio of double to single ionization for the model is found to be 1% or less,
in fair agreement with experimerfiS1050-294{®9)03806-§

PACS numbdss): 34.80.Dp

I. INTRODUCTION found in thes-wave model are very similar to those found in
the complete physical system. In the following paragraphs
Substantial progress has been achieved in the last fivee first calculate the single ionization of a model ‘He

years in the calculation of accurate electron-impact singleatomic ion in Sec. II, then calculate the single and double
ionization cross sections for atoms and their ions. The correionization of a model He atom in Sec. lll, and finally give a
lated quantal dynamics of two free electrons moving in thePrief summary in Sec. IV.
long-range Coulomb field of a third body remained until this
decade one of the most fundamental unsolved problems in Il. 2D MODEL FOR THE SINGLY CHARGED
nonrelativistic quantum mechanics. The converged close- HELIUM ION
coupling [1], the hyperspherical close-coupling], the R A. Theory
matrix with pseudostatds], and the time-dependent close- '
coupling [4] methods have all produced direct-ionization ~The time-dependent Schitimger equation for the
cross sections for hydrogen in excellent agreement with exfemkin-Poet model of He is given by(in atomic unit3
periment[5]. In addition, close-coupling calculations have

now been carried out for the direct-ionization cross sections ia’r/’(rl'rZ’t) =H(r 1.l d(r1,F o0 1)
of He [6,7], atomic ions in the Li isoelectronic sequence ot Lr2fP 2
[8-12, and atomic ions in the Na isoelectronic sequence ) ) S
[13]. where the time-independent Hamiltonian is

In this paper we turn our attention to the calculation of 12 182 2 2 1
electron-impact double-ionization cross sections for atoms H(r,,r,)=— - —— ey —— ———————.
and their ions. The essence of the problem is the description 29ry 295 ry rp maxry,rp)
of the correlated quantal dynamics of three free electrons @

moving in the long-range Coulomb field of a fourth body. To The Hamiltonian is discretized on a 2D lattice using lowest-

d?tet'r ];u:% qutagtalblnoin;:r)]ci-:‘zru:irbrTUVre caICl:]Ia\t)onr? vOfr kt)heorder finite differences. The wave function is then time
electron-impact double-ionization process have never beeg, q qq using an explicit leap-frog propagafdt.

report_ed; in fact, we are not aware Of any fuIIy_ qua_n_tal PET" " The total antisymmetrized wave function fb® scattering
turbz_mve qalculanons. In the past various semiempirical anqrom the ground state of Heis given by
semiclassical approaches have been used to help analyze the
many experiments on multiple ionization of atoms and their . 1
ions and to predict cross sections of importance to the mod- WS(ry,r,,t)= \/:[ Wa(rq,ro,0)+ dp(rq,rs,t)]
eling of high-temperature plasmg$4,15. 2

We begin by examining the electron-impact double ion- 1
ization of helium in ars-wave model for the Coulomb inter- X \/:(Tl—lT),
action between the electrons. The full 9D time-dependent 2

Schrodinger equation is reduced to one 3D partial differenyynere the arrows represent the two spin degrees of freedom.

tial equation by setting all angular momenta equal to Z€TOjhitially the spatial wave functions are given by
This same dimensional reduction scheme, or what has come

to be known as the Temkin-Poet mod&b6,17), has proved Pa(r1,r2,t=0)=Gy(r1)P14(r5), (4)
quite useful in examining the electron-impact single ioniza-
tion of hydrogen[18—22. The correlated quantal dynamics and
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Pp(rq,r2,t=0)=Gyg(r2)P1s(ry), (5) 400 : : I

where Gy = [1/(w2m) Y4]el ~(r~9%2w’lg=ikr i5 an incoming (a)
radial wave packet for the free electrom,is the width,s is
the localization radiusk is the wave number, and 4(r) is
the ground state of the Heion. We need only time evolve
one of the spatial wave functions according to Eg, since
the other wave function can be obtained at any time by a
simple coordinate interchange.

Following the collision the probability of excitation to a
statens may be extracted from the asymptotic total wave
function by the projection:

30.0 8
& 200 -

10.0 b

1 , 1 1
Peicn:f dk |<Xn,skr(r11r2)|\1’ S(rl1r21t:T)>|2- (6)

o‘o 1 | 1 | ! | L
where 0.0 10.0 20.0 30.0 40.0

ry

1g 1
Xn,kf(rlarz): E[Pns(rl)TaPk’s(rz)l] T

1
- \/;[Pns(rl)lapk’s(rzﬂ] (7)

and the brackets represent determinaes., [a(1),b(2)]
=a(1)b(2)—a(2)b(1)). Straightforward reduction yields

\ﬁ
§[¢a(r1ar21t:T)

®)

1
Peicnzzf dk’ <Pns(r1)Pk’s(r2)

2

+¢b(r1,f2,t=T)]>

A similar derivation yields the probability of ionization:

Pﬁosn:f dk’f dK’

1
X \/;[l//a(rlir21t:-r)+ l/’b(rl7r21t:T)]>

FIG. 1. Initial time ¢=0) probability density for electron scat-
tering from a model helium ion(@ 2D contour map andb) 3D
contour projection(Radial distances are in atomic unjts.

< Pk’s(rl) Pk”s(rz)

2 B. Results

For electron scattering from Hein the Temkin-Poet
9) model we choose a lattice with uniform mesh spacig
=0.4 a.u. and a box size of 40.0 a.u., resulting in a wave-

The single-particle orbital®(r) found in Eqs(8) and(9) function representation of 4@oints. Initially the incoming

for the excitation and ionization probabilities are obtained byf@dial wave packet is centered at 20.0 a.u. with a Gaussian

diagonalization of the single-particle Hamiltonian for the full width at half maximum(FWHM) of 6.0 a.u. and an
He' ion: incident electron energy &=90 eV=3.31 a.u. The ground

state of HE on the corresponding 1D lattice was calculated

12 2 to have an energy of47.73 eV, the exact analytic value
h(n=—--——-, (100 being—54.42 eV. The probability density for the initial un-
29r° v symmetric spatial wave functioms,(r,,r,,t=0), of Eq.(5)

] ] ] ] is shown in Fig. 1. As time evolves, the peak of the prob-
on a 1D lattice with the same mesh spacing and box size aghility density centered ar (=0, ,=20) moves toward the
the 2D lattice used for Eq). Inelastic cross sections are origin with a group velocity ob = \(2E)=2.57 a.u.

then given by The time for the wave packet to collapse and then re-
bound from the origin so that the peak of the elastic-
a P —
= (2S+1)P, 11 scattering components are centered rt=(0,,=20) and
7= g2 )P (D (r,=20y,=0) is approximatelyt=40/ =15.6 a.u. In Fig.

2 we show the probability density for the unsymmetric spa-
whereS is the total spin angular momentum. tial wave function, ¢, (r,,r,,t), at t=20.0 a.u. The large
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40.0 w [ T TABLE I. Inelastic cross sections for a model helium positive

ion at an incident energy of 90 eMin Mbarns = 1.0
(a)

X 10718 cn).

30.0 TD D TD
Transiton Ar=04 Ar=02 Ar=0.1 RMPS[23]
1s—2s 0.295 0.200 0.173 0.176
~ 200 1s—3s 0.080 0.052 0.045 0.044
= 1s—ks 0.262 0.172 0.147 0.150

—52.40 eV for Ar=0.2 a.u. and—-53.89 eV for Ar

=0.1 a.u. The & 10*-point and 1.6 10°-lattice results for

the inelastic cross sections are also presented in Table I. The
Ar=0.1-a.u. lattice results agree extremely well with the
R-matrix pseudostattRMPS calculations of Bartschat and

10.0

0.0
0.0 10.0 200 30.0 400 Bray [23] _

As a check on our current numerical procedures we re-

Iy peated our time-dependent calculations for the excitation and

ionization of He using the wave-packet method described
in Sec. Il of Robicheauet al.[22]. That is, we propagated a
fully symmetric spatial wave function, given by

\/é[ Pa(rq,ro,t)+y(rq,ro,t)], and projected the asymp-
totic solution onto only the negative energy states on the 1D
lattice. The excitation probabilities, as well as the ionization
probabilities obtained through unitarity, were found to agree
exactly with those presented in Table I.

lll. 3D MODEL FOR THE HELIUM ATOM

A. Theory

The time-dependent Schtinger equation for the
Temkin-Poet model of He is given kyn atomic unit$

iﬁw(r11r21r3vt)
ot

=H(rq,rp,ra)(rqy,rp,ra,t), (12

) ) - ] where the time-independent Hamiltonian is
FIG. 2. Final time {=20) probability density for electron scat-

tering from a model helium ion@ 2D contour map andb) 3D 162 102 1% 2 2 2
contour projection(Radial distances are in atomic unijts. H(rq,rp,ra)=— > m— > F%_ > E— a - E - G
peaks along the coordinate axes represent elastic and bound 1 1 1
inelastic scattering, where one electron remains in the vicin- + max(ry,ry) + maxry,rs) + maxry,ra)
ity of the He" nucleus at the origin and the other electron ’ ’ ’
moves freely away to large distances. The smaller concen- (13

tration of probability density along thg =r, axis represents The Hamiltonian is discretized on a 3D lattice using finite

Co ) : "
lonization, in which both electrons escape from the”He differences and then again time evolved using an explicit

nucleus. In essence, Fig. 2 is a snapshot of the total Scatt%'ap-frog propagator

ing amplitude, Whgre the diStribl.Jtio.n ".‘ cqordinate SPace - e total antisymmetrized wave function v scattering
may be mapped directly onto a distribution in the momentafrom the ground state of He is given by

of the outgoing electrons for long times.
The probabilities for excitation and ionization of Hén \Ifzs(r Fp.lat)
the Temkin-Poet model are calculated using E&sand(9) b

at times following the collision(i.e., T=20.0 a.u.). The 1

time-dependentTD) 10*-point-lattice results for the inelas- = 6{[‘/’a(r1ar21r31t)_ Pp(re,r2,r3, )17
tic cross sections are presented in Table I. We repeated the

electron-scattering calculations for Heusing lattices with —[a(rq,ro,rg,t)y—the(ri,ro,r3, )71 1
Ar=0.2 a.u. andAr =0.1 a.u., keeping the box size radius

constant at 40.0 a.u. The ground state of Hm the corre- (M2, = ge(rira.rs, LT}

sponding 1D lattice was calculated to have an energy of (14
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Initially the spatial wave functions are given by ) 3
P@mzzfdwfdw

' < Pns(rl)Pk’s(rZ) Pk”s(rS)
Ya(r1,r2,r3,t=0)=Gy(r1) p1e2(r,,rs), (15

1
Uo(F1 T2 P o t=0)=Gye(I ) brsa(ryra),  (16) X\[E[Z"”C”l’”“'t:T)

and 2

—¢a<r1’fzafs,t=T>—wb<r1,r2,t=T>]>
Ye(r1,12,13,t=0)=Cy(ra) h12(r1,r2), (17

3
+5 [ aw [ aw <Pns<r1>Pkfs<r2>Pk~s<rg>
where ¢,.2(r,r") is the ground state of the He atom. Again
we need only time evolve one of the spatial wave functions 1
according to Eq(12), since the other two can be obtained by X \[E[ Pa(rq,ry,rg,t=T)
coordinate interchange. Since the spatial and spin coordi-
nates cannot be separated in the three-electron problem, we

have no choice but to propagate unsymmetric spatial wave —wb(rl,rz,rs,t:T)]>
functions.

Following the collision the probability of ionization, leav-
ing the HE ion in a statens, may be extracted from the 40.0 1 ' , . T
asymptotic total wave function by the projection:

23 1
P =—f dk’f dk”
ion:n 2

quzs(rl,rz,r3,t:T)>

2
. (2D

300 - —

15)2s
<X§1,k2,k~(r1:r21r3)

2+1fdwfdw' _ 7
2
S

2

X

3525 2
<Xs1,k2,k”(r1,|’2,r3)‘\l’ S(rl,rz,r3,t=T)>

(18 100 - -

where %\ :
0'0 L | I L

12 1
xf]f?,,f,(rl,rz,rs)= \/;[Pns(rl)T,Pk's(rz)l,Pk"s(rs)T] 0.0 10.0 200 300 40.0
r

1
- \/;[Pns(rl)laPk’s(r2)T1Pk”s(r3)T]y
(19
G9)%s B 2
Xn’k/ykﬁ(rlar2ar3)_ \/;[Pns(rl)T!Pk’s(rZ)T!Pk"s(rS)l]
1
- \/%[Pns(rl)TaPk/s(rZ)laPk”s(rS)T]

1
- \/%[Pns(rl)laPk/s(rz)T’Pk”s(rS)T]y

(20

and the brackets represent determinants

(.e., [a(1),b(2),c(3)]=a(1)b(2)c(3)—a(1)b(3)c(2)
—a(2)b(1)c(3)+---). The factors of; in Eq. (18) are
needed to avoid double counting in the continuum, while the
two terms on the right-hand side of E{.8) arise from the FIG. 3. Probability density for the ground state of a model he-
spin coupling of the first two electrons in the three electroniium atom. (a) 2D contour map andb) 3D contour projection.
wave functions. Straightforward but tedious reduction yields(Radial distances are in atomic unijts.
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40.0 T T T T T
(a)
30.0 f
< 200 3 .
10.0 _
0.0 1 | L 1 ' 1 1
0.0 10.0 20.0 30.0 40.0

FIG. 4. Initial time ¢=0) probability density for electron scat-
tering from a model helium atom with,=0. (a) 2D contour map
and (b) 3D contour projection(Radial distances are in atomic
units,)

A similar derivation yields the probability of double ioniza-
tion:

s 1 4 " "
7)dionZEJ dk fdk Jdk
1
X\ gl2¢c(rera,rs,t=T)
_lpa(rlerIrS!t:T)_lpb(rleryt:T)]>

1
+3 f dK’ f dk”f dk” <Pkrsm)Pkrrsuz)Pkms(rs)

1
X \/;[l/fa(rlrrZ!rs’!t:T)

2
. (22

< Pk’s(rl) Pk”s(rz) Pk”’s(rs)

2

_¢b(rl!r21r3!t:T)]>

40.0 T T ; T

30.0

£ 20.0

10.0

40.0

FIG. 5. Final time {=15) probability density for electron scat-
tering from a model helium atom with,=0. (a) 2D contour map
and (b) 3D contour projection(Radial distances are in atomic
units)

The two-particle wave functiong(r,r'), for the ground
state of the He atom is obtained by imaginary time relaxation
of Eg. (1) on a 2D lattice with the same mesh spacing and
box size as the 3D lattice used for E{.2). The single-
particle orbitals,P(r), found in Egs.(21) and (22) for the
single- and double-ionization probabilities are obtained by
diagonalization of the Hamiltonian of EL0) on a 1D lat-
tice with the same mesh spacing and box size as the 3D
lattice used for Eq(12). The ionization cross sections are
given by Eq.(11), which is simply the probability divided by
the incident electron flux.

B. Results

For electron scattering from He in the Temkin-Poet model
we choose a lattice with uniform mesh spacinkr
=0.4 a.u. and a box size of 40.0 a.u., resulting in a wave
function representation of £@oints. Initially the incoming
radial wave packet is centered at 20 a.u. with a Gaussian
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40.0 T T T T T 40.0 T T T T
(a) (a)

30.0 4 30.0 1 _
200 8 200 .

10.0 - 10.0 B

0.0 : ' L . : 0.0 . ! !

0.0 10.0 20.0 30.0 40.0 30.0 40.0
l‘l l.1

FIG. 6. Initial time ¢=0) probability density for electron scat-
tering from a model helium atom with,=r. (a) 2D contour map
and (b) 3D contour projection.(Radial distances are in atomic
units)

FIG. 7. Final time {=15) probability density for electron scat-
tering from a model helium atom with,=r,. (a) 2D contour map
and (b) 3D contour projection(Radial distances are in atomic
units)

FWHM of 6.0 a.u. and an incident electron energy of 200.0origin. The probability density along the =r; axis repre-
eV. The ground state of He on the corresponding 2D latticesents single ionization leaving the Héon in a bound state.
was calculated to have an energy-067.78 eV. To approach To take a look at double ionization, we make a cut along
the chemical accuracy for the physical He atom-6f9.02  the hyperdiagonal of the coordinate space cube. The prob-
eV would require a smaller lattice spacing and an extensiombility density of the initial unsymmetric spatial wave func-
of the model to include higher partial wavése., angular tion, .(r,,r,=rq,r;,t=0), of Eq.(17) is shown in Fig. 6.
correlation$. The probability density for the He ground state Notice that the probability density in Fig. 6 along theaxis
wave function,¢,2(r1,r»), is shown in Fig. 3. The “butter- appears compressed when compared to the probability den-
fly” shape of the contour map is due to radial electron cor-sity found in Fig. 4. This is due to radial correlations in the
relations. He atom ground state. As shown in Fig. 3, the probability
The visualization of probability flows for a 3D wave func- density extends further along,=0 than alongr,=r;. In
tion has its challenges. We begin with the probability densityFig. 7 we show the probability density fog.(rq,r,
for the initial unsymmetric spatial wave functiog(r,,r, =r4,r3,t) at t=15.0 a.u. following the collision. The large
=0y3,t=0), of Eq.(17) as shown in Fig. 4. In Fig. 5 we peak along ther; coordinate axis represents elastic and
show the probability density fory.(r,,r,=0r3,t) att bound inelastic scattering, where two electrons remain in the
=15.0 a.u. following the collision. The large peaks along thevicinity of the He nucleus and the third electron moves away
r, andr 3 coordinate axes represent elastic and bound inelage large distances. The smaller peak alongrthexis repre-
tic scattering, where two electrons remain in the vicinity ofsents single ionization, with only one electron remaining at
the He nucleus and the other electron moves away to largée origin(remember,=r). Finally the much smaller con-
distances. Remembeg=0, so one electron is always at the centration of probability density along thg=r,=r5 axis
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ra 2 ra

FIG. 8. Time sequence of probability density for electron scat- FIG. 9. Time sequence of probability density for electron scat-
tering from a model helium atom at incident energy of 200 &/.  tering from a model helium atom at incident energy of 200 eV, at
t=0, (b)t=5, (c) t=10,(d) t=15, (e) t=20, and(f) t=25. (Radial high resolution in onlyr,=r; plane.(a) t=0, (b) t=5, (c) t=10,
distances are in atomic unixs. (d) t=15, () t=20, and(f) t=25. (Radial distances are in atomic

units)

represents double ionization, in which all three electrons es: , . C .
10°-point-lattice results for the ionization cross sections are
cape from the nucleus.

. N presented in Table Il at incident energies of 200, 300, 400,
We try our hand. at3p prqbab!l|ty densities in Figs. 8 ar.‘dand 500 eV. It is interesting to compare the model He-atom
9. The concentration of points in the dark areas are highyeoretical predictions with the physical He-atom experimen-
density, while light areas are low density. The probability 5| measurements of Shat al. [24], at least at the qualita-
density of the unsymmetric spatial wave function, tye |evel. The peak of the double-ionization cross section in
e(ry,ra,r3,t), at anincident energy of 200 eV is shown in poth theory and experiment is between 300 and 400 eV,
Flg 8 for timest=0.0, 5.0, 10.0, 15.0, 20.0, and 25.0 a.U. ground 4.X 10*21 CITIZ for the model and around 1.3
The probability density in the planes4r3) and (,,r;) are  x10 ' cn? for observation. Of course, the difference in
mirror images of each other andtat 15.0 a.u. in Fig. &)  absolute cross section is to be expected since the model does
correspond with Fig. 5. The low probability density inside
the cube represents the time evolution of the three-electron TABLE II. lonization cross sections for a model helium atom
continuum in the Coulomb field of the nucleus. We show the(asymptotic continuum charge 2) at a mesh spacing afr =0.4
probability density of the unsymmetric spatial wave func-(in Mbams= 1.0x10 cn).
tion, ¥¢(r1,r,,rs,t), only in the plane(;=r,,r3) in Fig. 9
at the same incident energy and propagation times. FigureTmmsition
9(d) corresponds with Fig. 7. In this particular plane the
probability density inside the cube again represents the timels>—~1sks  0.4162 0.2950 0.2232 0.1398

TD TD TD TD
E=200eV E=300eV E=400eV E=500 eV

evolution of the electron-impact double-ionization process. 1s2—2sks  0.0207 0.0200 0.0169 0.0111
The probabilities for single and double ionization of He in 1s2_.3sks  0.0026 0.0028 0.0026 0.0018
the Temkin-Poet model are calculated using EG4) and 1s2_sksk's  0.0033 0.0043 0.0044 0.0033

(22) at times following the collisior{i.e., T=15.0 a.u.). The
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TABLE lIl. lonization cross sections for a model helium atom incident energies of 200, 300, 400, and 500 eV. The cross
(asymptotic continuum charge 1) at a mesh spacing dfr=0.4  sections for % single ionization are approximately 80%

(in Mbarns= 1.0x 10 *® cn). larger than the previous results. With the new single-
ionization values, the ratio of the double- to single-ionization
N D D ™ D cross sections between 200 and 500 eV varies from 0.4% to
Transition E=200eV E=300eV E=400 eV E=500eV 1 09%, in much better agreement with observation.
1s>—1sks 0.7394 0.5155 0.3984 0.2597
1s?2—2sks  0.0622 0.0497 0.0509 0.0518 IV. SUMMARY
1s’~3sks  0.0195 0.0134 0.0094 0.0072 We have carried out fully quantal nonperturbative calcu-

lations for the electron-impact double ionization of helium
within ans-wave model of the electron interactions. The nu-
not include the higher partial waves. The ratio of the doublemerical method is based on the direct solution of the time-
to single-ionization cross sections between 200 and 500 e¥ependent Schrodinger equation on a 3D lattice. Visualiza-
varies from 0.8% to 2.2% for the model and from 0.3% totion of the wave-packet probability density as a function of
0.6% for observation. time confirms the hierarchy of scattering processes: strong
We further investigated a couple of possibilities for the elastic and bound inelastic, weaker single ionization, and ex-
model’s rather large double- to single-ionization cross sectremely weak double ionization. Various ionization cross
tion ratio. As shown in Sec. Il, full convergence of the ion- sections for helium were calculated by time propagation of
ization cross sections for the Temkin-Poet model would rean unsymmetric spatial wave function, coordinate inter-
quire a mesh spacing afr=0.1 a.u. and a 6410” point  change to recover the remaining parts of the total wave func-
lattice. However, we note from Table I that the ratio of thetion, and direct projection onto a mixture of bound and con-
ionization to excitation cross sections for Hearies quite  tinuum single-particle orbitals. The ratios of double to single
slowly with mesh spacing. We would expect a similar slowijonization for thes-wave model were found to be in reason-
variation for the ratio of double- to single-ionization cross able agreement with experiments on the physical atom. It
sections for He. A more likely explanation for the model’s should be possible to extend the three-electron wave-packet
rather large cross-section ratio may be the choice of singlemethod to include higher angular waves, resulting in time-
particle orbitals,P(r), used in the projections found in Egs. dependent close-coupling equations for the té@land 2P
(21) and(22). Certainly the choice of an effective charge of symmetries. Accurate checks could then be made on theoret-
2 in Eq. (10) is correct for the double-ionization probability ical predictiond 25,26 and experimental measuremef23]
of Eq. (22), where all three electrons are escaping to largeof the complete photofragmentation of the lithium atom.
distances and see a bare He nucleus. However, the choice of

an effecti_ve charge_of 1 in Eq@10) for the calculation of the ACKNOWLEDGMENTS
two continuum orbitalsP,.4(r) and P,»(r), seems more
appropriate for the single-ionization probability of EG1). This work was supported in part by a NSF grdhlo.

In single ionization the remaining bound electron shouldPHY-9122199, a NSF young investigator grafiilo. PHY-
shield the bare He nucleus from the two electrons that ar8457903, and a U.S. DOE EPSCoR grarfiNo. FCO02-
escaping to large distances. Thé®Hint-lattice results for 91ER75678 with Auburn University. The computational
the single-ionization cross sections using an effective chargeork was carried out at the National Energy Research Su-
of 1 for the continuum orbitals, are presented in Table Il atpercomputer Center in Berkeley, California.
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